<?xml version='1.0'encoding='utf-8'?>encoding='UTF-8'?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]><?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <!-- used by XSLT processors --> <!-- For a complete list and description of processing instructions (PIs), please see http://xml.resource.org/authoring/README.html. --> <!-- Below are generally applicable Processing Instructions (PIs) that most I-Ds might want to use. (Here they are set differently than their defaults in xml2rfc v1.32) --> <?rfc strict="yes" ?> <!-- give errors regarding ID-nits and DTD validation --> <!-- control the table of contents (ToC) --> <?rfc toc="yes"?> <!-- generate a ToC --> <?rfc tocdepth="4"?> <!-- the number of levels of subsections in ToC. default: 3 --> <!-- control references --> <?rfc symrefs="yes"?> <!-- use symbolic references tags, i.e, [RFC8174] instead of [1] --> <?rfc sortrefs="yes" ?> <!-- sort the reference entries alphabetically --> <!-- control vertical white space (using these PIs as follows is recommended by the RFC Editor) --> <?rfc compact="yes" ?> <!-- do not start each main section on a new page --> <?rfc subcompact="no" ?> <!-- keep one blank line between list items --> <!-- end of list of popular I-D processing instructions --><rfc xmlns:xi="http://www.w3.org/2001/XInclude" category="std" docName="draft-ietf-tictoc-ptp-enterprise-profile-28" number="9760" consensus="true" ipr="trust200902" obsoletes="" updates="" submissionType="IETF" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"><!-- xml2rfc v2v3 conversion 3.12.3 --> <!-- category values: std, bcp, info, exp, and historic ipr values: trust200902, noModificationTrust200902, noDerivativesTrust200902, or pre5378Trust200902 you can add the attributes updates="NNNN" and obsoletes="NNNN" they will automatically be output with "(if approved)" --> <!-- ***** FRONT MATTER ***** --><front><!-- The abbreviated title is used in the page header - it is only necessary if the full title is longer than 39 characters --><title abbrev="Enterprise Profile for PTP">Enterprise Profile for the Precision Time ProtocolWithwith Mixed Multicast and Unicastmessages</title>Messages</title> <seriesInfoname="Internet-Draft" value="draft-ietf-tictoc-ptp-enterprise-profile-28"/> <!-- add 'role="editor"' below for the editors if appropriate --> <!-- Another author who claims to be an editor -->name="RFC" value="9760"/> <author fullname="Doug Arnold"initials="D.A."initials="D." surname="Arnold"> <organization>Meinberg-USA</organization> <address> <postal> <street>3 Concord Rd</street><!-- Reorder these if your country does things differently --><city>Shrewsbury</city> <region>Massachusetts</region> <code>01545</code><country>USA</country><country>United States of America</country> </postal><phone/><email>doug.arnold@meinberg-usa.com</email><!-- uri and facsimile elements may also be added --></address> </author> <author fullname="Heiko Gerstung"initials="H.G."initials="H." surname="Gerstung"> <organization>Meinberg</organization> <address> <postal> <street>Lange Wand 9</street><!-- Reorder these if your country does things differently --><city>Bad Pyrmont</city><region/><code>31812</code> <country>Germany</country> </postal><phone/><email>heiko.gerstung@meinberg.de</email><!-- uri and facsimile elements may also be added --></address> </author> <dateyear="2024"/> <!-- If the month and year are both specified and are the current ones, xml2rfc will fill in the current day for you. If only the current year is specified, xml2rfc will fill in the current day and month for you. If the year is not the current one, it is necessary to specify at least a month (xml2rfc assumes day="1" if not specified for the purpose of calculating the expiry date). With drafts it is normally sufficient to specify just the year. --> <!-- Meta-data Declarations --> <area>General</area> <workgroup>TICTOC Working Group</workgroup>year="2025" month="April"/> <area>INT</area> <workgroup>tictoc</workgroup> <keyword>PTP</keyword> <keyword>Enterprise Profile</keyword> <abstract> <t>This document describes a Precision Time Protocol (PTP) Profile<xref target="IEEE1588" format="default">IEEE 1588-2019</xref>(IEEE Standard 1588-2019) for use in an IPv4 or IPv6Enterpriseenterprise information system environment. The PTP Profile uses the End-to-End delay measurement mechanism,allowsallowing both multicast and unicast Delay Request and Delay Response messages.</t> </abstract> </front> <middle> <section numbered="true" toc="default"> <name>Introduction</name> <t>The Precision Time Protocol("PTP"),(PTP), standardized in IEEE 1588, has been designed in its first version (IEEE 1588-2002) with the goalto minimizeof minimizing configuration on the participating nodes. Network communication was based solely on multicast messages,whichwhich, unlikeNTPNTP, did not require that a receiving node as discussed in <xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref>target="IEEE1588-2019" format="default">IEEE 1588-2019</xref> need to know theidentityidentities of the time sources in the network. This document describes clock roles and PTP Port states using the optional alternative termstimeTransmitter,"timeTransmitter" instead ofmaster,"master" andtimeReceiver,"timeReceiver" instead ofslave,"slave", as defined in the <xref target="IEEE1588g" format="default">IEEE1588g</xref> amendment1588g amendment</xref> to <xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref> . </t>target="IEEE1588-2019" format="default"></xref>.</t> <t>The "Best TimeTransmitter Clock Algorithm" (<xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref>target="IEEE1588-2019" format="default"></xref>, Subclause 9.3), a mechanism that all participating PTPnodes MUSTNodes <bcp14>MUST</bcp14> follow,setsets up strict rules for all members of a PTP domain to determine which nodeMUST<bcp14>MUST</bcp14> be the active reference time source (Grandmaster). Although the multicast communication model has advantages in smaller networks, it complicated the application of PTP in largernetworks,networks -- forexampleexample, in environments likeIP basedIP-based telecommunication networks or financial data centers. It is considered inefficient that, even if the content of a message applies only to one receiver,itthe message is forwarded by the underlying network (IP) to all nodes, requiring them to spend network bandwidth and other resources, such as CPU cycles, to dropthe message.