Net wor k Wor ki ng Group T. Paila
Request for Comments: 3926 Noki a
Cat egory: Experi nental M Luby
Digital Fountain

R. Leht onen

Tel i aSoner a

V. Roca

I NRI A Rhone- Al pes

R \al sh

Noki a

Cct ober 2004

FLUTE - File Delivery over Unidirectional Transport

Status of this Meno
Thi s neno defines an Experinmental Protocol for the Internet
community. 1t does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this neno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2004).

Abstract
Thi s docunent defines FLUTE, a protocol for the unidirectiona
delivery of files over the Internet, which is particularly suited to
mul ti cast networks. The specification builds on Asynchronous Layered
Codi ng, the base protocol designed for massively scal able nulticast

di stribution.

Tabl e of Contents

1. Introduction . 2
1.1. Appllcablllty Statenent . 3
1.1.1. The Target Appllcatlon Space . 3

1.1.2. The Target Scale . .o 4

1.1.3. Intended Environnments 4

1.1.4. Waknesses . . . 4

2. Conventions used in this Docunent 5
3. File delivery . 5
3.1. File dellvery seSS|on 6

3.2 File Delivery Table. . . 8
3.3. Dynamics of FDT Instances mnthln f|Ie dellvery seSS|on .9

3.4 Structure of FDT I nstance packets. 11

Paila, et al. Experi ment al [Page 1]

RFC 3926 FLUTE Cct ober 2004

3.4.1. Format of FDT Instance Header 12
3.4.2. Syntax of FDT Instance . . . - 13
3.4.3 Cont ent Encodi ng of FDT Instance e . . 16
3.5. Miltiplexing of files within a file delivery session . . 17
4. Channel s, congestion control and timng 18
5. Delivering FEC Object Transm ssion Infornatlon .o . 19
5.1. Use of EXT_FTI for dellvery of FEC nj ect Transn1SS|on
Information. . . e eo20
5.1.1. Ceneral EXT FTI fornat20
5.1.2. FEC Encodlng I D specific fornats for EXT_FTI . . 21
5.2. Use of FDT for delivery of FEC iject Transmi ssi on
Information. 25
6. Describing file dellvery seSS|ons e e e 25
7. Security Considerations 26
8. | ANA Considerations 29
9. Acknow edgenments29
Normative References29
Informative References . . < 0]
A. Receiver operation (|nfornat|ve) .o e 24
B. Exanple of FDT |Instance (|nfornat|ve) R X
Aut hors’ Addresses . . e 71
Ful I Copyri ght Statenent < |
1. Introduction

Thi s docunent defines FLUTE version 1, a protocol for unidirectiona
delivery of files over the Internet. The specification builds on
Asynchronous Layered Coding (ALC), version 1 [2], the base protoco
designed for massively scalable nulticast distribution. ALC defines
transport of arbitrary binary objects. For file delivery
applications nere transport of objects is not enough, however. The
end systenms need to know what the objects actually represent. This
docunent specifies a technique called FLUTE - a nechanism for
signaling and mapping the properties of files to concepts of ALCin a
way that allows receivers to assign those paraneters for received

obj ects. Consequently, throughout this docunment the term’'file’
relates to an 'object’ as discussed in ALC. Although this
specification frequently nakes use of nulticast addressing as an
exanpl e, the techniques are sinilarly applicable for use w th unicast
addr essi ng.

Thi s docunent defines a specific transport application of ALC, adding
the follow ng specifications:

- Definition of a file delivery session built on top of ALC
including transport details and timning constraints.

- In-band signalling of the transport paraneters of the ALC session

Paila, et al. Experi ment al [Page 2]

RFC 3926 FLUTE Cct ober 2004

1

1

- In-band signalling of the properties of delivered files.

- Details associated with the nmultiplexing of multiple files within
a session.

This specification is structured as follows. Section 3 begins by
defining the concept of the file delivery session. Following that it
introduces the File Delivery Table that forms the core part of this
specification. Further, it discusses nultiplexing issues of
transport objects within a file delivery session. Section 4

descri bes the use of congestion control and channels wi th FLUTE
Section 5 defines how the Forward Error Correction (FEC) nject
Transmission Information is to be delivered within a file delivery
session. Section 6 defines the required paranmeters for describing
file delivery sessions in a general case. Section 7 outlines
security considerations regarding file delivery with FLUTE. Last,
there are two informative appendices. The first appendi x descri bes
an envi sioned receiver operation for the receiver of the file
delivery session. The second appendi x gives an exanple of File
Del i very Tabl e.

