
XEmacs Lisp Reference Manual
Version 3.4 (for XEmacs 21.1), May 1999

by Ben Wing

Based on the GNU Emacs Lisp Reference Manual
by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright c© 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright c©
1994, 1995 Sun Microsystems, Inc. Copyright c© 1995, 1996 Ben Wing.

Version 3.3
Revised for XEmacs Versions 21.1,
April 1998.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided also that the section entitled “GNU General Public
License” is included exactly as in the original, and provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the section entitled “GNU General
Public License” may be included in a translation approved by the Free Software Foundation
instead of in the original English.
Cover art by Etienne Suvasa.

i

Short Contents

GNU GENERAL PUBLIC LICENSE . 1

1 Introduction . 7

2 Lisp Data Types . 13

3 Numbers . 41

4 Strings and Characters . 55

5 Lists . 71

6 Sequences, Arrays, and Vectors . 93

7 Symbols. 101

8 Evaluation . 109

9 Control Structures. 117

10 Variables . 131

11 Functions . 147

12 Macros . 161

13 Writing Customization Definitions . 169

14 Loading . 177

15 Byte Compilation . 187

16 Debugging Lisp Programs. 197

17 Reading and Printing Lisp Objects . 227

18 Minibuffers. 237

19 Command Loop . 255

20 Keymaps . 285

21 Menus . 305

22 Dialog Boxes . 315

23 Toolbar . 317

24 scrollbars . 323

25 Drag and Drop . 325

26 Major and Minor Modes . 327

27 Documentation . 345

28 Files . 355

29 Backups and Auto-Saving. 383

30 Buffers . 391

31 Windows . 403

32 Frames . 425

33 Consoles and Devices . 437

34 Positions . 441

35 Markers . 453

ii XEmacs Lisp Reference Manual

36 Text . 463

37 Searching and Matching . 495

38 Syntax Tables . 513

39 Abbrevs And Abbrev Expansion . 523

40 Extents . 529

41 Specifiers . 541

42 Faces and Window-System Objects . 555

43 Glyphs . 565

44 Annotations . 579

45 Emacs Display . 585

46 Hash Tables . 601

47 Range Tables . 603

48 Databases . 605

49 Processes . 607

50 Operating System Interface . 623

51 Functions Specific to the X Window System 643

52 ToolTalk Support . 649

53 LDAP Support . 655

54 Internationalization . 659

55 MULE . 663

Appendix A Tips and Standards . 685

Appendix B Building XEmacs; Allocation of Objects 693

Appendix C Standard Errors. 701

Appendix D Buffer-Local Variables . 705

Appendix E Standard Keymaps. 709

Appendix F Standard Hooks . 711

Index . 717

iii

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 1
How to Apply These Terms to Your New Programs 5

1 Introduction. 7
1.1 Caveats . 7
1.2 Lisp History . 8
1.3 Conventions . 8

1.3.1 Some Terms . 8
1.3.2 nil and t . 8
1.3.3 Evaluation Notation . 9
1.3.4 Printing Notation . 9
1.3.5 Error Messages . 9
1.3.6 Buffer Text Notation . 10
1.3.7 Format of Descriptions . 10

1.3.7.1 A Sample Function Description 10
1.3.7.2 A Sample Variable Description 11

1.4 Acknowledgements . 12

2 Lisp Data Types . 13
2.1 Printed Representation and Read Syntax . 13
2.2 Comments . 14
2.3 Primitive Types . 14
2.4 Programming Types . 15

2.4.1 Integer Type . 16
2.4.2 Floating Point Type . 16
2.4.3 Character Type . 16
2.4.4 Symbol Type . 18
2.4.5 Sequence Types . 19
2.4.6 Cons Cell and List Types . 20

2.4.6.1 Dotted Pair Notation . 21
2.4.6.2 Association List Type . 22

2.4.7 Array Type . 22
2.4.8 String Type . 22
2.4.9 Vector Type . 23
2.4.10 Bit Vector Type . 23
2.4.11 Function Type . 24
2.4.12 Macro Type . 24
2.4.13 Primitive Function Type . 24
2.4.14 Compiled-Function Type . 25
2.4.15 Autoload Type . 25
2.4.16 Char Table Type . 25
2.4.17 Hash Table Type . 25
2.4.18 Range Table Type . 25
2.4.19 Weak List Type . 26

2.5 Editing Types . 26
2.5.1 Buffer Type . 26

iv XEmacs Lisp Reference Manual

2.5.2 Marker Type . 27
2.5.3 Extent Type. 27
2.5.4 Window Type . 27
2.5.5 Frame Type . 28
2.5.6 Device Type . 28
2.5.7 Console Type . 28
2.5.8 Window Configuration Type . 29
2.5.9 Event Type . 29
2.5.10 Process Type . 29
2.5.11 Stream Type . 29
2.5.12 Keymap Type . 30
2.5.13 Syntax Table Type. 30
2.5.14 Display Table Type . 30
2.5.15 Database Type . 30
2.5.16 Charset Type. 30
2.5.17 Coding System Type . 30
2.5.18 ToolTalk Message Type . 31
2.5.19 ToolTalk Pattern Type . 31

2.6 Window-System Types . 31
2.6.1 Face Type . 31
2.6.2 Glyph Type . 31
2.6.3 Specifier Type . 31
2.6.4 Font Instance Type . 31
2.6.5 Color Instance Type . 31
2.6.6 Image Instance Type . 31
2.6.7 Toolbar Button Type . 31
2.6.8 Subwindow Type . 32
2.6.9 X Resource Type . 32

2.7 Type Predicates . 32
2.8 Equality Predicates . 37

3 Numbers . 41
3.1 Integer Basics . 41
3.2 Floating Point Basics . 42
3.3 Type Predicates for Numbers . 42
3.4 Comparison of Numbers . 43
3.5 Numeric Conversions . 45
3.6 Arithmetic Operations . 45
3.7 Rounding Operations . 48
3.8 Bitwise Operations on Integers . 48
3.9 Standard Mathematical Functions . 52
3.10 Random Numbers . 53

v

4 Strings and Characters. 55
4.1 String and Character Basics . 55
4.2 The Predicates for Strings. 55
4.3 Creating Strings . 56
4.4 The Predicates for Characters . 58
4.5 Character Codes . 58
4.6 Comparison of Characters and Strings . 59
4.7 Conversion of Characters and Strings . 60
4.8 Modifying Strings . 62
4.9 String Properties . 62
4.10 Formatting Strings . 62
4.11 Character Case . 65
4.12 The Case Table . 66
4.13 The Char Table . 68

4.13.1 Char Table Types . 68
4.13.2 Working With Char Tables . 69

5 Lists . 71
5.1 Lists and Cons Cells . 71
5.2 Lists as Linked Pairs of Boxes . 71
5.3 Predicates on Lists . 72
5.4 Accessing Elements of Lists . 73
5.5 Building Cons Cells and Lists . 76
5.6 Modifying Existing List Structure . 78

5.6.1 Altering List Elements with setcar 78
5.6.2 Altering the CDR of a List . 80
5.6.3 Functions that Rearrange Lists . 81

5.7 Using Lists as Sets . 83
5.8 Association Lists . 85
5.9 Property Lists. 88

5.9.1 Working With Normal Plists . 89
5.9.2 Working With Lax Plists . 90
5.9.3 Converting Plists To/From Alists 90

5.10 Weak Lists . 91

6 Sequences, Arrays, and Vectors 93
6.1 Sequences . 93
6.2 Arrays . 95
6.3 Functions that Operate on Arrays . 96
6.4 Vectors . 97
6.5 Functions That Operate on Vectors . 98
6.6 Bit Vectors . 99
6.7 Functions That Operate on Bit Vectors . 99

7 Symbols . 101
7.1 Symbol Components . 101
7.2 Defining Symbols . 102
7.3 Creating and Interning Symbols . 103
7.4 Symbol Properties . 105

7.4.1 Property Lists and Association Lists 105
7.4.2 Property List Functions for Symbols 106
7.4.3 Property Lists Outside Symbols . 107

vi XEmacs Lisp Reference Manual

8 Evaluation . 109
8.1 Eval . 109
8.2 Kinds of Forms . 111

8.2.1 Self-Evaluating Forms . 111
8.2.2 Symbol Forms . 112
8.2.3 Classification of List Forms . 112
8.2.4 Symbol Function Indirection . 112
8.2.5 Evaluation of Function Forms . 114
8.2.6 Lisp Macro Evaluation . 114
8.2.7 Special Forms . 114
8.2.8 Autoloading . 116

8.3 Quoting . 116

9 Control Structures. 117
9.1 Sequencing . 117
9.2 Conditionals . 118
9.3 Constructs for Combining Conditions . 119
9.4 Iteration . 121
9.5 Nonlocal Exits . 121

9.5.1 Explicit Nonlocal Exits: catch and throw 121
9.5.2 Examples of catch and throw . 123
9.5.3 Errors . 123

9.5.3.1 How to Signal an Error 124
9.5.3.2 How XEmacs Processes Errors 125
9.5.3.3 Writing Code to Handle Errors 125
9.5.3.4 Error Symbols and Condition Names 127

9.5.4 Cleaning Up from Nonlocal Exits 128

10 Variables. 131
10.1 Global Variables . 131
10.2 Variables That Never Change . 131
10.3 Local Variables. 132
10.4 When a Variable is “Void” . 133
10.5 Defining Global Variables . 134
10.6 Accessing Variable Values . 137
10.7 How to Alter a Variable Value . 137
10.8 Scoping Rules for Variable Bindings . 139

10.8.1 Scope . 139
10.8.2 Extent . 140
10.8.3 Implementation of Dynamic Scoping 140
10.8.4 Proper Use of Dynamic Scoping. 141

10.9 Buffer-Local Variables . 141
10.9.1 Introduction to Buffer-Local Variables 141
10.9.2 Creating and Deleting Buffer-Local Bindings 142
10.9.3 The Default Value of a Buffer-Local Variable 144

10.10 Variable Aliases . 145

vii

11 Functions . 147
11.1 What Is a Function? . 147
11.2 Lambda Expressions . 148

11.2.1 Components of a Lambda Expression. 148
11.2.2 A Simple Lambda-Expression Example 149
11.2.3 Advanced Features of Argument Lists 149
11.2.4 Documentation Strings of Functions 150

11.3 Naming a Function . 151
11.4 Defining Functions . 151
11.5 Calling Functions . 153
11.6 Mapping Functions . 154
11.7 Anonymous Functions . 155
11.8 Accessing Function Cell Contents . 156
11.9 Inline Functions . 158
11.10 Other Topics Related to Functions . 158

12 Macros . 161
12.1 A Simple Example of a Macro . 161
12.2 Expansion of a Macro Call . 161
12.3 Macros and Byte Compilation . 162
12.4 Defining Macros . 162
12.5 Backquote . 163
12.6 Common Problems Using Macros . 164

12.6.1 Evaluating Macro Arguments Repeatedly 164
12.6.2 Local Variables in Macro Expansions 165
12.6.3 Evaluating Macro Arguments in Expansion 166
12.6.4 How Many Times is the Macro Expanded?. 166

13 Writing Customization Definitions 169
13.1 Common Keywords for All Kinds of Items 169
13.2 Defining Custom Groups . 170
13.3 Defining Customization Variables . 170
13.4 Customization Types . 172

13.4.1 Simple Types . 172
13.4.2 Composite Types . 173
13.4.3 Splicing into Lists . 175
13.4.4 Type Keywords . 175

14 Loading . 177
14.1 How Programs Do Loading. 177
14.2 Autoload . 180
14.3 Repeated Loading . 181
14.4 Features . 182
14.5 Unloading . 184
14.6 Hooks for Loading . 185

15 Byte Compilation . 187
15.1 Performance of Byte-Compiled Code . 187
15.2 The Compilation Functions . 188
15.3 Documentation Strings and Compilation 190
15.4 Dynamic Loading of Individual Functions 190
15.5 Evaluation During Compilation. 191
15.6 Compiled-Function Objects . 191
15.7 Disassembled Byte-Code . 193

viii XEmacs Lisp Reference Manual

16 Debugging Lisp Programs 197
16.1 The Lisp Debugger . 197

16.1.1 Entering the Debugger on an Error 197
16.1.2 Debugging Infinite Loops . 198
16.1.3 Entering the Debugger on a Function Call 198
16.1.4 Explicit Entry to the Debugger 199
16.1.5 Using the Debugger . 200
16.1.6 Debugger Commands . 200
16.1.7 Invoking the Debugger . 201
16.1.8 Internals of the Debugger . 203

16.2 Debugging Invalid Lisp Syntax . 204
16.2.1 Excess Open Parentheses . 205
16.2.2 Excess Close Parentheses . 205

16.3 Debugging Problems in Compilation . 205
16.4 Edebug . 206

16.4.1 Using Edebug . 206
16.4.2 Instrumenting for Edebug . 207
16.4.3 Edebug Execution Modes. 208
16.4.4 Jumping . 209
16.4.5 Miscellaneous . 210
16.4.6 Breakpoints . 210

16.4.6.1 Global Break Condition 211
16.4.6.2 Embedded Breakpoints 211

16.4.7 Trapping Errors . 211
16.4.8 Edebug Views . 212
16.4.9 Evaluation . 212
16.4.10 Evaluation List Buffer . 213
16.4.11 Reading in Edebug . 214
16.4.12 Printing in Edebug . 214
16.4.13 Tracing . 215
16.4.14 Coverage Testing . 215
16.4.15 The Outside Context . 216

16.4.15.1 Checking Whether to Stop 216
16.4.15.2 Edebug Display Update 216
16.4.15.3 Edebug Recursive Edit 217

16.4.16 Instrumenting Macro Calls . 217
16.4.16.1 Specification List. 218
16.4.16.2 Backtracking . 221
16.4.16.3 Debugging Backquote 221
16.4.16.4 Specification Examples 222

16.4.17 Edebug Options . 223

17 Reading and Printing Lisp Objects 227
17.1 Introduction to Reading and Printing . 227
17.2 Input Streams . 227
17.3 Input Functions . 229
17.4 Output Streams . 230
17.5 Output Functions . 232
17.6 Variables Affecting Output . 233

ix

18 Minibuffers . 237
18.1 Introduction to Minibuffers . 237
18.2 Reading Text Strings with the Minibuffer 237
18.3 Reading Lisp Objects with the Minibuffer 239
18.4 Minibuffer History . 240
18.5 Completion . 241

18.5.1 Basic Completion Functions . 242
18.5.2 Completion and the Minibuffer 243
18.5.3 Minibuffer Commands That Do Completion 244
18.5.4 High-Level Completion Functions 246
18.5.5 Reading File Names . 247
18.5.6 Programmed Completion . 248

18.6 Yes-or-No Queries . 249
18.7 Asking Multiple Y-or-N Questions . 251
18.8 Minibuffer Miscellany . 252

19 Command Loop . 255
19.1 Command Loop Overview . 255
19.2 Defining Commands . 256

19.2.1 Using interactive . 256
19.2.2 Code Characters for interactive. 257
19.2.3 Examples of Using interactive 259

19.3 Interactive Call . 260
19.4 Information from the Command Loop . 261
19.5 Events. 263

19.5.1 Event Types . 263
19.5.2 Contents of the Different Types of Events 264
19.5.3 Event Predicates . 266
19.5.4 Accessing the Position of a Mouse Event. 267

19.5.4.1 Frame-Level Event Position Info 267
19.5.4.2 Window-Level Event Position Info 267
19.5.4.3 Event Text Position Info 268
19.5.4.4 Event Glyph Position Info 269
19.5.4.5 Event Toolbar Position Info 269
19.5.4.6 Other Event Position Info. 269

19.5.5 Accessing the Other Contents of Events 270
19.5.6 Working With Events . 270
19.5.7 Converting Events . 272

19.6 Reading Input . 273
19.6.1 Key Sequence Input. 273
19.6.2 Reading One Event . 274
19.6.3 Dispatching an Event . 275
19.6.4 Quoted Character Input . 275
19.6.5 Miscellaneous Event Input Features 276

19.7 Waiting for Elapsed Time or Input . 277
19.8 Quitting . 278
19.9 Prefix Command Arguments . 279
19.10 Recursive Editing . 281
19.11 Disabling Commands . 282
19.12 Command History . 283
19.13 Keyboard Macros . 283

x XEmacs Lisp Reference Manual

20 Keymaps . 285
20.1 Keymap Terminology . 285
20.2 Format of Keymaps . 285
20.3 Creating Keymaps . 286
20.4 Inheritance and Keymaps . 286
20.5 Key Sequences . 287
20.6 Prefix Keys . 289
20.7 Active Keymaps . 290
20.8 Key Lookup . 293
20.9 Functions for Key Lookup . 294
20.10 Changing Key Bindings . 296
20.11 Commands for Binding Keys . 299
20.12 Scanning Keymaps . 300
20.13 Other Keymap Functions . 303