</t>it.</t> <t>The third edition of the standard (IEEE 1588-2019) defines PTPv2.1 and includes the possibilityto useof using unicast communication between the PTPnodesNodes in order to overcome the limitation of using multicast messages for thebi-directionalbidirectional information exchange between PTPnodes.Nodes. The unicast approach avoided that. In PTP domains with a lot of nodes, devices had to throw away most of the received multicast messages because they carried information for some other node. The percent of PTPmessagemessages that are discarded as irrelevant to therecevingreceiving node canexcededexceed 99%(<xref<xref target="Estrela_and_Bonebakker"format="default">Estrela and Bonebakker</xref>).</t>format="default"/>.</t> <t>PTPv2.1 also includes PTP Profiles (<xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref> subclausetarget="IEEE1588-2019" format="default"></xref>, Subclause 20.3).This construct allowsThese constructs allow organizations to specify selections of attribute values and optional features, simplifying the configuration of PTPnodesNodes for a specific application. Instead of having to go through all possible parameters and configuration options and individually set them up, selecting a PTP Profile on a PTPnodeNode will set all the parameters that are specified in the PTP Profile to a defined value. If a PTP Profile definition allows multiple values for a parameter, selection of the PTP Profile will set the profile-specific default value for this parameter. Parameters not allowing multiple values are set to the value defined in the PTP Profile. Many PTP features and functions are optional, and a PTP Profile should also define which optional features of PTP are required, permitted, and prohibited. It is possible to extend the PTP standard with a PTP Profile by using the TLV mechanism of PTP (see <xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref> subclause 13.4),target="IEEE1588-2019" format="default"></xref>, Subclause 13.4) or defining an optional Best TimeTransmitter ClockAlgorithm and a fewAlgorithm, among otherways.techniques (which are beyond the scope of this document). PTP has its own management protocol (defined in <xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref> subclausetarget="IEEE1588-2019" format="default"></xref>, Subclause 15.2) but allows a PTP Profile to specify an alternative managementmechanism,mechanism -- forexample NETCONF.</t>example, the Network Configuration Protocol (NETCONF).</t> <t> In thisdocumentdocument, the termPTP Port"PTP Port" refers to a logical access point of a PTP instantiation for PTPcommunincationcommunication in anetwork. </t>network.</t> </section> <section numbered="true" toc="default"> <name>Requirements Language</name> <t>The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119" format="default">RFC 2119 </xref>target="RFC2119"/> <xreftarget="RFC8174" format="default">RFC 8174</xref>target="RFC8174"/> when, and only when, they appear in all capitals, as shown here.</t> </section> <section anchor="technical_terms" numbered="true" toc="default"> <name>Technical Terms</name><ul spacing="normal"> <li>Acceptable<dl spacing="normal" newline="false"> <dt>Acceptable TimeTransmitterTable: A PTP timeReceiver Clock may maintain aTable:</dt><dd>A list of timeTransmitterswhich it isthat may be maintained by a PTP timeReceiver Clock. The PTP timeReceiver Clock would be willing to synchronizeto.</li> <li>Alternate timeTransmitter: Ato timeTransmitters in this list.</dd> <dt>Alternate timeTransmitter:</dt><dd>A PTP timeTransmitterClock, whichClock that is not the BesttimeTransmitter,timeTransmitter and therefore is used as an alternative clock. It may act as a timeTransmitter with the Alternate timeTransmitter flag set on the messages itsends.</li> <li>Announce message: Containssends.</dd> <dt>Announce message:</dt><dd>Contains thetimeTransmitter Clockproperties of a given timeTransmitter Clock.UsedThe information is used to determine the BestTimeTransmitter.</li> <li>Best timeTransmitter: AtimeTransmitter.</dd> <dt>Best timeTransmitter:</dt><dd>A clock with a PTP Port in the timeTransmitter state, operating as the Grandmaster of a PTPdomain.</li> <li>Bestdomain.</dd> <dt>Best TimeTransmitter ClockAlgorithm: AAlgorithm:</dt><dd>A method for determining which state a PTP Port of a PTP clock should be in. The state decisions lead to the formation of a clock spanning tree for a PTPdomain. </li> <li>Boundary Clock: Adomain.</dd> <dt>Boundary Clock:</dt><dd>A device with more than one PTP Port.GenerallyGenerally, Boundary Clocks will have one PTP Port in the timeReceiver state to receive timing and other PTP Ports in the timeTransmitter state tore-distributeredistribute thetiming.</li> <li>Clock Identity: In IEEE 1588-2019 this istiming.</dd> <dt>Clock Identity:</dt><dd>In <xref target="IEEE1588-2019"/>, a 64-bit number assigned to each PTPclock which MUSTclock. This number <bcp14>MUST</bcp14> be globally unique.OftenOften, it is derived from the EthernetMAC address.</li> <li>Domain:Media Access Control (MAC) address.</dd> <dt>Domain:</dt><dd>Treated as a separate PTP system in a network. Every PTP message contains a domain number.Domains are treated as separate PTP systems in the network.Clocks, however, can combine the timing information derived from multipledomains.</li> <li>End-to-Enddomains.