St at enent of | ntent

This meno contains part of the definitions necessary to fully
specify a Reliable Milticast Transport protocol in accordance wth
RFC2357. As per RFC2357, the use of any reliable nulticast
protocol in the Internet requires an adequate congestion contro
schene.

While waiting for such a schene to be available, or for an

exi sting schene to be proven adequate, the Reliable Milticast
Transport working group (RMI) publishes this Request for Commrents
in the "Experinmental" category.

It is the intent of RMI to re-submit this specification as an | ETF
Proposed Standard as soon as the above condition is net.

Applicability Statenent
1. The Target Application Space

FLUTE is applicable to the delivery of large and snall files to nmany
hosts, using delivery sessions of several seconds or nore. For

i nstance, FLUTE could be used for the delivery of |arge software
updates to many hosts sinmultaneously. It could also be used for

conti nuous, but segnented, data such as tinme-lined text for
subtitling - potentially leveraging its |layering inheritance fromALC
and LCT to scale the richness of the session to the congestion status

Paila, et al. Experi ment al [Page 3]

RFC 3926 FLUTE Cct ober 2004

of the network. It is also suitable for the basic transport of
met adata, for exanple SDP [12] files which enabl e user applications
to access multinmedi a sessions.

1.1.2. The Target Scale

Massive scalability is a primary design goal for FLUTE. |P nulticast
is inherently massively scalable, but the best effort service that it
provi des does not provide session managenent functionality,
congestion control or reliability. FLUTE provides all of this using
ALC and IP nulticast wi thout sacrificing any of the inherent
scalability of IP nulticast.

1.1. 3. | nt ended Environnents

Al'l of the environmental requirenents and considerations that apply
to the ALC building block [2] and to any additional building bl ocks
that FLUTE uses al so apply to FLUTE

FLUTE can be used with both rmulticast and unicast delivery, but it's
primary application is for unidirectional nulticast file delivery.
FLUTE requires connectivity between a sender and receivers but does
not require connectivity fromreceivers to a sender. FLUTE

i nherently works with all types of networks, including LANs, WANs,
Intranets, the Internet, asymetric networks, wireless networks, and
satellite networks.

FLUTE is conpatible with both IPv4 or I Pv6 as no part of the packet
is IP version specific. FLUTE works with both nulticast nodels:
Any- Source Miulticast (ASM [13] and the Source-Specific Milticast
(SsSM [15].

FLUTE is applicable for both Internet use, with a suitable congestion
control building block, and provisioned/controlled systens, such as
delivery over wreless broadcast radi o systens.

1.1.4. \Waknesses

Sone networks are not anenable to some congestion control protocols
that could be used with FLUTE. In particular, for a satellite or

W rel ess network, there may be no nechanismfor receivers to
effectively reduce their reception rate since there may be a fixed
transmission rate allocated to the session

Paila, et al. Experi ment al [Page 4]

RFC 3926 FLUTE Cct ober 2004

FLUTE provides reliability using the FEC building block. This will
reduce the error rate as seen by applications. However, FLUTE does
not provide a nmethod for senders to verify the reception success of
recei vers, and the specification of such a method is outside the
scope of this docunent.

2. Conventions used in this Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

The terns "object"” and "transport object" are consistent with the
definitions in ALC [2] and LCT [3]. The ternms "file" and "source
obj ect" are pseudonyns for "object".

3. File delivery

Asynchronous Layered Coding [2] is a protocol designed for delivery
of arbitrary binary objects. It is especially suitable for nassively
scal abl e, unidirectional, nulticast distribution. ALC provides the
basic transport for FLUTE, and thus FLUTE inherits the requirenents
of ALC.

This specification is designed for the delivery of files. The core
of this specification is to define how the properties of the files
are carried in-band together with the delivered files.

As an exanple, let us consider a 5200 byte file referred to by
"http://ww. exanpl e. confdocs/file.txt". Using the exanple, the

foll owi ng properties describe the properties that need to be conveyed
by the file delivery protocol

* ldentifier of the file, expressed as a URI. This identifier may
be globally unique. The identifier nmay al so provide a | ocation
for the file. |In the above exanple: "http://ww.exanpl e.coni docs/
file.txt".