21 Menus . 305
21.1 Format of Menus . 305
21.2 Format of the Menubar . 308
21.3 Menubar . 308
21.4 Modifying Menus . 309
21.5 Menu Filters . 311
21.6 Pop-Up Menus . 311
21.7 Menu Accelerators . 312

21.7.1 Creating Menu Accelerators . 312
21.7.2 Keyboard Menu Traversal . 313
21.7.3 Menu Accelerator Functions . 313

21.8 Buffers Menu . 314

22 Dialog Boxes . 315
22.1 Dialog Box Format . 315
22.2 Dialog Box Functions . 315

23 Toolbar . 317
23.1 Toolbar Intro . 317
23.2 Toolbar Descriptor Format . 317
23.3 Specifying the Toolbar . 318
23.4 Other Toolbar Variables . 320

24 scrollbars . 323

25 Drag and Drop . 325
25.1 Supported Protocols . 325

25.1.1 OffiX DND . 325
25.1.2 CDE dt . 325
25.1.3 MSWindows OLE . 325
25.1.4 Loose ends . 326

25.2 Drop Interface . 326
25.3 Drag Interface . 326

xi

26 Major and Minor Modes 327
26.1 Major Modes . 327

26.1.1 Major Mode Conventions . 327
26.1.2 Major Mode Examples . 329
26.1.3 How XEmacs Chooses a Major Mode 332
26.1.4 Getting Help about a Major Mode 334
26.1.5 Defining Derived Modes . 335

26.2 Minor Modes . 335
26.2.1 Conventions for Writing Minor Modes 336
26.2.2 Keymaps and Minor Modes . 337

26.3 Modeline Format . 337
26.3.1 The Data Structure of the Modeline 337
26.3.2 Variables Used in the Modeline 339
26.3.3 %-Constructs in the ModeLine . 341

26.4 Hooks . 342

27 Documentation . 345
27.1 Documentation Basics . 345
27.2 Access to Documentation Strings . 346
27.3 Substituting Key Bindings in Documentation 348
27.4 Describing Characters for Help Messages 349
27.5 Help Functions . 350
27.6 Obsoleteness . 352

28 Files . 355
28.1 Visiting Files . 355

28.1.1 Functions for Visiting Files . 355
28.1.2 Subroutines of Visiting . 357

28.2 Saving Buffers . 357
28.3 Reading from Files . 359
28.4 Writing to Files . 360
28.5 File Locks . 361
28.6 Information about Files . 362

28.6.1 Testing Accessibility . 362
28.6.2 Distinguishing Kinds of Files . 363
28.6.3 Truenames . 364
28.6.4 Other Information about Files . 364

28.7 Changing File Names and Attributes . 366
28.8 File Names . 368

28.8.1 File Name Components . 368
28.8.2 Directory Names. 370
28.8.3 Absolute and Relative File Names. 371
28.8.4 Functions that Expand Filenames 371
28.8.5 Generating Unique File Names. 373
28.8.6 File Name Completion . 373

28.9 Contents of Directories . 374
28.10 Creating and Deleting Directories . 375
28.11 Making Certain File Names “Magic” . 375
28.12 Partial Files . 377

28.12.1 Intro to Partial Files . 377
28.12.2 Creating a Partial File . 378
28.12.3 Detached Partial Files . 378

28.13 File Format Conversion . 378
28.14 Files and MS-DOS . 380

xii XEmacs Lisp Reference Manual

29 Backups and Auto-Saving 383
29.1 Backup Files . 383

29.1.1 Making Backup Files . 383
29.1.2 Backup by Renaming or by Copying? 384
29.1.3 Making and Deleting Numbered Backup Files 385
29.1.4 Naming Backup Files . 386

29.2 Auto-Saving . 387
29.3 Reverting . 390

30 Buffers . 391
30.1 Buffer Basics . 391
30.2 The Current Buffer . 391
30.3 Buffer Names . 393
30.4 Buffer File Name . 394
30.5 Buffer Modification . 395
30.6 Comparison of Modification Time . 396
30.7 Read-Only Buffers . 397
30.8 The Buffer List . 398
30.9 Creating Buffers. 399
30.10 Killing Buffers . 400
30.11 Indirect Buffers . 401

31 Windows. 403
31.1 Basic Concepts of Emacs Windows . 403
31.2 Splitting Windows . 404
31.3 Deleting Windows . 406
31.4 Selecting Windows . 407
31.5 Cyclic Ordering of Windows. 408
31.6 Buffers and Windows . 410
31.7 Displaying Buffers in Windows . 410
31.8 Choosing a Window for Display . 412
31.9 Windows and Point . 414
31.10 The Window Start Position . 415
31.11 Vertical Scrolling . 416
31.12 Horizontal Scrolling . 418
31.13 The Size of a Window . 419
31.14 The Position of a Window . 421
31.15 Changing the Size of a Window . 422
31.16 Window Configurations . 423

xiii

32 Frames . 425
32.1 Creating Frames . 425
32.2 Frame Properties . 425

32.2.1 Access to Frame Properties . 426
32.2.2 Initial Frame Properties . 426
32.2.3 X Window Frame Properties. 427
32.2.4 Frame Size And Position . 428
32.2.5 The Name of a Frame (As Opposed to Its Title) . . . 429

32.3 Frame Titles . 429
32.4 Deleting Frames . 430
32.5 Finding All Frames . 430
32.6 Frames and Windows . 431
32.7 Minibuffers and Frames . 432
32.8 Input Focus . 432
32.9 Visibility of Frames . 433
32.10 Raising and Lowering Frames . 434
32.11 Frame Configurations . 434
32.12 Hooks for Customizing Frame Behavior 435

33 Consoles and Devices . 437
33.1 Basic Console Functions . 437
33.2 Basic Device Functions . 438
33.3 Console Types and Device Classes . 438
33.4 Connecting to a Console or Device . 439
33.5 The Selected Console and Device . 440
33.6 Console and Device I/O . 440

34 Positions . 441
34.1 Point . 441
34.2 Motion . 442

34.2.1 Motion by Characters . 442
34.2.2 Motion by Words . 443
34.2.3 Motion to an End of the Buffer 443
34.2.4 Motion by Text Lines . 444
34.2.5 Motion by Screen Lines . 445
34.2.6 Moving over Balanced Expressions 446
34.2.7 Skipping Characters . 447

34.3 Excursions . 448
34.4 Narrowing . 449

35 Markers . 453
35.1 Overview of Markers . 453
35.2 Predicates on Markers . 454
35.3 Functions That Create Markers . 455
35.4 Information from Markers . 456
35.5 Changing Marker Positions. 457
35.6 The Mark . 457
35.7 The Region . 460

xiv XEmacs Lisp Reference Manual

36 Text . 463
36.1 Examining Text Near Point . 463
36.2 Examining Buffer Contents . 464
36.3 Comparing Text . 465
36.4 Inserting Text . 465
36.5 User-Level Insertion Commands . 466
36.6 Deleting Text . 467
36.7 User-Level Deletion Commands. 468
36.8 The Kill Ring . 470

36.8.1 Kill Ring Concepts . 470
36.8.2 Functions for Killing . 471
36.8.3 Functions for Yanking . 471
36.8.4 Low-Level Kill Ring . 472
36.8.5 Internals of the Kill Ring . 473

36.9 Undo . 474
36.10 Maintaining Undo Lists . 475
36.11 Filling . 476
36.12 Margins for Filling . 478
36.13 Auto Filling . 479
36.14 Sorting Text . 479
36.15 Counting Columns . 482
36.16 Indentation . 483

36.16.1 Indentation Primitives . 483
36.16.2 Indentation Controlled by Major Mode 483
36.16.3 Indenting an Entire Region . 484
36.16.4 Indentation Relative to Previous Lines 485
36.16.5 Adjustable “Tab Stops” . 486
36.16.6 Indentation-Based Motion Commands 486

36.17 Case Changes . 486
36.18 Text Properties . 488

36.18.1 Examining Text Properties . 488
36.18.2 Changing Text Properties . 489
36.18.3 Property Search Functions . 490
36.18.4 Properties with Special Meanings 491
36.18.5 Saving Text Properties in Files 491

36.19 Substituting for a Character Code . 492
36.20 Registers . 493
36.21 Transposition of Text . 494
36.22 Change Hooks . 494

37 Searching and Matching 495
37.1 Searching for Strings . 495
37.2 Regular Expressions . 496

37.2.1 Syntax of Regular Expressions . 497
37.2.2 Complex Regexp Example . 501

37.3 Regular Expression Searching . 502
37.4 POSIX Regular Expression Searching . 504
37.5 Search and Replace . 505
37.6 The Match Data . 506

37.6.1 Simple Match Data Access . 506
37.6.2 Replacing the Text That Matched. 508
37.6.3 Accessing the Entire Match Data 508
37.6.4 Saving and Restoring the Match Data 509

37.7 Searching and Case . 509
37.8 Standard Regular Expressions Used in Editing 510

xv

38 Syntax Tables . 513
38.1 Syntax Table Concepts . 513
38.2 Syntax Descriptors . 513

38.2.1 Table of Syntax Classes . 514
38.2.2 Syntax Flags . 516

38.3 Syntax Table Functions . 517
38.4 Motion and Syntax . 518
38.5 Parsing Balanced Expressions . 519
38.6 Some Standard Syntax Tables . 521
38.7 Syntax Table Internals . 521

39 Abbrevs And Abbrev Expansion 523
39.1 Setting Up Abbrev Mode . 523
39.2 Abbrev Tables . 523
39.3 Defining Abbrevs . 524
39.4 Saving Abbrevs in Files . 525
39.5 Looking Up and Expanding Abbreviations 525
39.6 Standard Abbrev Tables . 527

40 Extents . 529
40.1 Introduction to Extents . 529
40.2 Creating and Modifying Extents . 530
40.3 Extent Endpoints . 530
40.4 Finding Extents . 531
40.5 Mapping Over Extents . 532
40.6 Properties of Extents . 534
40.7 Detached Extents . 538
40.8 Extent Parents . 538
40.9 Duplicable Extents . 539
40.10 Interaction of Extents with Keyboard and Mouse Events . . . 540
40.11 Atomic Extents . 540

41 Specifiers . 541
41.1 Introduction to Specifiers . 541
41.2 In-Depth Overview of a Specifier . 541
41.3 How a Specifier Is Instanced . 542
41.4 Specifier Types . 543
41.5 Adding specifications to a Specifier . 545
41.6 Retrieving the Specifications from a Specifier 548
41.7 Working With Specifier Tags . 549
41.8 Functions for Instancing a Specifier . 550
41.9 Example of Specifier Usage . 550
41.10 Creating New Specifier Objects . 551
41.11 Functions for Checking the Validity of Specifier Components

. 552
41.12 Other Functions for Working with Specifications in a Specifier

. 553

xvi XEmacs Lisp Reference Manual

42 Faces and Window-System Objects 555
42.1 Faces . 555

42.1.1 Merging Faces for Display . 555
42.1.2 Basic Functions for Working with Faces 556
42.1.3 Face Properties . 556
42.1.4 Face Convenience Functions . 559
42.1.5 Other Face Display Functions . 560

42.2 Fonts . 560
42.2.1 Font Specifiers . 560
42.2.2 Font Instances . 560
42.2.3 Font Instance Names . 561
42.2.4 Font Instance Size . 561
42.2.5 Font Instance Characteristics . 562
42.2.6 Font Convenience Functions . 562

42.3 Colors . 563
42.3.1 Color Specifiers . 563
42.3.2 Color Instances . 563
42.3.3 Color Instance Properties . 563
42.3.4 Color Convenience Functions . 563

43 Glyphs . 565
43.1 Glyph Functions . 565

43.1.1 Creating Glyphs . 565
43.1.2 Glyph Properties . 566
43.1.3 Glyph Convenience Functions . 568
43.1.4 Glyph Dimensions . 569

43.2 Images . 569
43.2.1 Image Specifiers . 570
43.2.2 Image Instantiator Conversion . 573
43.2.3 Image Instances . 573

43.2.3.1 Image Instance Types 574
43.2.3.2 Image Instance Functions 575

43.3 Glyph Types . 576
43.4 Mouse Pointer . 577
43.5 Redisplay Glyphs . 578
43.6 Subwindows . 578

44 Annotations . 579
44.1 Annotation Basics . 579
44.2 Annotation Primitives . 580
44.3 Annotation Properties . 580
44.4 Locating Annotations . 582
44.5 Margin Primitives . 582
44.6 Annotation Hooks . 583

xvii

45 Emacs Display . 585
45.1 Refreshing the Screen . 585
45.2 Truncation . 586
45.3 The Echo Area . 586
45.4 Warnings . 589
45.5 Invisible Text . 590
45.6 Selective Display . 591
45.7 The Overlay Arrow . 592
45.8 Temporary Displays . 593
45.9 Blinking Parentheses . 594
45.10 Usual Display Conventions . 595
45.11 Display Tables . 596

45.11.1 Display Table Format . 596
45.11.2 Active Display Table . 597
45.11.3 Character Descriptors . 597

45.12 Beeping . 597

46 Hash Tables . 601
46.1 Introduction to Hash Tables . 601
46.2 Working With Hash Tables . 601
46.3 Weak Hash Tables . 602

47 Range Tables. 603
47.1 Introduction to Range Tables . 603
47.2 Working With Range Tables . 603

48 Databases . 605
48.1 Connecting to a Database . 605
48.2 Working With a Database . 605
48.3 Other Database Functions . 606

49 Processes . 607
49.1 Functions that Create Subprocesses . 607
49.2 Creating a Synchronous Process . 608
49.3 MS-DOS Subprocesses . 610
49.4 Creating an Asynchronous Process . 610
49.5 Deleting Processes . 612
49.6 Process Information . 612
49.7 Sending Input to Processes . 614
49.8 Sending Signals to Processes . 615
49.9 Receiving Output from Processes . 616

49.9.1 Process Buffers . 616
49.9.2 Process Filter Functions . 617
49.9.3 Accepting Output from Processes 619

49.10 Sentinels: Detecting Process Status Changes 619
49.11 Process Window Size . 620
49.12 Transaction Queues . 620
49.13 Network Connections . 621

xviii XEmacs Lisp Reference Manual

50 Operating System Interface 623
50.1 Starting Up XEmacs . 623

50.1.1 Summary: Sequence of Actions at Start Up 623
50.1.2 The Init File: ‘.emacs’ . 624
50.1.3 Terminal-Specific Initialization . 625
50.1.4 Command Line Arguments . 626

50.2 Getting out of XEmacs . 627
50.2.1 Killing XEmacs . 627
50.2.2 Suspending XEmacs . 627

50.3 Operating System Environment . 629
50.4 User Identification . 631
50.5 Time of Day . 633
50.6 Time Conversion . 633
50.7 Timers for Delayed Execution . 635
50.8 Terminal Input . 636

50.8.1 Input Modes . 636
50.8.2 Translating Input Events . 637
50.8.3 Recording Input . 638

50.9 Terminal Output . 639
50.10 Flow Control . 640
50.11 Batch Mode . 641

51 Functions Specific to the X Window System
. 643
51.1 X Selections . 643
51.2 X Server . 644

51.2.1 Resources . 644
51.2.2 Data about the X Server . 645
51.2.3 Restricting Access to the Server by Other Apps 646

51.3 Miscellaneous X Functions and Variables 646

52 ToolTalk Support. 649
52.1 XEmacs ToolTalk API Summary . 649
52.2 Sending Messages . 649

52.2.1 Example of Sending Messages. 649
52.2.2 Elisp Interface for Sending Messages 650

52.3 Receiving Messages . 651
52.3.1 Example of Receiving Messages 651
52.3.2 Elisp Interface for Receiving Messages 652

53 LDAP Support . 655
53.1 Building XEmacs with LDAP support . 655
53.2 XEmacs LDAP API . 655

53.2.1 LDAP Variables . 655
53.2.2 The High-Level LDAP API . 656
53.2.3 The Low-Level LDAP API . 656

53.2.3.1 The LDAP Lisp Object 656
53.2.3.2 Opening and Closing a LDAP Connection

. 657
53.2.3.3 Searching on a LDAP Server (Low-level) . . 657

53.3 Syntax of Search Filters . 658

xix

54 Internationalization . 659
54.1 I18N Levels 1 and 2 . 659
54.2 I18N Level 3 . 659

54.2.1 Level 3 Basics . 659
54.2.2 Level 3 Primitives . 659
54.2.3 Dynamic Messaging . 660
54.2.4 Domain Specification . 660
54.2.5 Documentation String Extraction 661