</dd> <dt>End-to-End delay measurementmechanism: Amechanism:</dt><dd>A network delay measurement mechanism in PTP facilitated by an exchange of messages between a timeTransmitter Clock and a timeReceiver Clock. These messages might traverse Transparent Clocks andPTP unawarePTP-unaware switches. This mechanism might not work properly if the Sync and Delay Request messages traverse different networkpaths.</li> <li>Grandmaster: thepaths.</dd> <dt>Grandmaster:</dt><dd>The timeTransmitter Clock that is currently acting as the reference time source of the PTPdomain</li> <li>IEEE 1588: Thedomain.</dd> <dt>IEEE 1588:</dt><dd>The timing and synchronization standardwhichthat definesPTP,PTP and describes the node, system, and communication properties necessary to supportPTP.</li> <li>TimeTransmitter Clock: a clock with at least one PTP Port in the timeTransmitter state.</li> <li>NTP: NetworkPTP.</dd> <dt>NTP:</dt><dd>Network Time Protocol, defined byRFC 5905, see<xref target="RFC5905"format="default">RFC 5905</xref></li> <li>Ordinary Clock: Aformat="default"/>.</dd> <dt>Ordinary Clock:</dt><dd>A clock that has a singlePrecision Time ProtocolPTP Port in a domain and maintains the timescale used in the domain. It may serve as a timeTransmitterClock,Clock or may be a timeReceiverClock.</li> <li>Peer-to-PeerClock.</dd> <dt>Peer-to-Peer delay measurementmechanism: Amechanism:</dt><dd>A network delay measurement mechanism in PTP facilitated by an exchange of messages over the link between adjacent devices in a network. This mechanism might not work properly unless all devices in the network support PTP and thePeer-to-peerPeer-to-Peer delay measurementmechanism.</li> <li>Preferred timeTransmitter: Amechanism.</dd> <dt>Preferred timeTransmitter:</dt><dd>A device intended to act primarily as the Grandmaster of a PTPsystem,system or as aback upbackup to aGrandmaster.</li> <li>PTP: TheGrandmaster.</dd> <dt>PTP:</dt><dd>The Precision TimeProtocol: TheProtocol -- the timing and synchronization protocol defined by IEEE1588.</li> <li>PTP Port: An1588.</dd> <dt>PTP Port:</dt><dd>An interface of a PTP clock with the network. Note that there may be multiple PTP Ports running on one physicalinterface,interface -- for example,mulitplemultiple unicast timeReceiverswhichthat talk to several Grandmaster Clocks in different PTPDomains.</li> <li>PTP Profile: Adomains.</dd> <dt>PTP Profile:</dt><dd>A set of constraints on the options and features of PTP, designed to optimize PTP for a specific use case or industry. The profile specifies what is required,allowedallowed, and forbidden among options and attribute values ofPTP.</li> <li>PTPv2.1: RefersPTP.</dd> <dt>PTPv2.1:</dt><dd>Refers specifically to the version of PTP defined byIEEE 1588-2019.</li> <li>Rogue timeTransmitter: A<xref target="IEEE1588-2019"/>.</dd> <dt>Rogue timeTransmitter:</dt><dd>A clockwiththat has a PTP Port in the timeTransmitterstate,state -- even though it should not be in the timeTransmitter state according to the Best TimeTransmitter ClockAlgorithm,Algorithm -- and that does not set the Alternate timeTransmitterflag.</li> <li>TimeReceiver Clock: aflag.</dd> <dt>TimeReceiver Clock:</dt><dd>A clock with at least one PTP Port in the timeReceiverstate,state and no PTP Ports in the timeTransmitterstate.</li> <li>TimeReceiver Only clock: Anstate.</dd> <dt>TimeReceiver only clock:</dt><dd>An Ordinary Clockwhichthat cannot become a timeTransmitterClock.</li> <li>TLV: TypeClock.</dd> <dt>TimeTransmitter Clock:</dt><dd>A clock with at least one PTP Port in the timeTransmitter state.</dd> <dt>TLV:</dt><dd>Type LengthValue,Value -- a mechanism for extending messages in networkedcommunications.</li> <li>Transparent Clock. Acommunications.</dd> <dt>Transparent Clock:</dt><dd>A device that measures the time taken for a PTP event message to transit the device and then updates the message with a correction for this transittime.</li> <li>Unicast Discovery: Atime.</dd> <dt>Unicast Discovery:</dt><dd>A mechanism for PTP timeReceivers to establish a unicast communication with PTP timeTransmitters using a configured table of timeTransmitter IP addresses andUnicast Message Negotiation.</li> <li>Unicast Negotiation: Aunicast message negotiation.</dd> <dt>Unicast message negotiation:</dt><dd>A mechanism in PTP for timeReceiver Clocks to negotiate unicast Sync,AnnounceAnnounce, and Delay Request message transmission rates fromtimeTransmitters.</li> </ul>timeTransmitters.</dd> </dl> </section> <section numbered="true" toc="default"> <name>Problem Statement</name> <t>This document describes how PTP can be applied to work in large enterprise networks. See ISPCS <xref target="RFC2026"format="default">ISPCS</xref>format="default"/> for information on IETF applicability statements. Such large networks are deployed, for example, in financial corporations. It is becoming increasingly common in such networks to perform distributedtime taggedtime-tagged measurements, such as one-way packet latencies and cumulative delays on software systems spread across multiple computers. Furthermore, there is often a desire to check the age of informationtime taggedtime-tagged by a different machine. To perform these measurements, it is necessary to deliver a common precise time to multiple devices on a network. Accuracy currently required in theFinancial Industry rangefinancial industry ranges from 100 microseconds to 1nanosecondsnanosecond to the Grandmaster. This PTP Profile does not specify timing performance requirements, but such requirements explain why the needs cannot always be met byNTP,NTP as commonly implemented. Such accuracy cannot usually be achieved witha traditional time transfer such asNTP, without adding non-standard customizations such as on-path support, similar to what is done in PTP with Transparent Clocks and Boundary Clocks. Such PTP support is commonly available in switches and routers, and many such devices have already been deployed in networks. Because PTP has a complex range of features andoptionsoptions, it is necessary to create a PTP Profile for enterprise networks to achieve interoperabilitybetweenamong equipment manufactured by differentvendors.</t>vendors. <!