* File name (usually, this can be concluded fromthe URI). |In the

above exanple: "file.txt".

* File type, expressed as M ME nedia type (usually, this can also be
concluded fromthe extension of the file nane). |In the above
exanple: "text/plain". |f an explicit value for the MM type is
provi ded separately fromthe file extension and does not match the
M ME type of the file extension then the explicitly provided val ue
MUST be used as the M ME type.

Paila, et al. Experi ment al [Page 5]

RFC 3926 FLUTE Cct ober 2004

* File size, expressed in bytes. 1In the above exanple: "5200". |If
the file is content encoded then this is the file size before
cont ent encodi ng.

* Content encoding of the file, within transport. In the above
exanple, the file could be encoded using ZLIB [10]. In this case
the size of the transport object carrying the file would probably
differ fromthe file size. The transport object size is delivered
to receivers as part of the FLUTE protocol

* Security properties of the file such as digital signatures,
message di gests, etc. For exanple, one could use SIMME [18] as
the content encoding type for files with this authentication
wr apper, and one could use XM.-DSIG [19] to digitally sign an FDT
I nst ance.

3.1. File delivery session

ALC is a protocol instantiation of Layered Codi ng Transport buil ding
bl ock (LCT) [3]. Thus ALC inherits the session concept of LCT. In
this docunent we will use the concept ALC/LCT session to collectively
denote the interchangeable terns ALC session and LCT session

An ALC/ LCT session consists of a set of logically grouped ALC LCT
channel s associated with a single sender sending packets with ALC/ LCT
headers for one or nore objects. An ALC/LCT channel is defined by

t he conbi nati on of a sender and an address associated with the
channel by the sender. A receiver joins a channel to start receiving
the data packets sent to the channel by the sender, and a receiver

| eaves a channel to stop receiving data packets fromthe channel

One of the fields carried in the ALC LCT header is the Transport
Session ldentifier (TSI). The TSI is scoped by the source IP
address, and the (source |IP address, TSlI) pair uniquely identifies a
session, i.e., the receiver uses this pair carried in each packet to
uniquely identify fromwhich session the packet was received. In
case nultiple objects are carried within a session, the Transport
bject ldentifier (TA) field within the ALL LCT header identifies
fromwhi ch object the data in the packet was generated. Note that
each object is associated with a unique TO wthin the scope of a
sessi on.

If the sender is not assigned a pernmanent |P address accessible to
recei vers, but instead, packets that can be received by receivers
containing a tenporary | P address for packets sent by the sender

then the TSI is scoped by this tenmporary | P address of the sender for
the duration of the session. As an exanple, the sender may be behind
a Network Address Transl ation (NAT) device that tenporarily assigns

Paila, et al. Experi ment al [Page 6]

RFC 3926 FLUTE Cct ober 2004

an | P address for the sender that is accessible to receivers, and in
this case the TSI is scoped by the tenporary | P address assigned by
the NAT that will appear in packets received by the receiver. As
anot her exanple, the sender may send its original packets using |Pv6,
but sonme portions of the network may not be |IPv6 capable and thus
there nay be an IPv6 to I Pv4 translator that changes the | P address
of the packets to a different |IPv4 address. |In this case, receivers
in the IPv4 portion of the network will receive packets containing
the | Pv4 address, and thus the TSI for themis scoped by the | Pv4
address. How the I P address of the sender to be used to scope the
session by receivers is delivered to receivers, whether it is a
permanent | P address or a tenporary |IP address, is outside the scope
of this docunent.

Wien FLUTE is used for file delivery over ALC the follow ng rules
appl y:

* The ALC/LCT session is called file delivery session.

* The ALC/ LCT concept of 'object’ denotes either a 'file' or a 'File
Delivery Table Instance’ (section 3.2)

* The TA field MIST be included in ALC packets sent within a FLUTE
session, with the exception that ALC packets sent in a FLUTE
session with the C ose Session (A) flag set to 1 (signaling the
end of the session) and that contain no payload (carrying no
information for any file or FDT) SHALL NOT carry the TAO. See
Section 5.1 of RFC 3451 [3] for the LCT definition of the O ose
Session flag, and see Section 4.2 of RFC 3450 [2] for an exanple
of its use within an ALC packet.