54.3 I18N Level 4 . 661

55 MULE . 663
55.1 Internationalization Terminology . 663
55.2 Charsets . 665

55.2.1 Charset Properties . 665
55.2.2 Basic Charset Functions . 666
55.2.3 Charset Property Functions . 667
55.2.4 Predefined Charsets . 668

55.3 MULE Characters . 669
55.4 Composite Characters . 669
55.5 ISO 2022 . 670
55.6 Coding Systems . 672

55.6.1 Coding System Types . 673
55.6.2 EOL Conversion . 673
55.6.3 Coding System Properties . 674
55.6.4 Basic Coding System Functions 675
55.6.5 Coding System Property Functions 676
55.6.6 Encoding and Decoding Text . 676
55.6.7 Detection of Textual Encoding . 676
55.6.8 Big5 and Shift-JIS Functions . 677

55.7 CCL . 677
55.7.1 CCL Syntax . 678
55.7.2 CCL Statements . 679
55.7.3 CCL Expressions . 680
55.7.4 Calling CCL . 681
55.7.5 CCL Examples . 682

55.8 Category Tables . 682

Appendix A Tips and Standards 685
A.1 Writing Clean Lisp Programs . 685
A.2 Tips for Making Compiled Code Fast . 687
A.3 Tips for Documentation Strings . 688
A.4 Tips on Writing Comments . 689
A.5 Conventional Headers for XEmacs Libraries 690

Appendix B Building XEmacs; Allocation of
Objects . 693
B.1 Building XEmacs . 693
B.2 Pure Storage . 695
B.3 Garbage Collection . 695

Appendix C Standard Errors. 701

Appendix D Buffer-Local Variables 705

xx XEmacs Lisp Reference Manual

Appendix E Standard Keymaps 709

Appendix F Standard Hooks 711

Index . 717

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

2 XEmacs Lisp Reference Manual

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed

GNU GENERAL PUBLIC LICENSE 3

under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that

4 XEmacs Lisp Reference Manual

system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 5

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

6 XEmacs Lisp Reference Manual

Chapter 1: Introduction 7

1 Introduction

Most of the XEmacs text editor is written in the programming language called XEmacs Lisp.
You can write new code in XEmacs Lisp and install it as an extension to the editor. However,
XEmacs Lisp is more than a mere “extension language”; it is a full computer programming
language in its own right. You can use it as you would any other programming language.

Because XEmacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and so on.
XEmacs Lisp is closely integrated with the editing facilities; thus, editing commands are func-
tions that can also conveniently be called from Lisp programs, and parameters for customization
are ordinary Lisp variables.

This manual describes XEmacs Lisp, presuming considerable familiarity with the use of
XEmacs for editing. (See The XEmacs Reference Manual, for this basic information.) Generally
speaking, the earlier chapters describe features of XEmacs Lisp that have counterparts in many
programming languages, and later chapters describe features that are peculiar to XEmacs Lisp
or relate specifically to editing.

This is edition 3.3.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless. There
are a few topics that are not covered, either because we consider them secondary (such as most
of the individual modes) or because they are yet to be written. Because we are not able to
deal with them completely, we have left out several parts intentionally. This includes most
information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to criticism
on anything it says—from specific examples and descriptive text, to the ordering of chapters
and sections. If something is confusing, or you find that you have to look at the sources or
experiment to learn something not covered in the manual, then perhaps the manual should be
fixed. Please let us know.

As you use the manual, we ask that you mark pages with corrections so you can later look
them up and send them in. If you think of a simple, real-life example for a function or group
of functions, please make an effort to write it up and send it in. Please reference any comments
to the chapter name, section name, and function name, as appropriate, since page numbers
and chapter and section numbers will change and we may have trouble finding the text you are
talking about. Also state the number of the edition you are criticizing.

This manual was originally written for FSF Emacs 19 and was updated by Ben Wing
(wing@666.com) for Lucid Emacs 19.10 and later for XEmacs 19.12, 19.13, 19.14, and 20.0.
It was further updated by the XEmacs Development Team for 19.15, version 20 and 21. Please
send comments and corrections relating to XEmacs-specific portions of this manual to

xemacs@xemacs.org

or post to the newsgroup

comp.emacs.xemacs

–Ben Wing

8 XEmacs Lisp Reference Manual

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950’s at the Massachusetts
Institute of Technology for research in artificial intelligence. The great power of the Lisp language
makes it superior for other purposes as well, such as writing editing commands.

Dozens of Lisp implementations have been built over the years, each with its own idiosyn-
crasies. Many of them were inspired by Maclisp, which was written in the 1960’s at MIT’s
Project MAC. Eventually the implementors of the descendants of Maclisp came together and
developed a standard for Lisp systems, called Common Lisp.

XEmacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many of the features of Common
Lisp have been omitted or simplified in order to reduce the memory requirements of XEmacs.
Sometimes the simplifications are so drastic that a Common Lisp user might be very confused.
We will occasionally point out how XEmacs Lisp differs from Common Lisp. If you don’t know
Common Lisp, don’t worry about it; this manual is self-contained.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” are used to
refer to those routines in Lisp that convert textual representations of Lisp objects into actual
Lisp objects, and vice versa. See Section 2.1 [Printed Representation], page 13, for more details.
You, the person reading this manual, are thought of as “the programmer” and are addressed as
“you”. “The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code appear in this font or form: (list 1 2 3). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’; it
is the logical truth value false; and it is the empty list—the list of zero elements. When used as
a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the same
object, the symbol nil. The different ways of writing the symbol are intended entirely for human
readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to determine which
representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose

Chapter 1: Introduction 9

a value which represents true, and there is no other basis for choosing, use t. The symbol t
always has value t.

In XEmacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt to
change their values results in a setting-constant error. See Section 10.6 [Accessing Variables],
page 137.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always produces
a result, which is a Lisp object. In the examples in this manual, this is indicated with ‘⇒’:

(car ’(1 2))
⇒ 1

You can read this as “(car ’(1 2)) evaluates to 1”.
When a form is a macro call, it expands into a new form for Lisp to evaluate. We show the

result of the expansion with ‘ 7→’. We may or may not show the actual result of the evaluation
of the expanded form.

(news-cadr ’(a b c))
7→ (car (cdr ’(a b c)))
⇒ b

Sometimes to help describe one form we show another form that produces identical results.
The exact equivalence of two forms is indicated with ‘≡ ’.

(cons ’a nil) ≡ (list ’a)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch*’), the printed text is
inserted into the buffer. If you execute the example by other means (such as by evaluating the
function eval-region), the printed text is displayed in the echo area. You should be aware that
text displayed in the echo area is truncated to a single line.

Examples in this manual indicate printed text with ‘ a ’, irrespective of where that text goes.
The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
a foo
a bar
⇒ bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area. We
show the error message on a line starting with ‘ error ’. Note that ‘ error ’ itself does not
appear in the echo area.

(+ 23 ’x)
error Wrong type argument: integer-or-marker-p, x

10 XEmacs Lisp Reference Manual

1.3.6 Buffer Text Notation

Some examples show modifications to text in a buffer, with “before” and “after” versions of
the text. These examples show the contents of the buffer in question between two lines of dashes
containing the buffer name. In addition, ‘?’ indicates the location of point. (The symbol for
point, of course, is not part of the text in the buffer; it indicates the place between two characters
where point is located.)

---------- Buffer: foo ----------
This is the ?contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
⇒ nil

---------- Buffer: foo ----------
This is the changed ?contents of foo.
---------- Buffer: foo ----------

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described in
this manual in a uniform format. The first line of a description contains the name of the item
followed by its arguments, if any. The category—function, variable, or whatever—is printed
next to the right margin. The description follows on succeeding lines, sometimes with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in
the body of the description.

The appearance of the keyword &optional in the parameter list indicates that the arguments
for subsequent parameters may be omitted (omitted parameters default to nil). Do not write
&optional when you call the function.

The keyword &rest (which will always be followed by a single parameter) indicates that any
number of arguments can follow. The value of the single following parameter will be a list of all
these arguments. Do not write &rest when you call the function.

Here is a description of an imaginary function foo:

Functionfoo integer1 &optional integer2 &rest integers
The function foo subtracts integer1 from integer2, then adds all the rest of the arguments
to the result. If integer2 is not supplied, then the number 19 is used by default.

(foo 1 5 3 9)
⇒ 16

(foo 5)
⇒ 14

More generally,
(foo w x y...)
≡
(+ (- x w) y...)

Chapter 1: Introduction 11

Any parameter whose name contains the name of a type (e.g., integer, integer1 or buffer) is
expected to be of that type. A plural of a type (such as buffers) often means a list of objects
of that type. Parameters named object may be of any type. (See Chapter 2 [Lisp Data Types],
page 13, for a list of XEmacs object types.) Parameters with other sorts of names (e.g., new-file)
are discussed specifically in the description of the function. In some sections, features common
to parameters of several functions are described at the beginning.

See Section 11.2 [Lambda Expressions], page 148, for a more complete description of optional
and rest arguments.

Command, macro, and special form descriptions have the same format, but the word ‘Func-
tion’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands are simply
functions that may be called interactively; macros process their arguments differently from func-
tions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
parameters because they can break the argument list down into separate arguments in more
complicated ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-args...’
stands for zero or more arguments. Parentheses are used when several arguments are grouped
into additional levels of list structure. Here is an example:

Special Formcount-loop (var [from to [inc]]) body . . .
This imaginary special form implements a loop that executes the body forms and then
increments the variable var on each iteration. On the first iteration, the variable has the
value from; on subsequent iterations, it is incremented by 1 (or by inc if that is given).
The loop exits before executing body if var equals to. Here is an example:

(count-loop (i 0 10)
(prin1 i) (princ " ")
(prin1 (aref vector i)) (terpri))

If from and to are omitted, then var is bound to nil before the loop begins, and the loop
exits if var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)
(if (pending)

(fixit)
(setq done t)))

In this special form, the arguments from and to are optional, but must both be present or
both absent. If they are present, inc may optionally be specified as well. These arguments
are grouped with the argument var into a list, to distinguish them from body, which
includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user,
certain variables that exist specifically so that users can change them are called user options.
Ordinary variables and user options are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

Variableelectric-future-map
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought about
executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Option’.

12 XEmacs Lisp Reference Manual

1.4 Acknowledgements

This manual was based on the GNU Emacs Lisp Reference Manual, version 2.4, written by
Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman and Chris Welty, the volunteers
of the GNU manual group, in an effort extending over several years. Robert J. Chassell helped
to review and edit the manual, with the support of the Defense Advanced Research Projects
Agency, ARPA Order 6082, arranged by Warren A. Hunt, Jr. of Computational Logic, Inc.

Ben Wing adapted this manual for XEmacs 19.14 and 20.0, and earlier for Lucid Emacs
19.10, XEmacs 19.12, and XEmacs 19.13. He is the sole author of many of the manual sections,
in particular the XEmacs-specific sections: events, faces, extents, glyphs, specifiers, toolbar,
menubars, scrollbars, dialog boxes, devices, consoles, hash tables, range tables, char tables,
databases, and others. The section on annotations was originally written by Chuck Thompson.
Corrections to v3.1 and later were done by Martin Buchholz, Steve Baur, and Hrvoje Niksic.

Corrections to the original GNU Emacs Lisp Reference Manual were supplied by Karl
Berry, Jim Blandy, Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard Davis,
Lawrence R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly Erlebacher, David
Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric Hanchrow, George
Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson, Jak Kirman, Bob Knighten, Frederick M.
Korz, Joe Lammens, Glenn M. Lewis, K. Richard Magill, Brian Marick, Roland McGrath,
Skip Montanaro, John Gardiner Myers, Thomas A. Peterson, Francesco Potorti, Friedrich
Pukelsheim, Arnold D. Robbins, Raul Rockwell, Per Starback, Shinichirou Sugou, Kimmo
Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean White, Matthew Wilding, Carl
Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

Chapter 2: Lisp Data Types 13

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our purposes,
a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar structures
and may usually be used in the same contexts. Types can overlap, and objects can belong to
two or more types. Consequently, we can ask whether an object belongs to a particular type,
but not for “the” type of an object.

A few fundamental object types are built into XEmacs. These, from which all other types
are constructed, are called primitive types. Each object belongs to one and only one primitive
type. These types include integer, character (starting with XEmacs 20.0), float, cons, symbol,
string, vector, bit-vector, subr, compiled-function, hashtable, range-table, char-table, weak-list,
and several special types, such as buffer, that are related to editing. (See Section 2.5 [Editing
Types], page 26.)

Each primitive type has a corresponding Lisp function that checks whether an object is a
member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing : the
primitive type of the object is implicit in the object itself. For example, if an object is a vector,
nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the type
is known by the compiler but not represented in the data. Such type declarations do not exist
in XEmacs Lisp. A Lisp variable can have any type of value, and it remembers whatever value
you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of the
standard types in Emacs Lisp. Details on how to use these types can be found in later chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prin1) for that object. The read syntax of an object is the format of the
input accepted by the Lisp reader (the function read) for that object. Most objects have more
than one possible read syntax. Some types of object have no read syntax; except for these cases,
the printed representation of an object is also a read syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression is
primarily a Lisp object and only secondarily the text that is the object’s read syntax. Often
there is no need to emphasize this distinction, but you must keep it in the back of your mind,
or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax, since it may not
make sense to enter objects of these types directly in a Lisp program. For example, the buffer
type does not have a read syntax. Objects of these types are printed in hash notation: the
characters ‘#<’ followed by a descriptive string (typically the type name followed by the name
of the object), and closed with a matching ‘>’. Hash notation cannot be read at all, so the Lisp
reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

(current-buffer)
⇒ #<buffer "objects.texi">

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 8
[Evaluation], page 109). However, evaluation and reading are separate activities. Reading

14 XEmacs Lisp Reference Manual

returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 17.3 [Input Functions], page 229, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’) starts
a comment if it is not within a string or character constant. The comment continues to the end
of line. The Lisp reader discards comments; they do not become part of the Lisp objects which
represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The XEmacs Lisp byte compiler uses this in
its output files (see Chapter 15 [Byte Compilation], page 187). It isn’t meant for source files,
however.

See Section A.4 [Comment Tips], page 689, for conventions for formatting comments.

2.3 Primitive Types

For reference, here is a list of all the primitive types that may exist in XEmacs. Note that
some of these types may not exist in some XEmacs executables; that depends on the options
that XEmacs was configured with.
• bit-vector
• buffer
• char-table
• character
• charset
• coding-system
• cons
• color-instance
• compiled-function
• console
• database
• device
• event
• extent
• face
• float
• font-instance
• frame
• glyph
• hashtable
• image-instance
• integer
• keymap

Chapter 2: Lisp Data Types 15

• marker
• process
• range-table
• specifier
• string
• subr
• subwindow
• symbol
• toolbar-button
• tooltalk-message
• tooltalk-pattern
• vector
• weak-list
• window
• window-configuration
• x-resource

In addition, the following special types are created internally but will never be seen by
Lisp code. You may encounter them, however, if you are debugging XEmacs. The printed
representation of these objects begins ‘#<INTERNAL EMACS BUG’, which indicates to the Lisp
programmer that he has found an internal bug in XEmacs if he ever encounters any of these
objects.

• char-table-entry
• command-builder
• extent-auxiliary
• extent-info
• lcrecord-list
• lstream
• opaque
• opaque-list
• popup-data
• symbol-value-buffer-local
• symbol-value-forward
• symbol-value-lisp-magic
• symbol-value-varalias
• toolbar-data

2.4 Programming Types

There are two general categories of types in XEmacs Lisp: those having to do with Lisp pro-
gramming, and those having to do with editing. The former exist in many Lisp implementations,
in one form or another. The latter are unique to XEmacs Lisp.

16 XEmacs Lisp Reference Manual

2.4.1 Integer Type

The range of values for integers in XEmacs Lisp is −134217728 to 134217727 (28 bits; i.e.,
−227 to 228 − 1) on most machines. (Some machines, in particular 64-bit machines such as
the DEC Alpha, may provide a wider range.) It is important to note that the XEmacs Lisp
arithmetic functions do not check for overflow. Thus (1+ 134217727) is −134217728 on most
machines. (However, you will get an error if you attempt to read an out-of-range number using
the Lisp reader.)

