
class Tinky::Hash

Hash configuration for use with Tinky

Table of Contents
1 Synopsis
2 Description
3 Methods
3.1 new
3.2 from-hash
3.2.1 Configuration structure
3.3 workflow
3.4 go-state

class Hash::Tinky { ... }

Synopsis
 use Timky::Hash;

 # define a class to be able to define methods for the transitions
 class MyStateEngine is Tinky::Hash {

5.
 # initialize state engine uning from-hash method
 submethod BUILD () {

 self.from-hash(

10. :config({
 :states([< a z>]),
 :transitions({
 :az({ :from<a>, :to<z>}),
 :za({ :from<z>, :to<a>}),

15. }
),
 :workflow({ :name<wf5>, :initial-state<a>}),

 :taps({
 :states({
 :a({ :leave<leave-a>}),
 :z({ :enter<enter-z>})

5. }
),
 }
),
 }

10.)
);
 }
 # call when leaving state a
 method leave-a ($object) {

15. say "Tr 2 left a in '$object.^name()'";
 }

 # call when entering state z
 method enter-z ($object) {

20. say "Tr 2 enter z in '$object.^name()'";
 }
 }

 # instantiate

25. my MyStateEngine $th .= new;

 # use workflow
 $th.workflow('wf5');

30. # go to state z. this runs the methods leave-a and enter-z.
 $th.go-state('z');

Description
To understand this module it is wise to also read the documentation about Tinky and day 18
2016 of the perl6 advent calendar.

I was triggered writing Tinky::Hash by the Tinky::JSON module to define a data structure instead
of using the commands directly. It makes for a cleaner setup all from a single class where it is
needed. Also it can be stored in other formats besides JSON, Examples are YAML and TOML.

A few things are added here compared to the Tinky::JSON implementation. Using a class which
inherits the Tinky::Hash class it is possible to call methods defined by their name in the config.
Furthermore, besides that a method can be called upon all transition events, it is possible to call
a method on one specific transition.

Because of the way this class stores its data, the workflows are still usable from other classes
which inherit the Tinky::Hash.

Methods

new

submethod BUILD (Hash :$config)

Instantiate class. When config is given, it will call from-hash with it.

from-hash

method from-hash (Hash:D :$config)

Reads the configuration and uses the methods from Tinky to define states, transitions, workflow
and also defines the taps for the events of transitions, leaving or entering a state.

Configuration structure

The top level looks like the following;

:config({
 :states(...),
 :transitions(...),
 :workflow(...),

5. :taps(...)
 }
)

states

States is used to specify all the states used in the workflow. It is an array of names for the states.
These are used to refer to in transitions, workflow and taps.

:config({ :states([<locked opened>]), ... })

transitions

Transitions describe the connections between the states. The names of defined transitions are
used in taps. With the states mentioned above;

:config({
 ...
 :transitions({
 :openit({ :from<locked>, :to<opened>}),

5. :lockit({ :from<opened>, :to<locked>})
 }
),
 ...
 }

10.)

workflow

A workflow binds everything together specifying a name for the flow and an initial state. E.g.
using the defined config above

:config({
 ...
 :workflow({ :name(resource-lock), :initial-state<locked>}),
 ...

5. }
)

taps

Supplies are used to handle events such as entering or leaving a state or on transitions. By
creating a tap on a supply the object gets informed by these events. Tinky allows you to specify
two types of taps. These are the taps on events on entering and leaving a state and a tap to get
all transition events. With Tinky::Hash you can also specify taps on a specific transition. E.g.

:config({
 ...
 :taps({
 :states({

5. :locked({ :leave<make-log>}),
 }
),
 }
)

10. }
)

Here when a transition is made from locked to opened, the method make-log is called upon
leaving the state locked. Methods used like this must be defined as follows;

method make-log ($object, Str :$state, EventType :$event)

Most of the time the $object is the same as the object from the class where in the method is
defined. Since it is possible to switch workflows, even if they are defined in another class, this
object can be the one from the other class.

$state is the state name and $event is one of Enter or Leave.

In the example the method is called when leaving the state :leave<...>. When entering the enter
method is called. To define this use :enter<...>.

The next example shows the definition of a tap on a specific transition, in this case lockit which
specifies the transition from opened.to Locked.

...
:taps({
 :transitions({ :lockit<save-key>}),
 }

5.)
...

The method must be defined as;

method save-key ($object, Tinky::Transition $trans, :Str $transit)

$object is the same as above. For more information on Tinky::Transition $trans look at the Tinky
documentation. $transit is the name of the transition which is lockit here.

The 3rd tap type is the global one which calls the method on all transitions.

...
:taps({
 :transitions-global<log-trans>,
 }

5.)
...

Definition of the method should be;

method log-trans ($object, Tinky::Transition $trans) {

Almost the same as the specific transitions but without the transition name.

workflow

method workflow (Str:D $workflow-name)

Set the workflow to start with. The workflow starts with the initial state defined with the workflow
in the configuration. Later when switching to another workflow the state will not change despite
the initial state for that particular workflow. However, an exception is thrown when the current
state does not exist in the new workflow.

Below the surface it will execute apply-workflow from Tinky::Object.

go-state

method go-state (Str:D $state-name)

Procede to the next state. It wil execute the $o.state = $new-state from Tinky::Object.

Generated using Pod::Render, Pod::To::HTML, ©Google prettify

	class Tinky::Hash
	Table of Contents

	Synopsis
	Description
	Methods
	new
	from-hash
	Configuration structure

	workflow
	go-state