* The TA value '0" is reserved for delivery of File Delivery Table
Instances. Each File Delivery Table Instance is uniquely
identified by an FDT Instance |ID

* Each file in a file delivery session MJUST be associated with a TO
(>0) in the scope of that session.

* Information carried in the headers and the payl oad of a packet is
scoped by the source I P address and the TSI. Infornmation
particular to the object carried in the headers and the payl oad of
a packet is further scoped by the TO for file objects, and is
further scoped by both the TO and the FDT Instance ID for FDT
I nst ance obj ects.

Paila, et al. Experi ment al [Page 7]

RFC 3926 FLUTE Cct ober 2004

3.2. File Delivery Table
The File Delivery Table (FDT) provides a neans to describe various
attributes associated with files that are to be delivered within the
file delivery session. The following lists are exanples of such
attributes, and are not intended to be nutually exclusive nor
exhausti ve.
Attributes related to the delivery of file:
- TA value that represents the file

- FEC bject Transmission Information (including the FEC Encoding ID
and, if relevant, the FEC Instance |D)

- Size of the transport object carrying the file

- Aggregate rate of sending packets to all channels

Attributes related to the file itself:

- Name, Identification and Location of file (specified by the URI)
- MM nedia type of file

- Size of file

Encodi ng of file
- Message digest of file

Sone of these attributes MUST be included in the file description
entry for a file, others are optional, as defined in section 3.4.2.

Logically, the FDT is a set of file description entries for files to
be delivered in the session. Each file description entry MJST
include the TO for the file that it describes and the UR
identifying the file. The TAO is included in each ALC/LCT data
packet during the delivery of the file, and thus the TO carried in
the file description entry is how the receiver determ nes which

ALC/ LCT data packets contain information about which file. Each file
description entry may al so contain one or nore descriptors that map

t he above-nentioned attributes to the file.

Each file delivery session MJST have an FDT that is local to the

gi ven session. The FDT MJUST provide a file description entry mapped

to a TO for each file appearing within the session. An object that

is delivered within the ALC session, but not described in the FDT, is

Paila, et al. Experi ment al [Page 8]

RFC 3926 FLUTE Cct ober 2004

not considered a 'file' belonging to the file delivery session
Handl i ng of these unmapped TOs (TOs that are not resolved by the
FDT) is out of scope of this specification

Wthin the file delivery session the FDT is delivered as FDT

I nstances. An FDT Instance contains one or nore file description
entries of the FDT. Any FDT |Instance can be equal to, a subset of, a
superset of, or conplenent any other FDT Instance. A certain FDT

I nstance nmay be repeated several tinmes during a session, even after
subsequent FDT Instances (wth higher FDT |Instance |ID nunbers) have
been transmtted. Each FDT Instance contains at least a single file
description entry and at nost the conplete FDT of the file delivery
sessi on.

A receiver of the file delivery session keeps an FDT database for
received file description entries. The receiver maintains the

dat abase, for exanple, upon reception of FDT Instances. Thus, at any
given tine the contents of the FDI database represent the receiver’'s
current view of the FDT of the file delivery session. Since each
recei ver behaves independently of other receivers, it SHOULD NOT be
assunmed that the contents of the FDT database are the sane for al

the receivers of a given file delivery session

Since FDT database is an abstract concept, the structure and the
mai ntai ni ng of the FDT database are left to individua
i mpl enentations and are thus out of scope of this specification

3.3. Dynamics of FDT Instances within file delivery session

The following rules define the dynanmics of the FDT Instances within a
file delivery session:

* For every file delivered within a file delivery session there MJST
be a file description entry included in at |east one FDT Instance
sent within the session. A file description entry contains at a
m ni num t he mappi ng between the TAO and the URI

* An FDT | nstance MAY appear in any part of the file delivery
session and packets for an FDT Instance MAY be interleaved with
packets for other files or other FDT Instances within a session

* The TA value of '0' MJST be reserved for delivery of FDT

I nstances. The use of other TA values for FDT Instances is
outside the scope of this specification

Paila, et al. Experi ment al [Page 9]

RFC 3926 FLUTE Cct ober 2004

* FDT Instance is identified by the use of a new fixed I ength LCT
Header Extension EXT _FDT (defined later in this section). Each
FDT Instance is uniquely identified within the file delivery
session by its FDT Instance ID. Any ALC/LCT packet carrying FDT
Instance (indicated by TO = 0) MJST include EXT_FDT.