The read syntax for integers is a sequence of (base ten) digits with an optional sign at the
beginning. (The printed representation produced by the Lisp interpreter never has a leading
‘+’.)

-1 ; The integer -1.
1 ; The integer 1.
+1 ; Also the integer 1.
268435457 ; Causes an error on a 28-bit implementation.

See Chapter 3 [Numbers], page 41, for more information.

2.4.2 Floating Point Type

XEmacs supports floating point numbers. The precise range of floating point numbers is
machine-specific.

The printed representation for floating point numbers requires either a decimal point (with
at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’,
‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They
are all equivalent.

See Chapter 3 [Numbers], page 41, for more information.

2.4.3 Character Type

In XEmacs version 19, and in all versions of FSF GNU Emacs, a character in XEmacs Lisp
is nothing more than an integer. This is yet another holdover from XEmacs Lisp’s derivation
from vintage-1980 Lisps; modern versions of Lisp consider this equivalence a bad idea, and
have separate character types. In XEmacs version 20, the modern convention is followed, and
characters are their own primitive types. (This change was necessary in order for MULE, i.e.
Asian-language, support to be correctly implemented.)

Even in XEmacs version 20, remnants of the equivalence between characters and integers
still exist; this is termed the char-int confoundance disease. In particular, many functions such
as eq, equal, and memq have equivalent functions (old-eq, old-equal, old-memq, etc.) that
pretend like characters are integers are the same. Byte code compiled under any version 19
Emacs will have all such functions mapped to their old- equivalents when the byte code is read
into XEmacs 20. This is to preserve compatibility – Emacs 19 converts all constant characters to
the equivalent integer during byte-compilation, and thus there is no other way to preserve byte-
code compatibility even if the code has specifically been written with the distinction between
characters and integers in mind.

Every character has an equivalent integer, called the character code. For example, the charac-
ter A is represented as the integer 65, following the standard ASCII representation of characters.
If XEmacs was not compiled with MULE support, the range of this integer will always be 0 to
255 – eight bits, or one byte. (Integers outside this range are accepted but silently truncated;

Chapter 2: Lisp Data Types 17

however, you should most decidedly not rely on this, because it will not work under XEmacs
with MULE support.) When MULE support is present, the range of character codes is much
larger. (Currently, 19 bits are used.)

FSF GNU Emacs uses kludgy character codes above 255 to represent keyboard input of
ASCII characters in combination with certain modifiers. XEmacs does not use this (a more
general mechanism is used that does not distinguish between ASCII keys and other keys), so
you will never find character codes above 255 in a non-MULE XEmacs.

Individual characters are not often used in programs. It is far more common to work with
strings, which are sequences composed of characters. See Section 2.4.8 [String Type], page 22.

The read syntax for characters begins with a question mark, followed by the character (if
it’s printable) or some symbolic representation of it. In XEmacs 20, where characters are their
own type, this is also the print representation. In XEmacs 19, however, where characters are
really integers, the printed representation of a character is a decimal number. This is also a
possible read syntax for a character, but writing characters that way in Lisp programs is a very
bad idea. You should always use the special read syntax formats that XEmacs Lisp provides for
characters.

The usual read syntax for alphanumeric characters is a question mark followed by the char-
acter; thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character a.

For example:
;; Under XEmacs 20:
?Q ⇒ ?Q ?q ⇒ ?q
(char-int ?Q) ⇒ 81
;; Under XEmacs 19:
?Q ⇒ 81 ?q ⇒ 113

You can use the same syntax for punctuation characters, but it is often a good idea to add a
‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For example, ‘?\ ’ is
the way to write the space character. If the character is ‘\’, you must use a second ‘\’ to quote
it: ‘?\\’. XEmacs 20 always prints punctuation characters with a ‘\’ in front of them, to avoid
confusion.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\r’, ‘?\e’, respectively. Their
character codes are 7, 8, 9, 10, 11, 12, 13, and 27 in decimal. Thus,

;; Under XEmacs 20:
?\a ⇒ ?\^G ; C-g
(char-int ?\a) ⇒ 7
?\b ⇒ ?\^H ; backspace, 〈BS〉, C-h
(char-int ?\b) ⇒ 8
?\t ⇒ ?\t ; tab, 〈TAB〉, C-i
(char-int ?\t) ⇒ 9
?\n ⇒ ?\n ; newline, 〈LFD〉, C-j
?\v ⇒ ?\^K ; vertical tab, C-k
?\f ⇒ ?\^L ; formfeed character, C-l
?\r ⇒ ?\r ; carriage return, 〈RET〉, C-m
?\e ⇒ ?\^[; escape character, 〈ESC〉, C-[
?\\ ⇒ ?\\ ; backslash character, \
;; Under XEmacs 19:
?\a ⇒ 7 ; C-g
?\b ⇒ 8 ; backspace, 〈BS〉, C-h
?\t ⇒ 9 ; tab, 〈TAB〉, C-i
?\n ⇒ 10 ; newline, 〈LFD〉, C-j
?\v ⇒ 11 ; vertical tab, C-k

18 XEmacs Lisp Reference Manual

?\f ⇒ 12 ; formfeed character, C-l
?\r ⇒ 13 ; carriage return, 〈RET〉, C-m
?\e ⇒ 27 ; escape character, 〈ESC〉, C-[
?\\ ⇒ 92 ; backslash character, \

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the character
〈ESC〉.

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character, in
either upper or lower case. For example, both ‘?\^I’ and ‘?\^i’ are valid read syntax for the
character C-i, the character whose value is 9.

Instead of the ‘^’, you can use ‘C-’; thus, ‘?\C-i’ is equivalent to ‘?\^I’ and to ‘?\^i’:
;; Under XEmacs 20:
?\^I ⇒ ?\t ?\C-I ⇒ ?\t
(char-int ?\^I) ⇒ 9
;; Under XEmacs 19:
?\^I ⇒ 9 ?\C-I ⇒ 9

There is also a character read syntax beginning with ‘\M-’. This sets the high bit of the
character code (same as adding 128 to the character code). For example, ‘?\M-A’ stands for
the character with character code 193, or 128 plus 65. You should not use this syntax in your
programs. It is a holdover of yet another confoundance disease from earlier Emacsen. (This was
used to represent keyboard input with the 〈META〉 key set, thus the ‘M’; however, it conflicts with
the legitimate ISO-8859-1 interpretation of the character code. For example, character code 193
is a lowercase ‘a’ with an acute accent, in ISO-8859-1.)

Finally, the most general read syntax consists of a question mark followed by a backslash and
the character code in octal (up to three octal digits); thus, ‘?\101’ for the character A, ‘?\001’
for the character C-a, and ?\002 for the character C-b. Although this syntax can represent any
ASCII character, it is preferred only when the precise octal value is more important than the
ASCII representation.

;; Under XEmacs 20:
?\012 ⇒ ?\n ?\n ⇒ ?\n ?\C-j ⇒ ?\n
?\101 ⇒ ?A ?A ⇒ ?A
;; Under XEmacs 19:
?\012 ⇒ 10 ?\n ⇒ 10 ?\C-j ⇒ 10
?\101 ⇒ 65 ?A ⇒ 65

A backslash is allowed, and harmless, preceding any character without a special escape mean-
ing; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most charac-
ters. However, you should add a backslash before any of the characters ‘()\|;’‘"#.,’ to avoid
confusing the Emacs commands for editing Lisp code. Also add a backslash before whitespace
characters such as space, tab, newline and formfeed. However, it is cleaner to use one of the
easily readable escape sequences, such as ‘\t’, instead of an actual whitespace character such as
a tab.

2.4.4 Symbol Type

A symbol in XEmacs Lisp is an object with a name. The symbol name serves as the printed
representation of the symbol. In ordinary use, the name is unique—no two symbols have the
same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or it may
serve only to be distinct from all other Lisp objects, so that its presence in a data structure may

Chapter 2: Lisp Data Types 19

be recognized reliably. In a given context, usually only one of these uses is intended. But you
can use one symbol in all of these ways, independently.

A symbol name can contain any characters whatever. Most symbol names are written with
letters, digits, and the punctuation characters ‘-+=*/’. Such names require no special punctua-
tion; the characters of the name suffice as long as the name does not look like a number. (If it
does, write a ‘\’ at the beginning of the name to force interpretation as a symbol.) The char-
acters ‘_~!@$%^&:<>{}’ are less often used but also require no special punctuation. Any other
characters may be included in a symbol’s name by escaping them with a backslash. In contrast
to its use in strings, however, a backslash in the name of a symbol simply quotes the single
character that follows the backslash. For example, in a string, ‘\t’ represents a tab character;
in the name of a symbol, however, ‘\t’ merely quotes the letter t. To have a symbol with a tab
character in its name, you must actually use a tab (preceded with a backslash). But it’s rare to
do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and lower
case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is escaped
to prevent it from being read as a number. This is not necessary in the sixth example because
the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOO’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.
1+ ; A symbol named ‘1+’

; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’

; (not a very readable name).
\(*\ 1\ 2\) ; A symbol named ‘(* 1 2)’ (a worse name).
+-*/_~!@$%^&=:<>{} ; A symbol named ‘+-*/_~!@$%^&=:<>{}’.

; These characters need not be escaped.

2.4.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two kinds
of sequence in XEmacs Lisp, lists and arrays. Thus, an object of type list or of type array is
also considered a sequence.

Arrays are further subdivided into strings, vectors, and bit vectors. Vectors can hold elements
of any type, but string elements must be characters, and bit vector elements must be either 0 or
1. However, the characters in a string can have extents (see Chapter 40 [Extents], page 529) and
text properties (see Section 36.18 [Text Properties], page 488) like characters in a buffer; vectors
do not support extents or text properties even when their elements happen to be characters.

Lists, strings, vectors, and bit vectors are different, but they have important similarities.
For example, all have a length l, and all have elements which can be indexed from zero to l
minus one. Also, several functions, called sequence functions, accept any kind of sequence. For
example, the function elt can be used to extract an element of a sequence, given its index. See
Chapter 6 [Sequences Arrays Vectors], page 93.

It is impossible to read the same sequence twice, since sequences are always created anew
upon reading. If you read the read syntax for a sequence twice, you get two sequences with
equal contents. There is one exception: the empty list () always stands for the same object,
nil.

20 XEmacs Lisp Reference Manual

2.4.6 Cons Cell and List Types

A cons cell is an object comprising two pointers named the car and the cdr. Each of them
can point to any Lisp object.

A list is a series of cons cells, linked together so that the cdr of each cons cell points either
to another cons cell or to the empty list. See Chapter 5 [Lists], page 71, for functions that work
on lists. Because most cons cells are used as part of lists, the phrase list structure has come to
refer to any structure made out of cons cells.

The names car and cdr have only historical meaning now. The original Lisp implementation
ran on an IBM 704 computer which divided words into two parts, called the “address” part and
the “decrement”; car was an instruction to extract the contents of the address part of a register,
and cdr an instruction to extract the contents of the decrement. By contrast, “cons cells” are
named for the function cons that creates them, which in turn is named for its purpose, the
construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not a
cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left paren-
thesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That is, a
cons cell is made for each element. The car of the cons cell points to the element, and its cdr

points to the next cons cell of the list, which holds the next element in the list. The cdr of the
last cons cell is set to point to nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes.
(The Lisp reader cannot read such an illustration; unlike the textual notation, which can be
understood by both humans and computers, the box illustrations can be understood only by
humans.) The following represents the three-element list (rose violet buttercup):

___ ___ ___ ___ ___ ___
|___|___|--> |___|___|--> |___|___|--> nil

| | |
| | |
--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can refer to any Lisp object. Each pair
of boxes represents a cons cell. Each arrow is a reference to a Lisp object, either an atom or
another cons cell.

In this example, the first box, the car of the first cons cell, refers to or “contains” rose (a
symbol). The second box, the cdr of the first cons cell, refers to the next pair of boxes, the
second cons cell. The car of the second cons cell refers to violet and the cdr refers to the
third cons cell. The cdr of the third (and last) cons cell refers to nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a different
manner:

--------------- ---------------- -------------------
car	cdr		car	cdr		car	cdr
rose	o-------->	violet	o-------->	buttercup	nil		
--------------- ---------------- -------------------

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

Chapter 2: Lisp Data Types 21

(A 2 "A") ; A list of three elements.
() ; A list of no elements (the empty list).
nil ; A list of no elements (the empty list).
("A ()") ; A list of one element: the string "A ()".
(A ()) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.
((A B C)) ; A list of one element

; (which is a list of three elements).
Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

___ ___ ___ ___
|___|___|--> |___|___|--> nil

| |
| |
--> A --> nil

2.4.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the car and cdr

explicitly. In this syntax, (a . b) stands for a cons cell whose car is the object a, and whose
cdr is the object b. Dotted pair notation is therefore more general than list syntax. In the
dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For nil-terminated
lists, the two notations produce the same result, but list notation is usually clearer and more
convenient when it is applicable. When printing a list, the dotted pair notation is only used if
the cdr of a cell is not a list.

Here’s how box notation can illustrate dotted pairs. This example shows the pair (rose .
violet):

___ ___
|___|___|--> violet

|
|
--> rose

Dotted pair notation can be combined with list notation to represent a chain of cons cells
with a non-nil final cdr. For example, (rose violet . buttercup) is equivalent to (rose .
(violet . buttercup)). The object looks like this:

___ ___ ___ ___
|___|___|--> |___|___|--> buttercup

| |
| |
--> rose --> violet

These diagrams make it evident why (rose . violet . buttercup) is invalid syntax; it
would require a cons cell that has three parts rather than two.

The list (rose violet) is equivalent to (rose . (violet)) and looks like this:
___ ___ ___ ___
|___|___|--> |___|___|--> nil

| |
| |
--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose . (violet
. (buttercup))).

22 XEmacs Lisp Reference Manual

2.4.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells. In
each element, the car is considered a key, and the cdr is considered an associated value. (In
some cases, the associated value is stored in the car of the cdr.) Association lists are often
used as stacks, since it is easy to add or remove associations at the front of the list.

For example,
(setq alist-of-colors

’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose is
the key and red is the value.

See Section 5.8 [Association Lists], page 85, for a further explanation of alists and for functions
that work on alists.

2.4.7 Array Type

An array is composed of an arbitrary number of slots for referring to other Lisp objects,
arranged in a contiguous block of memory. Accessing any element of an array takes the same
amount of time. In contrast, accessing an element of a list requires time proportional to the
position of the element in the list. (Elements at the end of a list take longer to access than
elements at the beginning of a list.)

XEmacs defines three types of array, strings, vectors, and bit vectors. A string is an array of
characters, a vector is an array of arbitrary objects, and a bit vector is an array of 1’s and 0’s.
All are one-dimensional. (Most other programming languages support multidimensional arrays,
but they are not essential; you can get the same effect with an array of arrays.) Each type of
array has its own read syntax; see Section 2.4.8 [String Type], page 22, Section 2.4.9 [Vector
Type], page 23, and Section 2.4.10 [Bit Vector Type], page 23.

An array may have any length up to the largest integer; but once created, it has a fixed size.
The first element of an array has index zero, the second element has index 1, and so on. This is
called zero-origin indexing. For example, an array of four elements has indices 0, 1, 2, and 3.

The array type is contained in the sequence type and contains the string type, the vector
type, and the bit vector type.

2.4.8 String Type

A string is an array of characters. Strings are used for many purposes in XEmacs, as can
be expected in a text editor; for example, as the names of Lisp symbols, as messages for the
user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation of
a string returns the same string.

The read syntax for strings is a double-quote, an arbitrary number of characters, and another
double-quote, "like this". The Lisp reader accepts the same formats for reading the characters
of a string as it does for reading single characters (without the question mark that begins a
character literal). You can enter a nonprinting character such as tab or C-a using the convenient
escape sequences, like this: "\t, \C-a". You can include a double-quote in a string by preceding
it with a backslash; thus, "\"" is a string containing just a single double-quote character. (See
Section 2.4.3 [Character Type], page 16, for a description of the read syntax for characters.)

The printed representation of a string consists of a double-quote, the characters it contains,
and another double-quote. However, you must escape any backslash or double-quote characters
in the string with a backslash, like this: "this \" is an embedded quote".

Chapter 2: Lisp Data Types 23

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—one
that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores an
escaped newline while reading a string.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."

⇒ "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

A string can hold extents and properties of the text it contains, in addition to the characters
themselves. This enables programs that copy text between strings and buffers to preserve
the extents and properties with no special effort. See Chapter 40 [Extents], page 529, See
Section 36.18 [Text Properties], page 488.