-- [rfced] Section 4: "ISPCS" (International Symposium on Precision Clock Synchronization) does not appear to be relevant to RFC 2026. May we remove the abbreviation from this sentence, or are some words or an additional citation missing? Original: See ISPCS [RFC2026] for information on IETF applicability statements. --> </t> <t>Although enterprise networks can be large, it is becoming increasingly common to deploy multicast protocols, even across multiple subnets. For this reason, it isdesireddesirable to make use of multicast whenever the information going to many destinations is the same. It is also advantageous to send informationwhichthat is only relevant to one device as a unicast message. The latter can be essential as the number of PTP timeReceivers becomes hundreds or thousands.</t> <t>PTP devices operating in these networks need to be robust. This includes the ability to ignore PTP messageswhichthat can be identified asimproper,improper and to have redundant sources of time.</t> <t>Interoperability among independent implementations of this PTP Profile has been demonstrated at theISPCS Plugfest<xref target="ISPCS"format="default">ISPCS</xref>.</t>format="default">International Symposium on Precision Clock Synchronization (ISPCS) Plugfest</xref>.</t> </section> <section numbered="true" toc="default"> <name>Network Technology</name> <t>This PTP ProfileMUST<bcp14>MUST</bcp14> operate only in networks characterized by UDP <xref target="RFC0768"format="default">RFC 768</xref>format="default"></xref> over either IPv4 <xref target="RFC0791"format="default">RFC 791</xref>format="default"></xref> or IPv6 <xref target="RFC8200"format="default">RFC 8200</xref>,format="default"></xref>, as described by Annexes C and Dinof <xreftarget="IEEE1588" format="default">IEEE 1588</xref>target="IEEE1588-2019" format="default"></xref>, respectively. A network nodeMAY<bcp14>MAY</bcp14> include multiple PTP instances running simultaneously. IPv4 and IPv6 instances in the same network nodeMUST<bcp14>MUST</bcp14> operate in different PTPDomains.domains. PTPClocks whichclocks that communicate using IPv4 can transfer time to PTPClocksclocks using IPv6, or the reverse, if and onlyif,if there is a network nodewhichthat simultaneously communicates with both PTP domains in the different IP versions.</t> <t> The PTP systemMAY<bcp14>MAY</bcp14> include switches and routers. These devicesMAY<bcp14>MAY</bcp14> be Transparent Clocks, Boundary Clocks, or neither, in any combination. PTPClocks MAYclocks <bcp14>MAY</bcp14> be Preferred timeTransmitters, Ordinary Clocks, or Boundary Clocks. The Ordinary Clocks may beTimeReceiver Only Clocks,timeReceiver only clocks or may be timeTransmitter capable.</t> <t>Note that PTP Ports will need to keeptacktrack of the Clock ID of received messages and not just the IP or Layer 2 addresses in any network that includes TransparentClocks,Clocks or that might include them in the future. This isimportantimportant, since Transparent Clocks might treat PTP messages that are altered at the PTP application layer as new IP packets and new Layer 2 frames when the PTP messages areretranmitted.retransmitted. In IPv4networksnetworks, some clocks might be hidden behind a NAT, which hides their IP addresses from the rest of the network. Note also that the use of NATs may place limitations on the topology of PTPnetworks,Networks, depending on the port forwarding scheme employed. Details of implementing PTP with NATs are out of scopeoffor this document.</t> <t>PTP, similar to NTP, assumes that the one-way network delay for Sync messages and Delay Response messagesareis the same. When this is nottruetrue, it can cause errors in the transfer of time from the timeTransmitter to the timeReceiver. It is up to the system integrator to design the network so that such effects do not prevent the PTP system from meeting the timing requirements. The details of network asymmetry are outside the scope of this document.SeeSee, for example, <xref target="G8271" format="default">ITU-T G.8271</xref>.</t> </section> <section numbered="true" toc="default"> <name>Time Transfer and Delay Measurement</name> <t>TimeTransmitter Clocks, TransparentClocksClocks, and Boundary ClocksMAY<bcp14>MAY</bcp14> be either one-step clocks or two-step clocks. TimeReceiver ClocksMUST<bcp14>MUST</bcp14> support both behaviors. The End-to-EndDelaydelay measurement methodMUST<bcp14>MUST</bcp14> be used.</t> <t>Note that, in IP networks, Sync messages and Delay Request messages exchanged between a timeTransmitter and timeReceiver do not necessarily traverse the same physical path. Thus, wherever possible, the networkSHOULD<bcp14>SHOULD</bcp14> be engineered so that the forward and reverse routes traverse the same physical path. Traffic engineering techniques for path consistency are out of scopeoffor this document.</t> <t>Sync messagesMUST<bcp14>MUST</bcp14> be sent as PTP event multicast messages (UDP port 319) to the PTP primary IP address.Two stepTwo-step clocksMUST<bcp14>MUST</bcp14> send Follow-up messages as PTP general multicast messages (UDP port 320). Announce messagesMUST<bcp14>MUST</bcp14> be sent as PTP general multicast messages (UDP port 320) to the PTP primary address. The PTP primary IP address is 224.0.1.129 for IPv4 and FF0X:0:0:0:0:0:0:181 for IPv6, whereX"X" can be a value between 0x0 and 0xF. The different IPv6 address options are explained inIEEE 1588<xreftarget="IEEE1588" format="default">IEEE 1588</xref>target="IEEE1588-2019" format="default"></xref>, Annex D, Section D.3. These addresses arealotedallotted byIANA,IANA; see the <xref target="IPv6Registry"format="default">Ipv6format="default">"IPv6 Multicast Address SpaceRegistry</xref></t>Registry"</xref>.</t> <t>Delay Request messagesMAY<bcp14>MAY</bcp14> be sent as either multicast or unicast PTP event messages. TimeTransmitter ClocksMUST<bcp14>MUST</bcp14> respond to multicast Delay Request messages with multicast Delay Response PTP general messages. TimeTransmitter ClocksMUST<bcp14>MUST</bcp14> respond to unicast Delay Request PTP event messages with unicast Delay Response PTP general messages. This allows for the use of Ordinary Clockswhichthat do not support the Enterprise Profile, if they are timeReceiverOnly Clocks.