* It is RECOVMWENDED that FDT Instance that contains the file
description entry for a file is sent prior to the sending of the
described file within a file delivery session

* Wthin a file delivery session, any TO > 0 MAY be described nore
than once. An exanple: previous FDT Instance 0 describes TO of
value '3'. Now, subsequent FDT Instances can either keep TAO '3’
unnodi fied on the table, not include it, or conplenent the
description. However, subsequent FDT |Instances MJUST NOT change
the paraneters already described for a specific TO.

* An FDT Instance is valid until its expiration tinme. The
expiration tinme is expressed within the FDT | nstance payload as a
32 bit data field. The value of the data field represents the 32
nost significant bits of a 64 bit Network Tine Protocol (NTP) [5]
time value. These 32 bits provide an unsigned integer
representing the tinme in seconds relative to 0 hours 1 January
1900. Handling of waparound of the 32 bit tine is outside the
scope of NTP and FLUTE.

* The receiver SHOULD NOT use a received FDT Instance to interpret
packets recei ved beyond the expiration tine of the FDT |nstance.

* A sender MJST use an expiry tine in the future upon creation of an
FDT I nstance relative to its Sender Current Tine (SCT).

* Any FEC Encoding | D MAY be used for the sending of FDT Instances.
The default is to use FEC Encoding ID 0 for the sending of FDT
Instances. (Note that since FEC Encoding ID O is the default for
FLUTE, this inplies that Source Bl ock Nunber and Encodi ng Synbol
I D lengths both default to 16 bits each.)

Generally, a receiver needs to receive an FDT Instance describing a
file before it is able to recover the file itself. |In this sense FDT
I nstances are of higher priority than files. Thus, it is RECOMVENDED
that FDT Instances describing a file be sent with at |east as nuch
reliability within a session (nore often or with nore FEC protection)
as the files they describe. |In particular, if FDT Instances are

| onger than one packet payload in length it is RECOMVENDED t hat an
FEC code that provides protection against |oss be used for delivering
FDT I nstances. How often the description of a file is sent in an FDT

Paila, et al. Experi ment al [Page 10]

RFC 3926 FLUTE Cct ober 2004

I nstance or how nuch FEC protection is provided for each FDT | nstance
(if the FDT Instance is |longer than one packet payl oad) is dependent
on the particular application and outside the scope of this docunent.

3.4. Structure of FDT Instance packets

FDT I nstances are carried in ALC packets with TO = 0 and with an
addi ti onal REQUI RED LCT Header extension called the FDT I nstance
Header. The FDT Instance Header (EXT_FDT) contains the FDT Instance
IDthat uniquely identifies FDT Instances within a file delivery
session. The FDT Instance Header is placed in the same way as any

ot her LCT extension header. There MAY be ot her LCT extension headers
in use.

The LCT extension headers are foll owed by the FEC Payload I D, and
finally the Encoding Synbols for the FDT | nstance which contains one
or nore file description entries. A FDT Instance MAY span several
ALC packets - the nunber of ALC packets is a function of the file
attributes associated with the FDT Instance. The FDT I nstance Header
is carried in each ALC packet carrying the FDT Instance. The FDT

I nstance Header is identical for all ALC/ LCT packets for a particular
FDT | nstance.

The overall format of ALC/ LCT packets carrying an FDT Instance is
depicted in the Figure 1 below. All integer fields are carried in
"bi g-endi an" or "network order" format, that is, nost significant
byte (octet) first. As defined in [2], all ALC LCT packets are sent
usi ng UDP.

Paila, et al. Experi ment al [Page 11]

RFC 3926 FLUTE Cct ober 2004

T S S T S S i < ST S S S S S S S S T &
| UDP header |

B T e e b i T I TR i S S R S S S S ik aei S e R S S e
Default LCT header (with TAO = 0)

B I e e e e m T S i T S i S S e e R e
LCT header extensions (EXT_FDT, EXT FTl, etc.)