Note that FSF GNU Emacs has a special read and print syntax for strings with text prop-
erties, but XEmacs does not currently implement this. It was judged better not to include this
in XEmacs because it entails that equal return nil when passed a string with text properties
and the equivalent string without text properties, which is often counter-intuitive.

See Chapter 4 [Strings and Characters], page 55, for functions that work on strings.

2.4.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount of
time to access any element of a vector. (In a list, the access time of an element is proportional
to the distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements, and
a right square bracket. This is also the read syntax. Like numbers and strings, vectors are
considered constants for evaluation.

[1 "two" (three)] ; A vector of three elements.
⇒ [1 "two" (three)]

See Section 6.4 [Vectors], page 97, for functions that work with vectors.

2.4.10 Bit Vector Type

A bit vector is a one-dimensional array of 1’s and 0’s. It takes a constant amount of time
to access any element of a bit vector, as for vectors. Bit vectors have an extremely compact
internal representation (one machine bit per element), which makes them ideal for keeping track
of unordered sets, large collections of boolean values, etc.

The printed representation of a bit vector consists of ‘#*’ followed by the bits in the vector.
This is also the read syntax. Like numbers, strings, and vectors, bit vectors are considered
constants for evaluation.

#*00101000 ; A bit vector of eight elements.
⇒ #*00101000

See Section 6.6 [Bit Vectors], page 99, for functions that work with bit vectors.

24 XEmacs Lisp Reference Manual

2.4.11 Function Type

Just as functions in other programming languages are executable, Lisp function objects are
pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 11.2 [Lambda Expressions], page 148).

In most programming languages, it is impossible to have a function without a name. In Lisp,
a function has no intrinsic name. A lambda expression is also called an anonymous function (see
Section 11.7 [Anonymous Functions], page 155). A named function in Lisp is actually a symbol
with a valid function in its function cell (see Section 11.4 [Defining Functions], page 151).

Most of the time, functions are called when their names are written in Lisp expressions in
Lisp programs. However, you can construct or obtain a function object at run time and then
call it with the primitive functions funcall and apply. See Section 11.5 [Calling Functions],
page 153.

2.4.12 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented as
an object much like a function, but with different parameter-passing semantics. A Lisp macro
has the form of a list whose first element is the symbol macro and whose cdr is a Lisp function
object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list that
begins with macro is a macro as far as XEmacs is concerned. See Chapter 12 [Macros], page 161,
for an explanation of how to write a macro.

2.4.13 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr” is
derived from “subroutine”.) Most primitive functions evaluate all their arguments when they
are called. A primitive function that does not evaluate all its arguments is called a special form
(see Section 8.2.7 [Special Forms], page 114).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to substitute a function written in Lisp for a primitive of the same
name. The reason is that the primitive function may be called directly from C code. Calls to
the redefined function from Lisp will use the new definition, but calls from C code may still use
the built-in definition.

The term function refers to all Emacs functions, whether written in Lisp or C. See Sec-
tion 2.4.11 [Function Type], page 24, for information about the functions written in Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.

⇒ #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?

⇒ t ; Yes.

Chapter 2: Lisp Data Types 25

2.4.14 Compiled-Function Type

The byte compiler produces compiled-function objects. The evaluator handles this data
type specially when it appears as a function to be called. See Chapter 15 [Byte Compilation],
page 187, for information about the byte compiler.

The printed representation for a compiled-function object is normally
‘#<compiled-function...>’. If print-readably is true, however, it is ‘#[...]’.

2.4.15 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as the
function definition of a symbol as a placeholder for the real definition; it says that the real
definition is found in a file of Lisp code that should be loaded when necessary. The autoload
object contains the name of the file, plus some other information about the real definition.

After the file has been loaded, the symbol should have a new function definition that is not
an autoload object. The new definition is then called as if it had been there to begin with. From
the user’s point of view, the function call works as expected, using the function definition in the
loaded file.

An autoload object is usually created with the function autoload, which stores the object
in the function cell of a symbol. See Section 14.2 [Autoload], page 180, for more details.

2.4.16 Char Table Type

(not yet documented)

2.4.17 Hash Table Type

A hash table is a table providing an arbitrary mapping from one Lisp object to another, using
an internal indexing method called hashing. Hash tables are very fast (much more efficient that
using an association list, when there are a large number of elements in the table).

Hash tables have no read syntax. They print in hash notation (The “hash” in “hash notation”
has nothing to do with the “hash” in “hash table”), giving the number of elements, total space
allocated for elements, and a unique number assigned at the time the hash table was created.
(Hash tables automatically resize as necessary so there is no danger of running out of space for
elements.)

(make-hashtable 50)
⇒ #<hashtable 0/71 0x313a>

See Chapter 46 [Hash Tables], page 601, for information on how to create and work with
hash tables.

2.4.18 Range Table Type

A range table is a table that maps from ranges of integers to arbitrary Lisp objects. Range ta-
bles automatically combine overlapping ranges that map to the same Lisp object, and operations
are provided for mapping over all of the ranges in a range table.

Range tables have a special read syntax beginning with ‘#s(range-table’ (this is an example
of structure read syntax, which is also used for char tables and faces).

26 XEmacs Lisp Reference Manual

(setq x (make-range-table))
(put-range-table 20 50 ’foo x)
(put-range-table 100 200 "bar" x)
x

⇒ #s(range-table data ((20 50) foo (100 200) "bar"))

See Chapter 47 [Range Tables], page 603, for information on how to create and work with
range tables.

2.4.19 Weak List Type

(not yet documented)

2.5 Editing Types

The types in the previous section are common to many Lisp dialects. XEmacs Lisp provides
several additional data types for purposes connected with editing.

2.5.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 30 [Buffers], page 391).
Most buffers hold the contents of a disk file (see Chapter 28 [Files], page 355) so they can be
edited, but some are used for other purposes. Most buffers are also meant to be seen by the
user, and therefore displayed, at some time, in a window (see Chapter 31 [Windows], page 403).
But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings in XEmacs
Lisp, and the available operations are different. For example, insertion of text into a buffer is
very efficient, whereas “inserting” text into a string requires concatenating substrings, and the
result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 34 [Positions], page 441). At
any time, one buffer is the current buffer. Most editing commands act on the contents of the
current buffer in the neighborhood of point. Many of the standard Emacs functions manipulate
or test the characters in the current buffer; a whole chapter in this manual is devoted to describing
these functions (see Chapter 36 [Text], page 463).

Several other data structures are associated with each buffer:
• a local syntax table (see Chapter 38 [Syntax Tables], page 513);
• a local keymap (see Chapter 20 [Keymaps], page 285);
• a local variable binding list (see Section 10.9 [Buffer-Local Variables], page 141);
• a list of extents (see Chapter 40 [Extents], page 529);
• and various other related properties.

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer. See Section 30.11
[Indirect Buffers], page 401.

Buffers have no read syntax. They print in hash notation, showing the buffer name.
(current-buffer)

⇒ #<buffer "objects.texi">

Chapter 2: Lisp Data Types 27

2.5.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically relocate
the position value as necessary to ensure that the marker always points between the same two
characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

(point-marker)
⇒ #<marker at 50661 in objects.texi>

See Chapter 35 [Markers], page 453, for information on how to test, create, copy, and move
markers.

2.5.3 Extent Type

An extent specifies temporary alteration of the display appearance of a part of a buffer (or
string). It contains markers delimiting a range of the buffer, plus a property list (a list whose
elements are alternating property names and values). Extents are used to present parts of the
buffer temporarily in a different display style. They have no read syntax, and print in hash
notation, giving the buffer name and range of positions.

Extents can exist over strings as well as buffers; the primary use of this is to preserve extent
and text property information as text is copied from one buffer to another or between different
parts of a buffer.

Extents have no read syntax. They print in hash notation, giving the range of text they
cover, the name of the buffer or string they are in, the address in core, and a summary of some
of the properties attached to the extent.

(extent-at (point))
⇒ #<extent [51742, 51748) font-lock text-prop 0x90121e0 in buffer objects.texi>

See Chapter 40 [Extents], page 529, for how to create and use extents.
Extents are used to implement text properties. See Section 36.18 [Text Properties], page 488.

2.5.4 Window Type

A window describes the portion of the frame that XEmacs uses to display a buffer. (In
standard window-system usage, a window is what XEmacs calls a frame; XEmacs confusingly
uses the term “window” to refer to what is called a pane in standard window-system usage.)
Every window has one associated buffer, whose contents appear in the window. By contrast, a
given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated the
selected window. This is the window where the cursor is (usually) displayed when XEmacs is
ready for a command. The selected window usually displays the current buffer, but this is not
necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only one
frame. See Section 2.5.5 [Frame Type], page 28.

Windows have no read syntax. They print in hash notation, giving the name of the buffer
being displayed and a unique number assigned at the time the window was created. (This
number can be useful because the buffer displayed in any given window can change frequently.)

28 XEmacs Lisp Reference Manual

(selected-window)
⇒ #<window on "objects.texi" 0x266c>

See Chapter 31 [Windows], page 403, for a description of the functions that work on windows.

2.5.5 Frame Type

A frame is a rectangle on the screen (a window in standard window-system terminology) that
contains one or more non-overlapping Emacs windows (panes in standard window-system ter-
minology). A frame initially contains a single main window (plus perhaps a minibuffer window)
which you can subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s type, name as
used for resourcing, and a unique number assigned at the time the frame was created.

(selected-frame)
⇒ #<x-frame "emacs" 0x9db>

See Chapter 32 [Frames], page 425, for a description of the functions that work on frames.

2.5.6 Device Type

A device represents a single display on which frames exist. Normally, there is only one device
object, but there may be more than one if XEmacs is being run on a multi-headed display
(e.g. an X server with attached color and mono screens) or if XEmacs is simultaneously driving
frames attached to different consoles, e.g. an X display and a TTY connection.

Devices do not have a read syntax. They print in hash notation, giving the device’s type,
connection name, and a unique number assigned at the time the device was created.

(selected-device)
⇒ #<x-device on ":0.0" 0x5b9>

See Chapter 33 [Consoles and Devices], page 437, for a description of several functions related
to devices.

2.5.7 Console Type

A console represents a single keyboard to which devices (i.e. displays on which frames
exist) are connected. Normally, there is only one console object, but there may be more than
one if XEmacs is simultaneously driving frames attached to different X servers and/or TTY

connections. (XEmacs is capable of driving multiple X and TTY connections at the same
time, and provides a robust mechanism for handling the differing display capabilities of such
heterogeneous environments. A buffer with embedded glyphs and multiple fonts and colors, for
example, will display reasonably if it simultaneously appears on a frame on a color X display, a
frame on a mono X display, and a frame on a TTY connection.)

Consoles do not have a read syntax. They print in hash notation, giving the console’s type,
connection name, and a unique number assigned at the time the console was created.

(selected-console)
⇒ #<x-console on "localhost:0" 0x5b7>

See Chapter 33 [Consoles and Devices], page 437, for a description of several functions related
to consoles.

Chapter 2: Lisp Data Types 29

2.5.8 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of the
windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax. They print in hash notation, giving a
unique number assigned at the time the window configuration was created.

(current-window-configuration)
⇒ #<window-configuration 0x2db4>

See Section 31.16 [Window Configurations], page 423, for a description of several functions
related to window configurations.

2.5.9 Event Type

(not yet documented)

2.5.10 Process Type

The word process usually means a running program. XEmacs itself runs in a process of
this sort. However, in XEmacs Lisp, a process is a Lisp object that designates a subprocess
created by the XEmacs process. Programs such as shells, GDB, ftp, and compilers, running in
subprocesses of XEmacs, extend the capabilities of XEmacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to Emacs
for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of the
process, its associated process ID, and the current state of the process:

(process-list)
⇒ (#<process "shell" pid 2909 state:run>)

See Chapter 49 [Processes], page 607, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

2.5.11 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this way:
markers, buffers, strings, and functions. Most often, input streams (character sources) obtain
characters from the keyboard, a buffer, or a file, and output streams (character sinks) send
characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands for
the value of the variable standard-input or standard-output. Also, the object t as a stream
specifies input using the minibuffer (see Chapter 18 [Minibuffers], page 237) or output in the
echo area (see Section 45.3 [The Echo Area], page 586).

Streams have no special printed representation or read syntax, and print as whatever primitive
type they are.

See Chapter 17 [Read and Print], page 227, for a description of functions related to streams,
including parsing and printing functions.

30 XEmacs Lisp Reference Manual

2.5.12 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the user’s
command input is executed.

NOTE: In XEmacs, a keymap is a separate primitive type. In FSF GNU Emacs, a keymap
is actually a list whose car is the symbol keymap.

See Chapter 20 [Keymaps], page 285, for information about creating keymaps, handling prefix
keys, local as well as global keymaps, and changing key bindings.

2.5.13 Syntax Table Type

Under XEmacs 20, a syntax table is a particular type of char table. Under XEmacs 19, a
syntax table a vector of 256 integers. In both cases, each element defines how one character
is interpreted when it appears in a buffer. For example, in C mode (see Section 26.1 [Major
Modes], page 327), the ‘+’ character is punctuation, but in Lisp mode it is a valid character in
a symbol. These modes specify different interpretations by changing the syntax table entry for
‘+’.

Syntax tables are used only for scanning text in buffers, not for reading Lisp expressions.
The table the Lisp interpreter uses to read expressions is built into the XEmacs source code and
cannot be changed; thus, to change the list delimiters to be ‘{’ and ‘}’ instead of ‘(’ and ‘)’
would be impossible.

See Chapter 38 [Syntax Tables], page 513, for details about syntax classes and how to make
and modify syntax tables.

2.5.14 Display Table Type

A display table specifies how to display each character code. Each buffer and each window
can have its own display table. A display table is actually a vector of length 256, although in
XEmacs 20 this may change to be a particular type of char table. See Section 45.11 [Display
Tables], page 596.

2.5.15 Database Type

(not yet documented)

2.5.16 Charset Type

(not yet documented)

2.5.17 Coding System Type

(not yet documented)

Chapter 2: Lisp Data Types 31

2.5.18 ToolTalk Message Type

(not yet documented)

2.5.19 ToolTalk Pattern Type

(not yet documented)

2.6 Window-System Types

XEmacs also has some types that represent objects such as faces (collections of display
characters), fonts, and pixmaps that are commonly found in windowing systems.

2.6.1 Face Type

(not yet documented)

2.6.2 Glyph Type

(not yet documented)

2.6.3 Specifier Type

(not yet documented)

2.6.4 Font Instance Type

(not yet documented)

2.6.5 Color Instance Type

(not yet documented)

2.6.6 Image Instance Type

(not yet documented)

2.6.7 Toolbar Button Type

(not yet documented)

32 XEmacs Lisp Reference Manual

2.6.8 Subwindow Type

(not yet documented)

2.6.9 X Resource Type

(not yet documented)

2.7 Type Predicates

The XEmacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do so, since function arguments in Lisp
do not have declared data types, as they do in other programming languages. It is therefore
up to the individual function to test whether each actual argument belongs to a type that the
function can use.

All built-in functions do check the types of their actual arguments when appropriate, and
signal a wrong-type-argument error if an argument is of the wrong type. For example, here is
what happens if you pass an argument to + that it cannot handle:

(+ 2 ’a)
error Wrong type argument: integer-or-marker-p, a

If you want your program to handle different types differently, you must do explicit type
checking. The most common way to check the type of an object is to call a type predicate
function. Emacs has a type predicate for each type, as well as some predicates for combinations
of types.

A type predicate function takes one argument; it returns t if the argument belongs to the
appropriate type, and nil otherwise. Following a general Lisp convention for predicate functions,
most type predicates’ names end with ‘p’.

Here is an example which uses the predicates listp to check for a list and symbolp to check
for a symbol.