</t>only clocks.</t> <t>ClocksSHOULD<bcp14>SHOULD</bcp14> include support for multiple domains. The purpose is to support multiple simultaneous timeTransmitters for redundancy. Leaf devices (non-forwarding devices) can use timing information from multiple timeTransmitters by combining information from multiple instantiations of a PTP stack, each operating in a different PTPDomain. Redundantdomain. To check for faulty timeTransmitter Clocks, redundant sources of timing can beensembled,evaluated as an ensemble and/or comparedto check for faulty timeTransmitter Clocks.individually. The use of multiple simultaneous timeTransmitters will help mitigate faulty timeTransmitters reporting as healthy, network delay asymmetry, and security problems. Security problems include on-path attacks such as delay attacks, packet interception/attacks, and packet manipulation attacks. Assuming that the path to each timeTransmitter is different, failures -- malicious or otherwise -- would have to happen at more than one path simultaneously. Whenever feasible, the underlying network transport technologySHOULD<bcp14>SHOULD</bcp14> be configured so that timing messages in different domains traverse different network paths.</t> </section> <section numbered="true" toc="default"> <name>Default Message Rates</name> <t>The Sync, Announce, and Delay Request default message ratesMUST<bcp14>MUST</bcp14> each be once per second. The Sync and Delay Request message ratesMAY<bcp14>MAY</bcp14> be set to other values, but not less than once every 128seconds,seconds and not more than 128 messages per second. The Announce message rateMUST NOT<bcp14>MUST NOT</bcp14> be changed from the default value. The Announce Receipt Timeout IntervalMUST<bcp14>MUST</bcp14> be three Announce Intervals for PreferredTimeTransmitters,timeTransmitters and four Announce Intervals for all other timeTransmitters.</t> <t>The logMessageInterval carried in the unicast Delay Response messageMAY<bcp14>MAY</bcp14> be set to correspond to the timeTransmitterportsports' preferred message period, rather than 7F, which indicates that message periods are to be negotiated. Note that negotiated message periods are notallowed,allowed; see <xref target="forbidden_ptp_options"/> ("<xref target="forbidden_ptp_options"format="default">forbidden PTP options</xref>.</t>format="title"/>").</t> </section> <section numbered="true" toc="default"> <name>Requirements for TimeTransmitter Clocks</name> <t>TimeTransmitter ClocksMUST<bcp14>MUST</bcp14> obey the standard Best TimeTransmitter Clock Algorithmfromas defined in <xreftarget="IEEE1588" format="default">IEEE 1588</xref>.target="IEEE1588-2019" format="default"></xref>. PTP systems using this PTP ProfileMAY<bcp14>MAY</bcp14> support multiple simultaneous Grandmasters if each active Grandmaster is operating in a different PTP domain.</t> <t>A PTP Port of a clockMUST NOT<bcp14>MUST NOT</bcp14> be in the timeTransmitter state unless the clock has a current value for the number of UTC leap seconds.</t> <t>If a unicast negotiation signaling message isreceivedreceived, itMUST<bcp14>MUST</bcp14> be ignored.</t> <t>In PTP Networks that contain Transparent Clocks, timeTransmitters might receive Delay Request messages that no longercontainscontain the IPAddressesaddresses of the timeReceivers. This is because Transparent Clocks might replace the IP address of Delay Requests with their own IP address after updating the Correction Fields. For this deploymentscenarioscenario, timeTransmitters will need to have configured tables of timeReceivers' IP addresses and associated Clock Identities in order to send Delay Responses to the correct PTP Nodes.</t> </section> <section numbered="true"toc="default">toc="default" anchor="req-timereceiver-clocks"> <name>Requirements for TimeReceiver Clocks</name> <t>In a networkwhichthat contains multiple timeTransmitters in multiple domains,TimeReceivers SHOULDtimeReceivers <bcp14>SHOULD</bcp14> make use of information from all the timeTransmitters in their clock control subsystems. TimeReceiver ClocksMUST<bcp14>MUST</bcp14> be able to function in such networks even if they use time from only one of the domains. TimeReceiver ClocksMUST<bcp14>MUST</bcp14> be able to operate properly in the presence of a rogue timeTransmitter. TimeReceiversSHOULD NOT Synchronize<bcp14>SHOULD NOT</bcp14> synchronize to a timeTransmitterwhichthat is not the BestTimeTransmittertimeTransmitter in its domain. TimeReceivers will continue to recognize a BestTimeTransmittertimeTransmitter for the duration of the AnnounceTime OutReceipt Timeout Interval. TimeReceiversMAY<bcp14>MAY</bcp14> use an Acceptable TimeTransmitter Table. If a timeTransmitter is not an Acceptable timeTransmitter, then the timeReceiverMUST NOT<bcp14>MUST NOT</bcp14> synchronize to it. Note that IEEE 1588-2019 requires timeReceiver Clocks to support both two-steporand one-step timeTransmitter Clocks. See <xreftarget="IEEE1588" format="default">IEEE 1588</xref>, subClausetarget="IEEE1588-2019" format="default"></xref>, Subclause 11.2.</t> <t>Since Announce messages are sent as multicastmessagesmessages, timeReceivers can obtain the IP addresses of a timeTransmitter from the Announce messages. Note that the IP source addresses of Sync and Follow-up messages might have been replaced by the source addresses of a TransparentClock, so,Clock; therefore, timeReceiversMUST<bcp14>MUST</bcp14> send Delay Request messages to the IP address in the Announce message. Sync and Follow-up messages can be correlated with the Announce message using the Clock ID, which is never altered by Transparent Clocks in this PTP Profile.