FEC Payl oad 1D

T I e i S S S Sk S S

|
+
|
|
|
|
|
|
Encodi ng Synbol (s) for FDT | nstance |
|

|

+-

|

|

+- -+
|

|

T S i S e T S S S i T S S S S SIS &
|

|

+- -+
|

|

+-

B S S g i S S S +- .+- B i i S S S Tk i o
Figure 1 - Overall FDT Packet
3.4.1. Format of FDT |nstance Header

FDT | nstance Header (EXT_FDT) is a new fixed I ength, ALC Pl specific
LCT header extension [3]. The Header Extension Type (HET) for the
extension is 192. |Its format is defined bel ow

0 1 2 3

01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S
| HET = 192 | AR FDT Instance ID |
B s S S i i i ks a ks st S S S S S S

Version of FLUTE (V), 4 bits:

Thi s docunment specifies FLUTE version 1. Hence in any ALC packet
that carries FDT Instance and that belongs to the file delivery
session as specified in this specification MIUST set this field to
1.

FDT Instance ID, 20 bits:

For each file delivery session the nunbering of FDT Instances starts
from’0 and is increnented by one for each subsequent FDT Instance.
After reaching the maxi mum val ue (2720-1), the nunbering starts again
from'0 . Wen waparound from2720-1 to O occurs, O is considered
hi gher than 2720-1. A new FDT Instance reusing a previous FDT

I nstance | D nunber, due to waparound, may not inmplicitly expire the
previous FDT Instance with the sane ID. It would be reasonable for

Paila, et al. Experi ment al [Page 12]

RFC 3926 FLUTE Cct ober 2004

FLUTE Senders to only construct and deliver FDT Instances with
wraparound | Ds after the previous FDT Instance using the sane |D has
expi red. However, mandatory receiver behavior for handling FDT

I nstance | D waparound and ot her special situations (for exanple,

m ssing FDT Instance IDs resulting in larger increments than one) is
outside the scope of this specification and left to individua

i mpl enent ati ons of FLUTE.

3.4.2. Syntax of FDT Instance

The FDT Instance contains file description entries that provide the
mappi ng functionality described in 3.2 above.

The FDT Instance is an XM. structure that has a single root el enent
"FDT-1 nstance". The "FDT-1nstance" el enment MJST contain "Expires"
attribute, which tells the expiry time of the FDT Instance. In
addition, the "FDT-Instance” el enent MAY contain the "Conplete”
attribute (bool ean), which, when TRUE, signals that no new data will
be provided in future FDT Instances within this session (i.e., that
ei ther FDT Instances with higher ID nunbers will not be used or if
they are used, will only provide identical file paranmeters to those
already given in this and previous FDT Instances). For exanple, this
may be used to provide a conplete list of files in an entire FLUTE
session (a "conplete FDT").

The "FDT-1nstance" el enent MAY contain attributes that give comon
paraneters for all files of an FDT Instance. These attributes MAY
al so be provided for individual files in the "File" element. \Were
the sane attribute appears in both the "FDT-1nstance" and the "File"
el ements, the value of the attribute provided in the "File" el enent
t akes precedence.

For each file to be declared in the given FDT Instance there is a
single file description entry in the FDT Instance. Each entry is
represented by element "File" which is a child el enment of the FDT
I nstance structure.

The attributes of "File" element in the XML structure represent the
attributes given to the file that is delivered in the file delivery
session. The value of the XM. attribute nane corresponds to M Me
field nane and the XML attribute val ue corresponds to the val ue of
the MME field body. Each "File" elenent MJST contain at |east two
attributes "TAO" and "Content-Location". "TAO" MJST be assigned a
valid TO value as described in section 3.3 above. "Content-
Location" MJST be assigned a valid URI as defined in [6].

Paila, et al. Experi ment al [Page 13]

RFC 3926 FLUTE Cct ober 2004

In addition to mandatory attributes, the "FDT-Instance" el enent and
the "File" elenent MAY contain other attributes of which the
followi ng are specifically pointed out.

*

Where the M ME type is described, the attribute "Content-Type"
MUST be used for the purpose as defined in [6].