(defun add-on (x)
(cond ((symbolp x)

;; If X is a symbol, put it on LIST.
(setq list (cons x list)))
((listp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))

Chapter 2: Lisp Data Types 33

(t
;; We only handle symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to further
information.

annotationp
See Section 44.2 [Annotation Primitives], page 580.

arrayp See Section 6.3 [Array Functions], page 96.

atom See Section 5.3 [List-related Predicates], page 72.

bit-vector-p
See Section 6.7 [Bit Vector Functions], page 99.

bitp See Section 6.7 [Bit Vector Functions], page 99.

boolean-specifier-p
See Section 41.4 [Specifier Types], page 543.

buffer-glyph-p
See Section 43.3 [Glyph Types], page 576.

buffer-live-p
See Section 30.10 [Killing Buffers], page 400.

bufferp See Section 30.1 [Buffer Basics], page 391.

button-event-p
See Section 19.5.3 [Event Predicates], page 266.

button-press-event-p
See Section 19.5.3 [Event Predicates], page 266.

button-release-event-p
See Section 19.5.3 [Event Predicates], page 266.

case-table-p
See Section 4.12 [Case Tables], page 66.

char-int-p
See Section 4.5 [Character Codes], page 58.

char-or-char-int-p
See Section 4.5 [Character Codes], page 58.

char-or-string-p
See Section 4.2 [Predicates for Strings], page 55.

char-table-p
See Section 4.13 [Char Tables], page 68.

characterp
See Section 4.4 [Predicates for Characters], page 58.

color-instance-p
See Section 42.3 [Colors], page 563.

color-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 574.

color-specifier-p
See Section 41.4 [Specifier Types], page 543.

34 XEmacs Lisp Reference Manual

commandp See Section 19.3 [Interactive Call], page 260.

compiled-function-p
See Section 2.4.14 [Compiled-Function Type], page 25.

console-live-p
See Section 33.4 [Connecting to a Console or Device], page 439.

consolep See Chapter 33 [Consoles and Devices], page 437.

consp See Section 5.3 [List-related Predicates], page 72.

database-live-p
See Section 48.1 [Connecting to a Database], page 605.

databasep
See Chapter 48 [Databases], page 605.

device-live-p
See Section 33.4 [Connecting to a Console or Device], page 439.

device-or-frame-p
See Section 33.2 [Basic Device Functions], page 438.

devicep See Chapter 33 [Consoles and Devices], page 437.

eval-event-p
See Section 19.5.3 [Event Predicates], page 266.

event-live-p
See Section 19.5.3 [Event Predicates], page 266.

eventp See Section 19.5 [Events], page 263.

extent-live-p
See Section 40.2 [Creating and Modifying Extents], page 530.

extentp See Chapter 40 [Extents], page 529.

face-boolean-specifier-p
See Section 41.4 [Specifier Types], page 543.

facep See Section 42.1.2 [Basic Face Functions], page 556.

floatp See Section 3.3 [Predicates on Numbers], page 42.

font-instance-p
See Section 42.2 [Fonts], page 560.

font-specifier-p
See Section 41.4 [Specifier Types], page 543.

frame-live-p
See Section 32.4 [Deleting Frames], page 430.

framep See Chapter 32 [Frames], page 425.

functionp
(not yet documented)

generic-specifier-p
See Section 41.4 [Specifier Types], page 543.

glyphp See Chapter 43 [Glyphs], page 565.

hashtablep
See Chapter 46 [Hash Tables], page 601.

Chapter 2: Lisp Data Types 35

icon-glyph-p
See Section 43.3 [Glyph Types], page 576.

image-instance-p
See Section 43.2 [Images], page 569.

image-specifier-p
See Section 41.4 [Specifier Types], page 543.

integer-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

integer-or-char-p
See Section 4.4 [Predicates for Characters], page 58.

integer-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

integer-specifier-p
See Section 41.4 [Specifier Types], page 543.

integerp See Section 3.3 [Predicates on Numbers], page 42.

itimerp (not yet documented)

key-press-event-p
See Section 19.5.3 [Event Predicates], page 266.

keymapp See Section 20.3 [Creating Keymaps], page 286.

keywordp (not yet documented)

listp See Section 5.3 [List-related Predicates], page 72.

markerp See Section 35.2 [Predicates on Markers], page 454.

misc-user-event-p
See Section 19.5.3 [Event Predicates], page 266.

mono-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 574.

motion-event-p
See Section 19.5.3 [Event Predicates], page 266.

mouse-event-p
See Section 19.5.3 [Event Predicates], page 266.

natnum-specifier-p
See Section 41.4 [Specifier Types], page 543.

natnump See Section 3.3 [Predicates on Numbers], page 42.

nlistp See Section 5.3 [List-related Predicates], page 72.

nothing-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 574.

number-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

number-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

numberp See Section 3.3 [Predicates on Numbers], page 42.

36 XEmacs Lisp Reference Manual

pointer-glyph-p
See Section 43.3 [Glyph Types], page 576.

pointer-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 574.

process-event-p
See Section 19.5.3 [Event Predicates], page 266.

processp See Chapter 49 [Processes], page 607.
range-table-p

See Chapter 47 [Range Tables], page 603.
ringp (not yet documented)
sequencep

See Section 6.1 [Sequence Functions], page 93.
specifierp

See Chapter 41 [Specifiers], page 541.
stringp See Section 4.2 [Predicates for Strings], page 55.
subrp See Section 11.8 [Function Cells], page 156.
subwindow-image-instance-p

See Section 43.2.3.1 [Image Instance Types], page 574.
subwindowp

See Section 43.6 [Subwindows], page 578.
symbolp See Chapter 7 [Symbols], page 101.
syntax-table-p

See Chapter 38 [Syntax Tables], page 513.
text-image-instance-p

See Section 43.2.3.1 [Image Instance Types], page 574.
timeout-event-p

See Section 19.5.3 [Event Predicates], page 266.
toolbar-button-p

See Chapter 23 [Toolbar], page 317.
toolbar-specifier-p

See Chapter 23 [Toolbar], page 317.
user-variable-p

See Section 10.5 [Defining Variables], page 134.
vectorp See Section 6.4 [Vectors], page 97.
weak-list-p

See Section 5.10 [Weak Lists], page 91.
window-configuration-p

See Section 31.16 [Window Configurations], page 423.
window-live-p

See Section 31.3 [Deleting Windows], page 406.
windowp See Section 31.1 [Basic Windows], page 403.

The most general way to check the type of an object is to call the function type-of. Recall
that each object belongs to one and only one primitive type; type-of tells you which one (see
Chapter 2 [Lisp Data Types], page 13). But type-of knows nothing about non-primitive types.
In most cases, it is more convenient to use type predicates than type-of.

Chapter 2: Lisp Data Types 37

Functiontype-of object
This function returns a symbol naming the primitive type of object. The value is one of
bit-vector, buffer, char-table, character, charset, coding-system, cons, color-
instance, compiled-function, console, database, device, event, extent, face,
float, font-instance, frame, glyph, hashtable, image-instance, integer, keymap,
marker, process, range-table, specifier, string, subr, subwindow, symbol, toolbar-
button, tooltalk-message, tooltalk-pattern, vector, weak-list, window, window-
configuration, or x-resource.

(type-of 1)
⇒ integer

(type-of ’nil)
⇒ symbol

(type-of ’()) ; () is nil.
⇒ symbol

(type-of ’(x))
⇒ cons

2.8 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other func-
tions test equality between objects of specific types, e.g., strings. For these predicates, see the
appropriate chapter describing the data type.

Functioneq object1 object2
This function returns t if object1 and object2 are the same object, nil otherwise. The
“same object” means that a change in one will be reflected by the same change in the
other.
eq returns t if object1 and object2 are integers with the same value. Also, since symbol
names are normally unique, if the arguments are symbols with the same name, they are
eq. For other types (e.g., lists, vectors, strings), two arguments with the same contents
or elements are not necessarily eq to each other: they are eq only if they are the same
object.
(The make-symbol function returns an uninterned symbol that is not interned in the
standard obarray. When uninterned symbols are in use, symbol names are no longer
unique. Distinct symbols with the same name are not eq. See Section 7.3 [Creating
Symbols], page 103.)
NOTE: Under XEmacs 19, characters are really just integers, and thus characters and
integers are eq. Under XEmacs 20, it was necessary to preserve remnants of this in
function such as old-eq in order to maintain byte-code compatibility. Byte code compiled
under any Emacs 19 will automatically have calls to eq mapped to old-eq when executed
under XEmacs 20.

(eq ’foo ’foo)
⇒ t

(eq 456 456)
⇒ t

(eq "asdf" "asdf")
⇒ nil

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

38 XEmacs Lisp Reference Manual

(setq foo ’(1 (2 (3))))
⇒ (1 (2 (3)))

(eq foo foo)
⇒ t

(eq foo ’(1 (2 (3))))
⇒ nil

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

(eq (point-marker) (point-marker))
⇒ nil

Functionold-eq obj1 obj2
This function exists under XEmacs 20 and is exactly like eq except that it suffers from
the char-int confoundance disease. In other words, it returns t if given a character and
the equivalent integer, even though the objects are of different types! You should not ever
call this function explicitly in your code. However, be aware that all calls to eq in byte
code compiled under version 19 map to old-eq in XEmacs 20. (Likewise for old-equal,
old-memq, old-member, old-assq and old-assoc.)

;; Remember, this does not apply under XEmacs 19.
?A

⇒ ?A
(char-int ?A)

⇒ 65
(old-eq ?A 65)

⇒ t ; Eek, we’ve been infected.
(eq ?A 65)

⇒ nil ; We are still healthy.

Functionequal object1 object2
This function returns t if object1 and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements are the same. So, if two objects are eq, they are equal,
but the converse is not always true.

(equal ’foo ’foo)
⇒ t

(equal 456 456)
⇒ t

(equal "asdf" "asdf")
⇒ t

(eq "asdf" "asdf")
⇒ nil

(equal ’(1 (2 (3))) ’(1 (2 (3))))
⇒ t

(eq ’(1 (2 (3))) ’(1 (2 (3))))
⇒ nil

(equal [(1 2) 3] [(1 2) 3])
⇒ t

Chapter 2: Lisp Data Types 39

(eq [(1 2) 3] [(1 2) 3])
⇒ nil

(equal (point-marker) (point-marker))
⇒ t

(eq (point-marker) (point-marker))
⇒ nil

Comparison of strings is case-sensitive.
Note that in FSF GNU Emacs, comparison of strings takes into account their text proper-
ties, and you have to use string-equal if you want only the strings themselves compared.
This difference does not exist in XEmacs; equal and string-equal always return the same
value on the same strings.

(equal "asdf" "ASDF")
⇒ nil

Two distinct buffers are never equal, even if their contents are the same.

The test for equality is implemented recursively, and circular lists may therefore cause infinite
recursion (leading to an error).

40 XEmacs Lisp Reference Manual

Chapter 3: Numbers 41

3 Numbers

XEmacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as −3, 0, #b0111, #xFEED, #o744. Their values are exact. The
number prefixes ‘#b’, ‘#o’, and ‘#x’ are supported to represent numbers in binary, octal, and
hexadecimal notation (or radix). Floating point numbers are numbers with fractional parts,
such as −4.5, 0.0, or 2.71828. They can also be expressed in exponential notation: 1.5e2 equals
150; in this example, ‘e2’ stands for ten to the second power, and is multiplied by 1.5. Floating
point values are not exact; they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
−134217728 to 134217727 (28 bits; i.e., −227 to 227 − 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and optional
final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer −1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer 0.

To understand how various functions work on integers, especially the bitwise operators (see
Section 3.8 [Bitwise Operations], page 48), it is often helpful to view the numbers in their binary
form.

In 28-bit binary, the decimal integer 5 looks like this:
0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits, to
make the binary integer easier to read.)

The integer −1 looks like this:
1111 1111 1111 1111 1111 1111 1111

−1 is represented as 28 ones. (This is called two’s complement notation.)
The negative integer, −5, is creating by subtracting 4 from −1. In binary, the decimal integer

4 is 100. Consequently, −5 looks like this:
1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer is the decimal integer 134,217,727.
In binary, it looks like this:

0111 1111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range, when
you add 1 to 134,217,727, the value is the negative integer −134,217,728:

(+ 1 134217727)
⇒ -134217728
⇒ 1000 0000 0000 0000 0000 0000 0000

Many of the following functions accept markers for arguments as well as integers. (See
Chapter 35 [Markers], page 453.) More precisely, the actual arguments to such functions may

42 XEmacs Lisp Reference Manual

be either integers or markers, which is why we often give these arguments the name int-or-marker.
When the argument value is a marker, its position value is used and its buffer is ignored.

3.2 Floating Point Basics

XEmacs supports floating point numbers. The precise range of floating point numbers is
machine-specific; it is the same as the range of the C data type double on the machine in
question.

The printed representation for floating point numbers requires either a decimal point (with
at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’,
‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They
are all equivalent. You can also use a minus sign to write negative floating point numbers, as in
‘-1.0’.

Most modern computers support the IEEE floating point standard, which provides for posi-
tive infinity and negative infinity as floating point values. It also provides for a class of values
called NaN or “not-a-number”; numerical functions return such values in cases where there is
no correct answer. For example, (sqrt -1.0) returns a NaN. For practical purposes, there’s
no significant difference between different NaN values in XEmacs Lisp, and there’s no rule for
precisely which NaN value should be used in a particular case, so this manual doesn’t try to
distinguish them. XEmacs Lisp has no read syntax for NaNs or infinities; perhaps we should
create a syntax in the future.

You can use logb to extract the binary exponent of a floating point number (or estimate the
logarithm of an integer):

Functionlogb number
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is a cer-
tain sort of number. The functions integerp and floatp can take any type of Lisp object
as argument (the predicates would not be of much use otherwise); but the zerop predicate re-
quires a number as its argument. See also integer-or-marker-p, integer-char-or-marker-p,
number-or-marker-p and number-char-or-marker-p, in Section 35.2 [Predicates on Markers],
page 454.

Functionfloatp object
This predicate tests whether its argument is a floating point number and returns t if so,
nil otherwise.
floatp does not exist in Emacs versions 18 and earlier.

Functionintegerp object
This predicate tests whether its argument is an integer, and returns t if so, nil otherwise.

Functionnumberp object
This predicate tests whether its argument is a number (either integer or floating point),
and returns t if so, nil otherwise.

Chapter 3: Numbers 43

Functionnatnump object
The natnump predicate (whose name comes from the phrase “natural-number-p”) tests to
see whether its argument is a nonnegative integer, and returns t if so, nil otherwise. 0 is
considered non-negative.

Functionzerop number
This predicate tests whether its argument is zero, and returns t if so, nil otherwise. The
argument must be a number.
These two forms are equivalent: (zerop x) ≡ (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can be
many distinct floating point number objects with the same numeric value. If you use eq to
compare them, then you test whether two values are the same object. By contrast, = compares
only the numeric values of the objects.

At present, each integer value has a unique Lisp object in XEmacs Lisp. Therefore, eq is
equivalent to = where integers are concerned. It is sometimes convenient to use eq for comparing
an unknown value with an integer, because eq does not report an error if the unknown value is
not a number—it accepts arguments of any type. By contrast, = signals an error if the arguments
are not numbers or markers. However, it is a good idea to use = if you can, even for comparing
integers, just in case we change the representation of integers in a future XEmacs version.

There is another wrinkle: because floating point arithmetic is not exact, it is often a bad idea
to check for equality of two floating point values. Usually it is better to test for approximate
equality. Here’s a function to do this:

(defconst fuzz-factor 1.0e-6)
(defun approx-equal (x y)

(or (and (= x 0) (= y 0))
(< (/ (abs (- x y))

(max (abs x) (abs y)))
fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires = because
Common Lisp implements multi-word integers, and two distinct integer objects can
have the same numeric value. XEmacs Lisp can have just one integer object for any
given value because it has a limited range of integer values.

In addition to numbers, all of the following functions also accept characters and markers as
arguments, and treat them as their number equivalents.

Function= number &rest more-numbers
This function returns t if all of its arguments are numerically equal, nil otherwise.

(= 5)
⇒ t

(= 5 6)
⇒ nil

(= 5 5.0)
⇒ t

(= 5 5 6)
⇒ nil

44 XEmacs Lisp Reference Manual

Function/= number &rest more-numbers
This function returns t if no two arguments are numerically equal, nil otherwise.

(/= 5 6)
⇒ t

(/= 5 5 6)
⇒ nil

(/= 5 6 1)
⇒ t

Function< number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically increasing, nil
otherwise.

(< 5 6)
⇒ t

(< 5 6 6)
⇒ nil

(< 5 6 7)
⇒ t

Function<= number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically nondecreasing,
nil otherwise.

(<= 5 6)
⇒ t

(<= 5 6 6)
⇒ t

(<= 5 6 5)
⇒ nil

Function> number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically decreasing, nil
otherwise.

Function>= number &rest more-numbers
This function returns t if the sequence of its arguments is monotonically nonincreasing,
nil otherwise.

Functionmax number &rest more-numbers
This function returns the largest of its arguments.

(max 20)
⇒ 20

(max 1 2.5)
⇒ 2.5

(max 1 3 2.5)
⇒ 3

Functionmin number &rest more-numbers
This function returns the smallest of its arguments.