</t> </section> <section numbered="true"toc="default">toc="default" anchor="req-transparent-clocks"> <name>Requirements for Transparent Clocks</name> <t>Transparent ClocksMUST NOT<bcp14>MUST NOT</bcp14> change the transmission mode of an Enterprise Profile PTP message. For example, a Transparent ClockMUST NOT<bcp14>MUST NOT</bcp14> change a unicast message to a multicast message. Transparent Clockswhichthat syntonize to the timeTransmitter Clock might need to maintain separate clock rate offsets for each of the supported domains.</t> </section> <section numbered="true" toc="default"> <name>Requirements for Boundary Clocks</name> <t>Boundary ClocksSHOULD<bcp14>SHOULD</bcp14> support multiple simultaneous PTP domains. This will require them to maintain separate clocks for each of the domains supported, at least in software. Boundary ClocksMUST NOT<bcp14>MUST NOT</bcp14> combine timing information from different domains.</t> </section> <section numbered="true" toc="default"> <name>Management and Signaling Messages</name> <t>PTPManagementmanagement messagesMAY<bcp14>MAY</bcp14> be used. Management messages intended for a specific clock,i.e.i.e., where the<xref target="IEEE1588" format="default">IEEE 1588</xref> defined attributetargetPortIdentity.clockIdentityisattribute (defined in <xref target="IEEE1588-2019" format="default"></xref>) does not have all bits set toAll 1s, MUST1, <bcp14>MUST</bcp14> be sent as a unicast message. Similarly, if any signaling messages areusedused, theyMUST<bcp14>MUST</bcp14> also be sent as unicast messages whenever the message is intendedsoleysolely for a specific PTP Node.</t> </section> <section anchor="forbidden_ptp_options" numbered="true" toc="default"> <name>Forbidden PTP Options</name> <t>Clocks operating in the Enterprise ProfileMUST NOT use: Peer-to-Peer<bcp14>MUST NOT</bcp14> use the following:</t> <ul spacing="normal"> <li>Peer-to-Peer timing for delaymeasurement, Grandmaster Clusters, The Alternate TimeTransmitter option,measurement</li> <li>Grandmaster Clusters</li> <li>The AlternateTimescales. Unicast discovery, or unicast negotiation. ClockstimeTransmitter option</li> <li>Alternate Timescales</li> <li>Unicast discovery</li> <li>Unicast message negotiation</li> </ul> <t>Clocks operating in the Enterprise ProfileMUST<bcp14>MUST</bcp14> avoid any optional feature that requires Announce messages to be altered by Transparent Clocks, as this would require the Transparent Clock to change the source address and prevent the timeReceiver nodes from discovering the protocol address of the timeTransmitter.</t> </section> <section numbered="true" toc="default"> <name>Interoperation with IEEE 1588 Default Profile</name> <t>Clocks operating in the Enterprise Profile will interoperate with clocks operating in the Default Profile described in <xreftarget="IEEE1588" format="default">IEEE 1588</xref>target="IEEE1588-2019" format="default"></xref>, Annex I.3. This variant of the Default Profile uses the End-to-End delay measurement mechanism. In addition, the Default Profile would have to operate over IPv4 or IPv6networks,networks and use management messages in unicast when those messages are directed at a specific clock. Ifeitherneither of these requirementsare not met thanis met, then Enterprise Profile clocks will not interoperate withAnnex I.3Default ProfileClocks.clocks as defined in <xref target="IEEE1588-2019" format="default"></xref>, Annex I.3. The Enterprise Profile will not interoperate with theAnnex I.4variant of the Default Profile defined in <xref target="IEEE1588-2019" format="default"></xref>, Annex I.4, which requires the use of the Peer-to-Peer delay measurement mechanism.</t> <t>Enterprise ProfileClocksclocks will interoperate with clocks operating in other PTP Profiles if the clocks in the other PTP Profiles obey the rules of the Enterprise Profile. These rulesMUST NOT<bcp14>MUST NOT</bcp14> be changed to achieve interoperability with other PTP Profiles.</t> </section> <section numbered="true" toc="default"> <name>Profile Identification</name><t keepWithNext="true">The<t>The IEEE 1588 standard requires that all PTP Profiles provide the following identifying information.</t><artwork name="" type="" align="left" alt=""><![CDATA[ PTP Profile: Enterprise Profile Profile number: 1 Version: 1.0 Profile identifier: 00-00-5E-01-01-00 This<dl newline="false" spacing="compact"> <dt>PTP Profile:</dt><dd>Enterprise Profile</dd> <dt>Profile number:</dt><dd>1</dd> <dt>Version:</dt><dd>1.0</dd> <dt>Profile identifier:</dt><dd>00-00-5E-01-01-00</dd> </dl> <t>This PTP Profile was specified by theIETF AIETF.</t> <t>A copy may be obtained athttps://datatracker.ietf.org/wg/tictoc/documents ]]></artwork> </section> <section anchor="Acknowledgements" numbered="true" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thank Richard Cochran, Kevin Gross, John Fletcher, Laurent Montini and many other members of IETF for reviewing and providing feedback on this draft.</t> <t>This document was initially prepared using 2-Word-v2.0.template.dot and has later been converted manually into xml format using an xml2rfc template.</t><eref target="https://datatracker.ietf.org/wg/tictoc/documents" brackets="angle"/>.</t> </section> <section anchor="IANA" numbered="true" toc="default"> <name>IANA Considerations</name><t>There are<t>This document has no IANArequirements in this specification.</t>actions.</t> </section> <section anchor="Security" numbered="true" toc="default"> <name>Security Considerations</name> <t>Protocols used to transfer time, such as PTP andNTPNTP, can be important to security mechanismswhichthat use time windows for keys and authorization. Passing time through the networks poses a securityriskrisk, since time can potentially be manipulated. The use of multiple simultaneous timeTransmitters, using multiple PTPdomainsdomains, can mitigate problems from rogue timeTransmitters and on-path attacks. Note that Transparent Clocks alter PTP content on-path, but in a manner specified in <xreftarget="IEEE1588" format="default">IEEE 1588-2019</xref>target="IEEE1588-2019" format="default"></xref> that helps with time transfer accuracy. Seesections 9Sections <xref target="req-timereceiver-clocks" format="counter"/> and10.