Where the length is described, the attribute "Content-Length" MJST
be used for the purpose as defined in [6]. The transfer length is
defined to be the length of the object transported in bytes. It
is often inportant to convey the transfer length to receivers,
because the source bl ock structure needs to be known for the FEC
decoder to be applied to recover source blocks of the file, and
the transfer length is often needed to properly deternine the
source block structure of the file. There generally will be a

di fference between the length of the original file and the
transfer length if content encoding is applied to the file before
transport, and thus the "Content-Encoding" attribute is used. |If
the file is not content encoded before transport (and thus the
"Cont ent - Encodi ng" attribute is not used) then the transfer |ength
is the length of the original file, and in this case the
"Content-Length" is also the transfer Iength. However, if the
file is content encoded before transport (and thus the "Content-
Encodi ng" attribute is used), e.g., if conpression is applied
before transport to reduce the nunber of bytes that need to be
transferred, then the transfer length is generally different than
the length of the original file, and in this case the attribute
"Transfer-Length" MAY be used to carry the transfer |ength.

Where the content encoding schene is described, the attribute
" Cont ent - Encodi ng" MJUST be used for the purpose as defined in [6].

Where the MD5 nessage digest is described, the attribute
"Cont ent - MD5" MUST be used for the purpose as defined in [6].

The FEC Object Transmission Information attributes as described in
section 5. 2.

The following specifies the XML Scherma [8][9] for FDT I nstance:

<?xm version="1.0" encodi ng="UTF-8"?>
<xs: schema xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: fl="http://ww. exanpl e. com f| ute"
el emrent For mDef aul t : xs="qual i fi ed"
t ar get Nanespace: xs="htt p: // ww. exanpl e. conf fl ut e" >

<xs: el ement nanme="FDT-I| nst ance" >

<xs: conpl exType>
<XS:sequence>

Paila, et al. Experi ment al [Page 14]

RFC 3926 FLUTE Cct ober 2004

<xs:el ement nane="File" maxCOccur s="unbounded" >
<xs: conpl exType>
<xs:attribute name="Content-Location"
type="xs:anyURl "
use="required"/>
<xs:attribute name="TA"
type="xs: positivel nteger"
use="required"/>
<xs:attribute name="Content-Length"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="Transfer-Length"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="Content-Type"
type="xs:string"
use="optional "/ >
<xs:attribute name="Content-Encodi ng"
type="xs:string"
use="optional "/ >
<xs:attribute nanme="Content - MD5"
type="xs: base64Bi nary"
use="optional "/ >
<xs:attribute name="FEC- OTl - FEC- Encodi ng- | D"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="FEC- OTl - FEC- | nst ance- | D'
type="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="FEC- OTl - Maxi num Sour ce- Bl ock- Lengt h"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="FEC- OTl - Encodi ng- Synbol - Lengt h"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:attribute name="FEC- OTl - Max- Nunber - of - Encodi ng- Synbol s"
t ype="xs: unsi gnedLong"
use="optional "/ >
<xs:anyAttribute processContents="skip"/>
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>

<xs:attribute name="Expires"
type="xs:string"
use="required"/>
<xs:attribute name="Conpl ete"
t ype="xs: bool ean"

Paila, et al. Experi ment al [Page 15]

RFC 3926 FLUTE Cct ober 2004

use="optional "/ >

<xs:attribute nanme="Content- Type"
type="xs:string"
use="optional "/ >

<xs:attribute name="Content-Encodi ng"
type="xs:string"
use="optional "/ >

<xs:attribute name="FEC- OTl - FEC- Encodi ng- | D"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - FEC- | nst ance- | D"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - Maxi mum Sour ce- Bl ock- Lengt h"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - Encodi ng- Synbol - Lengt h"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:attribute name="FEC- OTl - Max- Nunber - of - Encodi ng- Synbol s"
t ype="xs: unsi gnedLong"
use="optional "/ >

<xs:anyAttri bute processContents="skip"/>

</ xs: conpl exType>

</ xs: el ement >
</ xs: schema>

Any valid FDT Instance nust use the above XM_ Schema. This way FDT
provides extensibility to support private attributes within the file
description entries. Those could be, for exanple, the attributes
related to the delivery of the file (tining, packet transm ssion
rate, etc.).

In case the basic FDT XM. Scherma is extended in terms of new
descriptors, for attributes applying to a single file, those MJIST be

placed within the attributes of the elenent "File". For attributes
applying to all files described by the current FDT Instance, those
MUST be placed within the el enent "FDT-Instance". It is RECOVMENDED

that the new descriptors applied in t