(min -4 1)
⇒ -4

Chapter 3: Numbers 45

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

Functionfloat number
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in how they
round. These functions accept integer arguments also, and return such arguments unchanged.

Functiontruncate number
This returns number, converted to an integer by rounding towards zero.

Functionfloor number &optional divisor
This returns number, converted to an integer by rounding downward (towards negative
infinity).
If divisor is specified, number is divided by divisor before the floor is taken; this is the
division operation that corresponds to mod. An arith-error results if divisor is 0.

Functionceiling number
This returns number, converted to an integer by rounding upward (towards positive in-
finity).

Functionround number
This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to zero,
or it may prefer an even integer, depending on your machine.

3.6 Arithmetic Operations

XEmacs Lisp provides the traditional four arithmetic operations: addition, subtraction, mul-
tiplication, and division. Remainder and modulus functions supplement the division functions.
The functions to add or subtract 1 are provided because they are traditional in Lisp and com-
monly used.

All of these functions except % return a floating point value if any argument is floating.
It is important to note that in XEmacs Lisp, arithmetic functions do not check for overflow.

Thus (1+ 134217727) may evaluate to −134217728, depending on your hardware.

Function1+ number-or-marker
This function returns number-or-marker plus 1. For example,

(setq foo 4)
⇒ 4

(1+ foo)
⇒ 5

This function is not analogous to the C operator ++—it does not increment a variable. It
just computes a sum. Thus, if we continue,

46 XEmacs Lisp Reference Manual

foo
⇒ 4

If you want to increment the variable, you must use setq, like this:
(setq foo (1+ foo))

⇒ 5

Now that the cl package is always available from lisp code, a more convenient and natural
way to increment a variable is (incf foo).

Function1- number-or-marker
This function returns number-or-marker minus 1.

Functionabs number
This returns the absolute value of number.

Function+ &rest numbers-or-markers
This function adds its arguments together. When given no arguments, + returns 0.

(+)
⇒ 0

(+ 1)
⇒ 1

(+ 1 2 3 4)
⇒ 10

Function- &optional number-or-marker &rest other-numbers-or-markers
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple arguments,
- subtracts each of the other-numbers-or-markers from number-or-marker, cumulatively.
If there are no arguments, the result is 0.

(- 10 1 2 3 4)
⇒ 0

(- 10)
⇒ -10

(-)
⇒ 0

Function* &rest numbers-or-markers
This function multiplies its arguments together, and returns the product. When given no
arguments, * returns 1.

(*)
⇒ 1

(* 1)
⇒ 1

(* 1 2 3 4)
⇒ 24

Function/ dividend divisor &rest divisors
This function divides dividend by divisor and returns the quotient. If there are additional
arguments divisors, then it divides dividend by each divisor in turn. Each argument may
be a number or a marker.

Chapter 3: Numbers 47

If all the arguments are integers, then the result is an integer too. This means the result has
to be rounded. On most machines, the result is rounded towards zero after each division,
but some machines may round differently with negative arguments. This is because the
Lisp function / is implemented using the C division operator, which also permits machine-
dependent rounding. As a practical matter, all known machines round in the standard
fashion.
If you divide by 0, an arith-error error is signaled. (See Section 9.5.3 [Errors], page 124.)

(/ 6 2)
⇒ 3

(/ 5 2)
⇒ 2

(/ 25 3 2)
⇒ 4

(/ -17 6)
⇒ -2

The result of (/ -17 6) could in principle be -3 on some machines.

Function% dividend divisor
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.
For negative arguments, the remainder is in principle machine-dependent since the quo-
tient is; but in practice, all known machines behave alike.
An arith-error results if divisor is 0.

(% 9 4)
⇒ 1

(% -9 4)
⇒ -1

(% 9 -4)
⇒ 1

(% -9 -4)
⇒ -1

For any two integers dividend and divisor,
(+ (% dividend divisor)

(* (/ dividend divisor) divisor))

always equals dividend.

Functionmod dividend divisor
This function returns the value of dividend modulo divisor; in other words, the remainder
after division of dividend by divisor, but with the same sign as divisor. The arguments
must be numbers or markers.
Unlike %, mod returns a well-defined result for negative arguments. It also permits floating
point arguments; it rounds the quotient downward (towards minus infinity) to an integer,
and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.

(mod 9 4)
⇒ 1

(mod -9 4)
⇒ 3

(mod 9 -4)
⇒ -3

48 XEmacs Lisp Reference Manual

(mod -9 -4)
⇒ -1

(mod 5.5 2.5)
⇒ .5

For any two numbers dividend and divisor,
(+ (mod dividend divisor)

(* (floor dividend divisor) divisor))

always equals dividend, subject to rounding error if either argument is floating point. For
floor, see Section 3.5 [Numeric Conversions], page 45.

3.7 Rounding Operations

The functions ffloor, fceiling, fround and ftruncate take a floating point argument and
return a floating point result whose value is a nearby integer. ffloor returns the nearest integer
below; fceiling, the nearest integer above; ftruncate, the nearest integer in the direction
towards zero; fround, the nearest integer.

Functionffloor float
This function rounds float to the next lower integral value, and returns that value as a
floating point number.

Functionfceiling float
This function rounds float to the next higher integral value, and returns that value as a
floating point number.

Functionftruncate float
This function rounds float towards zero to an integral value, and returns that value as a
floating point number.

Functionfround float
This function rounds float to the nearest integral value, and returns that value as a floating
point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits which
are either zero or one). A bitwise operation acts on the individual bits of such a sequence. For
example, shifting moves the whole sequence left or right one or more places, reproducing the
same pattern “moved over”.

The bitwise operations in XEmacs Lisp apply only to integers.

Functionlsh integer1 count
lsh, which is an abbreviation for logical shift, shifts the bits in integer1 to the left count
places, or to the right if count is negative, bringing zeros into the vacated bits. If count
is negative, lsh shifts zeros into the leftmost (most-significant) bit, producing a positive
result even if integer1 is negative. Contrast this with ash, below.
Here are two examples of lsh, shifting a pattern of bits one place to the left. We show
only the low-order eight bits of the binary pattern; the rest are all zero.

Chapter 3: Numbers 49

(lsh 5 1)
⇒ 10

;; Decimal 5 becomes decimal 10.
00000101 ⇒ 00001010

(lsh 7 1)
⇒ 14

;; Decimal 7 becomes decimal 14.
00000111 ⇒ 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces a
number that is twice the value of the previous number.
Shifting a pattern of bits two places to the left produces results like this (with 8-bit binary
numbers):

(lsh 3 2)
⇒ 12

;; Decimal 3 becomes decimal 12.
00000011 ⇒ 00001100

On the other hand, shifting one place to the right looks like this:
(lsh 6 -1)

⇒ 3
;; Decimal 6 becomes decimal 3.
00000110 ⇒ 00000011

(lsh 5 -1)
⇒ 2

;; Decimal 5 becomes decimal 2.
00000101 ⇒ 00000010

As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.
The function lsh, like all XEmacs Lisp arithmetic functions, does not check for overflow,
so shifting left can discard significant bits and change the sign of the number. For example,
left shifting 134,217,727 produces −2 on a 28-bit machine:

(lsh 134217727 1) ; left shift
⇒ -2

In binary, in the 28-bit implementation, the argument looks like this:
;; Decimal 134,217,727
0111 1111 1111 1111 1111 1111 1111

which becomes the following when left shifted:
;; Decimal −2
1111 1111 1111 1111 1111 1111 1110

Functionash integer1 count
ash (arithmetic shift) shifts the bits in integer1 to the left count places, or to the right if
count is negative.
ash gives the same results as lsh except when integer1 and count are both negative. In
that case, ash puts ones in the empty bit positions on the left, while lsh puts zeros in
those bit positions.
Thus, with ash, shifting the pattern of bits one place to the right looks like this:

50 XEmacs Lisp Reference Manual

(ash -6 -1) ⇒ -3
;; Decimal −6 becomes decimal −3.
1111 1111 1111 1111 1111 1111 1010

⇒
1111 1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with lsh looks like this:

(lsh -6 -1) ⇒ 134217725
;; Decimal −6 becomes decimal 134,217,725.
1111 1111 1111 1111 1111 1111 1010

⇒
0111 1111 1111 1111 1111 1111 1101

Here are other examples:

; 28-bit binary values

(lsh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 20 ; = 0000 0000 0000 0000 0000 0001 0100

(ash 5 2)
⇒ 20

(lsh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -20 ; = 1111 1111 1111 1111 1111 1110 1100

(ash -5 2)
⇒ -20

(lsh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
⇒ 1 ; = 0000 0000 0000 0000 0000 0000 0001

(ash 5 -2)
⇒ 1

(lsh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ 4194302 ; = 0011 1111 1111 1111 1111 1111 1110

(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
⇒ -2 ; = 1111 1111 1111 1111 1111 1111 1110

Functionlogand &rest ints-or-markers
This function returns the “logical and” of the arguments: the nth bit is set in the result
if, and only if, the nth bit is set in all the arguments. (“Set” means that the value of the
bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two bits
are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set. However,
for the rightmost two bits, each is zero in at least one of the arguments, so the rightmost
two bits of the returned value are 0’s.

Therefore,

(logand 13 12)
⇒ 12

If logand is not passed any argument, it returns a value of −1. This number is an identity
element for logand because its binary representation consists entirely of ones. If logand
is passed just one argument, it returns that argument.

Chapter 3: Numbers 51

; 28-bit binary values

(logand 14 13) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101

⇒ 12 ; 12 = 0000 0000 0000 0000 0000 0000 1100

(logand 14 13 4) ; 14 = 0000 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 0000 1101
; 4 = 0000 0000 0000 0000 0000 0000 0100

⇒ 4 ; 4 = 0000 0000 0000 0000 0000 0000 0100

(logand)
⇒ -1 ; -1 = 1111 1111 1111 1111 1111 1111 1111

Functionlogior &rest ints-or-markers
This function returns the “inclusive or” of its arguments: the nth bit is set in the result if,
and only if, the nth bit is set in at least one of the arguments. If there are no arguments,
the result is zero, which is an identity element for this operation. If logior is passed just
one argument, it returns that argument.

; 28-bit binary values

(logior 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 13 ; 13 = 0000 0000 0000 0000 0000 0000 1101

(logior 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 15 ; 15 = 0000 0000 0000 0000 0000 0000 1111

Functionlogxor &rest ints-or-markers
This function returns the “exclusive or” of its arguments: the nth bit is set in the result
if, and only if, the nth bit is set in an odd number of the arguments. If there are no
arguments, the result is 0, which is an identity element for this operation. If logxor is
passed just one argument, it returns that argument.

; 28-bit binary values

(logxor 12 5) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101

⇒ 9 ; 9 = 0000 0000 0000 0000 0000 0000 1001

(logxor 12 5 7) ; 12 = 0000 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0000 0101
; 7 = 0000 0000 0000 0000 0000 0000 0111

⇒ 14 ; 14 = 0000 0000 0000 0000 0000 0000 1110

Functionlognot integer
This function returns the logical complement of its argument: the nth bit is one in the
result if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)
⇒ -6

;; 5 = 0000 0000 0000 0000 0000 0000 0101
;; becomes
;; -6 = 1111 1111 1111 1111 1111 1111 1010

52 XEmacs Lisp Reference Manual

3.9 Standard Mathematical Functions

These mathematical functions are available if floating point is supported (which is the normal
state of affairs). They allow integers as well as floating point numbers as arguments.

Functionsin arg
Functioncos arg
Functiontan arg

These are the ordinary trigonometric functions, with argument measured in radians.

Functionasin arg
The value of (asin arg) is a number between −pi/2 and pi/2 (inclusive) whose sine is
arg ; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

Functionacos arg
The value of (acos arg) is a number between 0 and pi (inclusive) whose cosine is arg ; if,
however, arg is out of range (outside [-1, 1]), then the result is a NaN.

Functionatan arg
The value of (atan arg) is a number between −pi/2 and pi/2 (exclusive) whose tangent
is arg.

Functionsinh arg
Functioncosh arg
Functiontanh arg

These are the ordinary hyperbolic trigonometric functions.

Functionasinh arg
Functionacosh arg
Functionatanh arg

These are the inverse hyperbolic trigonometric functions.

Functionexp arg
This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

Functionlog arg &optional base
This function returns the logarithm of arg, with base base. If you don’t specify base, the
base e is used. If arg is negative, the result is a NaN.

Functionlog10 arg
This function returns the logarithm of arg, with base 10. If arg is negative, the result is
a NaN. (log10 x) ≡ (log x 10), at least approximately.

Functionexpt x y
This function returns x raised to power y. If both arguments are integers and y is positive,
the result is an integer; in this case, it is truncated to fit the range of possible integer values.

Functionsqrt arg
This returns the square root of arg. If arg is negative, the value is a NaN.

Functioncube-root arg
This returns the cube root of arg.

Chapter 3: Numbers 53

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most pur-
poses, pseudo-random numbers suffice. A series of pseudo-random numbers is generated in a
deterministic fashion. The numbers are not truly random, but they have certain properties that
mimic a random series. For example, all possible values occur equally often in a pseudo-random
series.

In XEmacs, pseudo-random numbers are generated from a “seed” number. Starting from
any given seed, the random function always generates the same sequence of numbers. XEmacs
always starts with the same seed value, so the sequence of values of random is actually the same
in each XEmacs run! For example, in one operating system, the first call to (random) after
you start XEmacs always returns -1457731, and the second one always returns -7692030. This
repeatability is helpful for debugging.

If you want truly unpredictable random numbers, execute (random t). This chooses a new
seed based on the current time of day and on XEmacs’s process id number.

Functionrandom &optional limit
This function returns a pseudo-random integer. Repeated calls return a series of pseudo-
random integers.
If limit is a positive integer, the value is chosen to be nonnegative and less than limit.
If limit is t, it means to choose a new seed based on the current time of day and on
XEmacs’s process id number.
On some machines, any integer representable in Lisp may be the result of random. On
other machines, the result can never be larger than a certain maximum or less than a
certain (negative) minimum.

54 XEmacs Lisp Reference Manual

Chapter 4: Strings and Characters 55

4 Strings and Characters

A string in XEmacs Lisp is an array that contains an ordered sequence of characters. Strings
are used as names of symbols, buffers, and files, to send messages to users, to hold text being
copied between buffers, and for many other purposes. Because strings are so important, XEmacs
Lisp has many functions expressly for manipulating them. XEmacs Lisp programs use strings
more often than individual characters.

4.1 String and Character Basics

Strings in XEmacs Lisp are arrays that contain an ordered sequence of characters. Characters
are their own primitive object type in XEmacs 20. However, in XEmacs 19, characters are
represented in XEmacs Lisp as integers; whether an integer was intended as a character or not
is determined only by how it is used. See Section 2.4.3 [Character Type], page 16.

The length of a string (like any array) is fixed and independent of the string contents, and
cannot be altered. Strings in Lisp are not terminated by a distinguished character code. (By
contrast, strings in C are terminated by a character with ASCII code 0.) This means that any
character, including the null character (ASCII code 0), is a valid element of a string.

Since strings are considered arrays, you can operate on them with the general array functions.
(See Chapter 6 [Sequences Arrays Vectors], page 93.) For example, you can access or change
individual characters in a string using the functions aref and aset (see Section 6.3 [Array
Functions], page 96).

Strings use an efficient representation for storing the characters in them, and thus take up
much less memory than a vector of the same length.

Sometimes you will see strings used to hold key sequences. This exists for backward com-
patibility with Emacs 18, but should not be used in new code, since many key chords can’t
be represented at all and others (in particular meta key chords) are confused with accented
characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 37.3 [Regexp Search], page 502). The functions match-string (see
Section 37.6.1 [Simple Match Data], page 506) and replace-match (see Section 37.6.2 [Replacing
Match], page 508) are useful for decomposing and modifying strings based on regular expression
matching.

Like a buffer, a string can contain extents in it. These extents are created when a function
such as buffer-substring is called on a region with duplicable extents in it. When the string
is inserted into a buffer, the extents are inserted along with it. See Section 40.9 [Duplicable
Extents], page 539.

See Chapter 36 [Text], page 463, for information about functions that display strings or copy
them into buffers. See Section 2.4.3 [Character Type], page 16, and Section 2.4.8 [String Type],
page 22, for information about the syntax of characters and strings.

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Sequences
Arrays Vectors], page 93, and Section 6.2 [Arrays], page 95.

Functionstringp object
This function returns t if object is a string, nil otherwise.