<xref target="req-transparent-clocks" format="counter"/>. Additional security mechanisms are outside the scope of this document.</t> <t>PTPnativemanagement messagesSHOULD NOT<bcp14>SHOULD NOT</bcp14> be used, due to the lack of a security mechanism for this option. Secure management can be obtained using standard management mechanismswhichthat includesecurity,security -- forexample NETCONFexample, <xref target="RFC6241" format="default">NETCONF</xref>.</t> <t>General security considerationsofrelated to time protocols are discussed in <xref target="RFC7384"format="default">RFC 7384</xref>.</t>format="default"></xref>.</t> </section> </middle><!-- *****BACK MATTER ***** --><back><!-- References split into informative and normative --> <!-- There are 2 ways to insert reference entries from the citation libraries: 1. define an ENTITY at the top, and use "ampersand character"RFC2629; here (as shown) 2. simply use a PI "less than character"?rfc include="reference.RFC.8174.xml"?> here (for I-Ds: include="reference.I-D.narten-iana-considerations-rfc2434bis.xml") Both are cited textually in the same manner: by using xref elements. If you use the PI option, xml2rfc will, by default, try to find included files in the same directory as the including file. You can also define the XML_LIBRARY environment variable with a value containing a set of directories to search. These can be either in the local filing system or remote ones accessed by http (http://domain/dir/... ).--><references> <name>References</name> <references> <name>Normative References</name><!--?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"?--><referenceanchor="IEEE1588" target="https://www.ieee.org"> <!-- the following is the minimum to make xml2rfc happy -->anchor="IEEE1588-2019" target="https://ieeexplore.ieee.org/document/9120376"> <front> <title>IEEEstd. 1588-2019, "IEEEStandard for a Precision Clock Synchronization for Networked Measurement and ControlSystems."</title>Systems</title> <author><organization>Institute of Electrical and Electronics Engineers</organization><organization>IEEE</organization> </author> <datemonth="11" year="2019"/>month="June" year="2020"/> </front> <seriesInfo name="IEEE Std" value="1588-2019"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2020.9120376"/> </reference> <reference anchor="IEEE1588g"target="https://www.ieee.org"> <!-- the following is the minimum to make xml2rfc happy -->target="https://ieeexplore.ieee.org/document/10070440"> <front> <title>IEEEstd. 1588g-2022, "IEEEStandard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Amendment 2: Master-Slave Optional AlternativeTerminology"</title>Terminology</title> <author><organization>Institute of Electrical and Electronics Engineers</organization><organization>IEEE</organization> </author> <datemonth="12" year="2022"/> </front> </reference> <reference anchor="RFC0768" target="https://www.rfc-editor.org/info/rfc768" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0768.xml"> <front> <title>User Datagram Protocol</title> <author initials="J." surname="Postel" fullname="J. Postel"> <organization/> </author> <date year="1980" month="August"/>month="March" year="2023"/> </front> <seriesInfoname="STD" value="6"/> <seriesInfo name="RFC" value="768"/>name="IEEE Std" value="1588g-2022"/> <seriesInfo name="DOI"value="10.17487/RFC0768"/> </reference> <reference anchor="RFC0791" target="https://www.rfc-editor.org/info/rfc791" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"> <front> <title>Internet Protocol</title> <author initials="J." surname="Postel" fullname="J. Postel"> <organization/> </author> <date year="1981" month="September"/> </front> <seriesInfo name="STD" value="5"/> <seriesInfo name="RFC" value="791"/> <seriesInfo name="DOI" value="10.17487/RFC0791"/> </reference> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author initials="S." surname="Bradner" fullname="S. Bradner"> <organization/> </author> <date year="1997" month="March"/> <abstract> <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author initials="B." surname="Leiba" fullname="B. Leiba"> <organization/> </author> <date year="2017" month="May"/> <abstract> <t> RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings..</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC8200" target="https://www.rfc-editor.org/info/rfc8200" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"> <front> <title>Internet Protocol, Version 6 (IPv6) Specification</title> <author initials="S." surname="Deering" fullname="S. Deering"> <organization/> </author> <author initials="R." surname="Hinden" fullname="R. Hinden"> <organization/> </author> <date year="2017" month="July"/> <abstract> <t>This document specifies version 6 of the Internet Protocol (IPv6). It obsoletes RFC 2460.</t> </abstract> </front> <seriesInfo name="STD" value="86"/> <seriesInfo name="RFC" value="8200"/> <seriesInfo name="DOI" value="10.17487/RFC8200"/>value="10.1109/IEEESTD.2023.10070440"/> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0768.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> </references> <references> <name>Informative References</name> <reference anchor="G8271"target="https://www.itu.int">target="https://www.itu.int/rec/T-REC-G.8271-202003-I/en"> <front><title>ITU-T G.8271/Y.1366, "Time<title>Time andPhase Synchronization Aspectsphase synchronization aspects ofPacket Networks"</title>telecommunication networks</title> <author><organization>International Telecommunication Union</organization><organization>ITU-T</organization> </author> <datemonth="3"month="March" year="2020"/> </front> <seriesInfo name="ITU-T Recommendation" value="G.8271/Y.1366"/> </reference> <reference anchor="ISPCS"target="https://www.ispcs.org">target="https://2017.ispcs.org/plugfest"> <front><title>Plugfest Report</title><title>Plugfest</title> <author surname="Arnold" initials="D."> <organization>International Symposium on Precision Clock Synchronization for Measurement, Control and Communications</organization> </author><date month="10" year="2017"/> </front> </reference> <reference anchor="RFC6241" target="https://www.rfc-editor.org/info/rfc6241" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"> <front> <title>Network Configuration Protocol (NETCONF)</title><authorinitials="R." surname="Enns" fullname="R. Enns" role="editor"> <organization/> </author> <author initials="M." surname="Bjorklund" fullname="M. Bjorklund" role="editor"> <organization/> </author> <author initials="J." surname="Schoenwaelder" fullname="J. Schoenwaelder" role="editor"> <organization/> </author> <author initials="A." surname="Bierman" fullname="A. Bierman" role="editor">surname="Harris" initials="K."> <organization/> </author> <dateyear="2011" month="June"/> <abstract> <t>The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]</t> </abstract>month="August" year="2017"/> </front><seriesInfo name="RFC" value="6241"/> <seriesInfo name="DOI" value="10.17487/RFC6241"/> </reference> <reference anchor="RFC5905" target="https://www.rfc-editor.org/info/rfc5905" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5905.xml"> <front> <title>Network Time Protocol Version 4: Protocol and Algorithms Specification</title> <author initials="D." surname="Mills" fullname="D. Mills"> <organization/> </author> <author initials="J." surname="Martin" fullname="J. Martin" role="editor"> <organization/> </author> <author initials="J." surname="Burbank" fullname="J. Burbank"> <organization/> </author> <author initials="W." surname="Kasch" fullname="W. Kasch"> <organization/> </author> <date year="2010" month="June"/> <abstract> <t>The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens<refcontent>Proceedings ofmicroseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5905"/> <seriesInfo name="DOI" value="10.17487/RFC5905"/> </reference> <reference anchor="RFC2026" target="https://www.rfc-editor.org/info/rfc2026" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2026.xml"> <front> <title>The Internet Standards Process -- Revision 3</title> <author initials="S." surname="Bradner" fullname="Scott O. Bradner"> <organization/> </author> <date year="1996" month="October"/> <abstract> <t>This memo documentstheprocess used by the Internet community for the standardization of protocols and procedures. It defines the stages in the standardization process, the requirements for moving a document between stages and the types of documents used during this process. It also addresses the intellectual property rights and copyright issues associated with the standards process.</t> </abstract> </front> <seriesInfo name="RFC" value="2026"/> <seriesInfo name="DOI" value="10.17487/RFC2026"/> </reference> <reference anchor="RFC7384" target="https://www.rfc-editor.org/info/rfc7384" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7384.xml"> <front> <title>Security Requirements of Time Protocols in Packet Switched Networks</title> <author initials="T." surname="Mizrahi" fullname="T. Mizrahi"> <organization/> </author> <date year="2014" month="October"/> <abstract> <t>As time and frequency distribution protocols are becoming increasingly common and widely deployed, concern about their exposure to various security threats is increasing. This document defines a set of security requirements for time protocols, focusingIEEE International Symposium onthePrecisionTime Protocol (PTP) and the Network Time Protocol (NTP). This document also discusses the security impacts of time protocol practices, the performance implications of external security practices on time protocols, and the dependencies between other security servicesClock Synchronization for Measurement, Control, andtime synchronization.</t> </abstract> </front> <seriesInfo name="RFC" value="7384"/> <seriesInfo name="DOI" value="10.17487/RFC7384"/>Communication (ISPCS)</refcontent> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5905.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2026.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7384.xml"/> <reference anchor="IPv6Registry"target="https://iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml">target="https://iana.org/assignments/ipv6-multicast-addresses"> <front> <title>IPv6 Multicast Address Space Registry</title><author initials="S." surname="Venaas" fullname="Stig Venaas"> <organization>Internet Assigned Numbers Authority</organization><author> <organization>IANA</organization> </author><date year="2024" month="February"/></front> </reference> <reference anchor="Estrela_and_Bonebakker" target="https://www.researchgate.net/publication/260742322_Challenges_deploying_PTPv2_in_a_global_financial_company"><!-- the following is the minimum to make xml2rfc happy --><front><title>Estrela and Bonebakker, "Challenges<title>Challenges deploying PTPv2 in a global financialcompany"</title>company</title> <author initials="P." surname="Estrela" fullname="P. V.Estrela"> <organization>IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings </organization> </author>Estrela"/> <author initials="L." surname="Bonebakker" fullname="L.Bonebakker"> <organization>IEEEBonebakker"/> <date month="September" year="2012"/> </front> <refcontent>Proceedings of the IEEE International Symposium on Precision Clock Synchronization for Measurement, Control andCommunication Proceedings </organization> </author> <date year="2012"/> </front>Communication, pp. 1-6</refcontent> <seriesInfo name="DOI" value="10.1109/ISPCS.2012.6336634"/> </reference> </references> </references> <section anchor="Acknowledgements" numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thank <contact fullname="Richard Cochran"/>, <contact fullname="Kevin Gross"/>, <contact fullname="John Fletcher"/>, <contact fullname="Laurent Montini"/>, and many other members of the IETF for reviewing and providing feedback on this document.</t> </section> </back> </rfc>