56 XEmacs Lisp Reference Manual

Functionchar-or-string-p object
This function returns t if object is a string or a character, nil otherwise.
In XEmacs addition, this function also returns t if object is an integer that can be repre-
sented as a character. This is because of compatibility with previous XEmacs and should
not be depended on.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together, or
by taking them apart.

Functionstring &rest characters
This function returns a new string made up of characters.

(string ?X ?E ?m ?a ?c ?s)
⇒ "XEmacs"

(string)
⇒ ""

Analogous functions operating on other data types include list, cons (see Section 5.5
[Building Lists], page 76), vector (see Section 6.4 [Vectors], page 97) and bit-vector
(see Section 6.6 [Bit Vectors], page 99). This function has not been available in XEmacs
prior to 21.0 and FSF Emacs prior to 20.3.

Functionmake-string count character
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.

(make-string 5 ?x)
⇒ "xxxxx"

(make-string 0 ?x)
⇒ ""

Other functions to compare with this one include char-to-string (see Section 4.7 [String
Conversion], page 60), make-vector (see Section 6.4 [Vectors], page 97), and make-list
(see Section 5.5 [Building Lists], page 76).

Functionsubstring string start &optional end
This function returns a new string which consists of those characters from string in the
range from (and including) the character at the index start up to (but excluding) the
character at the index end. The first character is at index zero.

(substring "abcdefg" 0 3)
⇒ "abc"

Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus, three
letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the character
position up to which the substring is copied. The character whose index is 3 is actually
the fourth character in the string.
A negative number counts from the end of the string, so that −1 signifies the index of the
last character of the string. For example:

(substring "abcdefg" -3 -1)
⇒ "ef"

In this example, the index for ‘e’ is −3, the index for ‘f’ is −2, and the index for ‘g’ is
−1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.
When nil is used as an index, it stands for the length of the string. Thus,

Chapter 4: Strings and Characters 57

(substring "abcdefg" -3 nil)
⇒ "efg"

Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
⇒ "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Functions],
page 93).
If the characters copied from string have duplicable extents or text properties, those are
copied into the new string also. See Section 40.9 [Duplicable Extents], page 539.
A wrong-type-argument error is signaled if either start or end is not an integer or nil.
An args-out-of-range error is signaled if start indicates a character following end, or if
either integer is out of range for string.
Contrast this function with buffer-substring (see Section 36.2 [Buffer Contents],
page 464), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

Functionconcat &rest sequences
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives no
arguments, it returns an empty string.

(concat "abc" "-def")
⇒ "abc-def"

(concat "abc" (list 120 (+ 256 121)) [122])
⇒ "abcxyz"

;; nil is an empty sequence.
(concat "abc" nil "-def")

⇒ "abc-def"
(concat "The " "quick brown " "fox.")

⇒ "The quick brown fox."
(concat)

⇒ ""

The second example above shows how characters stored in strings are taken modulo 256.
In other words, each character in the string is stored in one byte.
The concat function always constructs a new string that is not eq to any existing string.
When an argument is an integer (not a sequence of integers), it is converted to a string of
digits making up the decimal printed representation of the integer. Don’t use this feature;
we plan to eliminate it. If you already use this feature, change your programs now! The
proper way to convert an integer to a decimal number in this way is with format (see
Section 4.10 [Formatting Strings], page 62) or number-to-string (see Section 4.7 [String
Conversion], page 60).

(concat 137)
⇒ "137"

(concat 54 321)
⇒ "54321"

For information about other concatenation functions, see the description of mapconcat in
Section 11.6 [Mapping Functions], page 154, vconcat in Section 6.4 [Vectors], page 97,
bvconcat in Section 6.6 [Bit Vectors], page 99, and append in Section 5.5 [Building Lists],
page 76.

58 XEmacs Lisp Reference Manual

4.4 The Predicates for Characters

Functioncharacterp object
This function returns t if object is a character.

Some functions that work on integers (e.g. the comparison functions <, <=, =, /=, etc.
and the arithmetic functions +, -, *, etc.) accept characters and implicitly convert them
into integers. In general, functions that work on characters also accept char-ints and
implicitly convert them into characters. WARNING: Neither of these behaviors is very
desirable, and they are maintained for backward compatibility with old E-Lisp programs
that confounded characters and integers willy-nilly. These behaviors may change in the
future; therefore, do not rely on them. Instead, convert the characters explicitly using
char-int.

Functioninteger-or-char-p object
This function returns t if object is an integer or character.

4.5 Character Codes

Functionchar-int ch
This function converts a character into an equivalent integer. The resulting integer will
always be non-negative. The integers in the range 0 - 255 map to characters as follows:

0 - 31 Control set 0

32 - 127 ASCII

128 - 159 Control set 1

160 - 255 Right half of ISO-8859-1

If support for MULE does not exist, these are the only valid character values. When
MULE support exists, the values assigned to other characters may vary depending on the
particular version of XEmacs, the order in which character sets were loaded, etc., and you
should not depend on them.

Functionint-char integer
This function converts an integer into the equivalent character. Not all integers correspond
to valid characters; use char-int-p to determine whether this is the case. If the integer
cannot be converted, nil is returned.

Functionchar-int-p object
This function returns t if object is an integer that can be converted into a character.

Functionchar-or-char-int-p object
This function returns t if object is a character or an integer that can be converted into
one.

Chapter 4: Strings and Characters 59

4.6 Comparison of Characters and Strings

Functionchar-equal character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal ?x ?x)
⇒ t

(let ((case-fold-search t))
(char-equal ?x ?X))
⇒ t

(let ((case-fold-search nil))
(char-equal ?x ?X))
⇒ nil

Functionchar= character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
Case is significant.

(char= ?x ?x)
⇒ t

(char= ?x ?X)
⇒ nil

(let ((case-fold-search t))
(char-equal ?x ?X))
⇒ nil

(let ((case-fold-search nil))
(char-equal ?x ?X))
⇒ nil

Functionstring= string1 string2
This function returns t if the characters of the two strings match exactly; case is significant.

(string= "abc" "abc")
⇒ t

(string= "abc" "ABC")
⇒ nil

(string= "ab" "ABC")
⇒ nil

Functionstring-equal string1 string2
string-equal is another name for string=.

Functionstring< string1 string2
This function compares two strings a character at a time. First it scans both the strings
at once to find the first pair of corresponding characters that do not match. If the lesser
character of those two is the character from string1, then string1 is less, and this function
returns t. If the lesser character is the one from string2, then string1 is greater, and this
function returns nil. If the two strings match entirely, the value is nil.

60 XEmacs Lisp Reference Manual

Pairs of characters are compared by their ASCII codes. Keep in mind that lower case
letters have higher numeric values in the ASCII character set than their upper case
counterparts; numbers and many punctuation characters have a lower numeric value than
upper case letters.

(string< "abc" "abd")
⇒ t

(string< "abd" "abc")
⇒ nil

(string< "123" "abc")
⇒ t

When the strings have different lengths, and they match up to the length of string1, then
the result is t. If they match up to the length of string2, the result is nil. A string of no
characters is less than any other string.

(string< "" "abc")
⇒ t

(string< "ab" "abc")
⇒ t

(string< "abc" "")
⇒ nil

(string< "abc" "ab")
⇒ nil

(string< "" "")
⇒ nil

Functionstring-lessp string1 string2
string-lessp is another name for string<.

See also compare-buffer-substrings in Section 36.3 [Comparing Text], page 465, for a way
to compare text in buffers. The function string-match, which matches a regular expression
against a string, can be used for a kind of string comparison; see Section 37.3 [Regexp Search],
page 502.

4.7 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prin1-to-string (see Section 17.5 [Output Functions], page 232) can also convert
Lisp objects into strings. read-from-string (see Section 17.3 [Input Functions], page 229) can
“convert” a string representation of a Lisp object into an object.

See Chapter 27 [Documentation], page 345, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-char-
description). These functions are used primarily for making help messages.

Functionchar-to-string character
This function returns a new string with a length of one character. The value of character,
modulo 256, is used to initialize the element of the string.
This function is similar to make-string with an integer argument of 1. (See Section 4.3
[Creating Strings], page 56.) This conversion can also be done with format using the ‘%c’
format specification. (See Section 4.10 [Formatting Strings], page 62.)

Chapter 4: Strings and Characters 61

(char-to-string ?x)
⇒ "x"

(char-to-string (+ 256 ?x))
⇒ "x"

(make-string 1 ?x)
⇒ "x"

Functionstring-to-char string
This function returns the first character in string. If the string is empty, the function
returns 0. (Under XEmacs 19, the value is also 0 when the first character of string is the
null character, ASCII code 0.)

(string-to-char "ABC")
⇒ ?A ;; Under XEmacs 20.
⇒ 65 ;; Under XEmacs 19.

(string-to-char "xyz")
⇒ ?x ;; Under XEmacs 20.
⇒ 120 ;; Under XEmacs 19.

(string-to-char "")
⇒ 0

(string-to-char "\000")
⇒ ?\^ ;; Under XEmacs 20.
⇒ 0 ;; Under XEmacs 20.

This function may be eliminated in the future if it does not seem useful enough to retain.

Functionnumber-to-string number
This function returns a string consisting of the printed representation of number, which
may be an integer or a floating point number. The value starts with a sign if the argument
is negative.

(number-to-string 256)
⇒ "256"

(number-to-string -23)
⇒ "-23"

(number-to-string -23.5)
⇒ "-23.5"

int-to-string is a semi-obsolete alias for this function.
See also the function format in Section 4.10 [Formatting Strings], page 62.

Functionstring-to-number string &optional base
This function returns the numeric value of the characters in string, read in base. It skips
spaces and tabs at the beginning of string, then reads as much of string as it can interpret
as a number. (On some systems it ignores other whitespace at the beginning, not just
spaces and tabs.) If the first character after the ignored whitespace is not a digit or a
minus sign, this function returns 0.
If base is not specified, it defaults to ten. With base other than ten, only integers can be
read.

(string-to-number "256")
⇒ 256

(string-to-number "25 is a perfect square.")
⇒ 25

(string-to-number "X256")

62 XEmacs Lisp Reference Manual

⇒ 0
(string-to-number "-4.5")

⇒ -4.5
(string-to-number "ffff" 16)

⇒ 65535

string-to-int is an obsolete alias for this function.

4.8 Modifying Strings

You can modify a string using the general array-modifying primitives. See Section 6.2 [Ar-
rays], page 95. The function aset modifies a single character; the function fillarray sets all
characters in the string to a specified character.

Each string has a tick counter that starts out at zero (when the string is created) and is
incremented each time a change is made to that string.

Functionstring-modified-tick string
This function returns the tick counter for ‘string’.

4.9 String Properties

Similar to symbols, extents, faces, and glyphs, you can attach additional information to
strings in the form of string properties. These differ from text properties, which are logically
attached to particular characters in the string.

To attach a property to a string, use put. To retrieve a property from a string, use get. You
can also use remprop to remove a property from a string and object-props to retrieve a list of
all the properties in a string.

4.10 Formatting Strings

Formatting means constructing a string by substitution of computed values at various places
in a constant string. This string controls how the other values are printed as well as where they
appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from format
only in how they use the result of formatting.

Functionformat string &rest objects
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there is a ‘%d’
in string, the format function replaces it with the printed representation of one of the values to
be formatted (one of the arguments objects). For example:

Chapter 4: Strings and Characters 63

(format "The value of fill-column is %d." fill-column)
⇒ "The value of fill-column is 72."

If string contains more than one format specification, the format specifications correspond
with successive values from objects. Thus, the first format specification in string uses the first
such value, the second format specification uses the second such value, and so on. Any extra
format specifications (those for which there are no corresponding values) cause unpredictable
behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. However, no error is signaled
if the value actually supplied fails to have the expected type. Instead, the output is likely to be
meaningless.

Here is a table of valid format specifications:

‘%s’ Replace the specification with the printed representation of the object, made without
quoting. Thus, strings are represented by their contents alone, with no ‘"’ characters,
and symbols appear without ‘\’ characters. This is equivalent to printing the object
with princ.

If there is no corresponding object, the empty string is used.

‘%S’ Replace the specification with the printed representation of the object, made with
quoting. Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters appear where
necessary before special characters. This is equivalent to printing the object with
prin1.

If there is no corresponding object, the empty string is used.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘%d’
‘%i’ Replace the specification with the base-ten representation of an integer.

‘%x’ Replace the specification with the base-sixteen representation of an integer, using
lowercase letters.

‘%X’ Replace the specification with the base-sixteen representation of an integer, using
uppercase letters.

‘%c’ Replace the specification with the character which is the value given.

‘%e’ Replace the specification with the exponential notation for a floating point number
(e.g. ‘7.85200e+03’).

‘%f’ Replace the specification with the decimal-point notation for a floating point num-
ber.

‘%g’ Replace the specification with notation for a floating point number, using a “pretty
format”. Either exponential notation or decimal-point notation will be used (usually
whichever is shorter), and trailing zeroes are removed from the fractional part.

‘%%’ A single ‘%’ is placed in the string. This format specification is unusual in that it
does not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

64 XEmacs Lisp Reference Manual

(format "The name of this buffer is %s." (buffer-name))
⇒ "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
⇒ "The buffer object prints as #<buffer strings.texi>."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)

⇒ "The octal value of 18 is 22,
and the hex value is 12."

There are many additional flags and specifications that can occur between the ‘%’ and the
format character, in the following order:
1. An optional repositioning specification, which is a positive integer followed by a ‘$’.
2. Zero or more of the optional flag characters ‘-’, ‘+’, ‘ ’, ‘0’, and ‘#’.
3. An asterisk (‘*’, meaning that the field width is now assumed to have been specified as an

argument.
4. An optional minimum field width.
5. An optional precision, preceded by a ‘.’ character.

A repositioning specification changes which argument to format is used by the current and
all following format specifications. Normally the first specification uses the first argument, the
second specification uses the second argument, etc. Using a repositioning specification, you can
change this. By placing a number N followed by a ‘$’ between the ‘%’ and the format character,
you cause the specification to use the Nth argument. The next specification will use the N+1’th
argument, etc.

For example:
(format "Can’t find file ‘%s’ in directory ‘%s’."

"ignatius.c" "loyola/")
⇒ "Can’t find file ‘ignatius.c’ in directory ‘loyola/’."

(format "In directory ‘%2$s’, the file ‘%1$s’ was not found."
"ignatius.c" "loyola/")

⇒ "In directory ‘loyola/’, the file ‘ignatius.c’ was not found."

(format
"The numbers %d and %d are %1$x and %x in hex and %1$o and %o in octal."
37 12)

⇒ "The numbers 37 and 12 are 25 and c in hex and 45 and 14 in octal."

As you can see, this lets you reprocess arguments more than once or reword a format spec-
ification (thereby moving the arguments around) without having to actually reorder the argu-
ments. This is especially useful in translating messages from one language to another: Different
languages use different word orders, and this sometimes entails changing the order of the argu-
ments. By using repositioning specifications, this can be accomplished without having to embed
knowledge of particular languages into the location in the program’s code where the message is
displayed.

All the specification characters allow an optional numeric prefix between the ‘%’ and the
character, and following any repositioning specification or flag. The optional numeric prefix
defines the minimum width for the object. If the printed representation of the object contains
fewer characters than this, then it is padded. The padding is normally on the left, but will be
on the right if the ‘-’ flag character is given. The padding character is normally a space, but if
the ‘0’ flag character is given, zeros are used for padding.

Chapter 4: Strings and Characters 65

(format "%06d is padded on the left with zeros" 123)
⇒ "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
⇒ "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you specify.
Thus, you can use a numeric prefix to specify a minimum spacing between columns with no risk
of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case, the
string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for padding.
In the second case, the string "specification" is 13 letters wide but is not truncated. In the
third case, the padding is on the right.

(format "The word ‘%7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘ foo’ actually has 3 letters in it."

(format "The word ‘%7s’ actually has %d letters in it."
"specification" (length "specification"))

⇒ "The word ‘specification’ actually has 13 letters in it."

(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))

⇒ "The word ‘foo ’ actually has 3 letters in it."

After any minimum field width, a precision may be specified by preceding it with a ‘.’
character. The precision specifies the minimum number of digits to appear in ‘%d’, ‘%i’, ‘%o’,
‘%x’, and ‘%X’ conversions (the number is padded on the left with zeroes as necessary); the
number of digits printed after the decimal point for ‘%f’, ‘%e’, and ‘%E’ conversions; the number
of significant digits printed in ‘%g’ and ‘%G’ conversions; and the maximum number of non-
padding characters printed in ‘%s’ and ‘%S’ conversions. The default precision for floating-point
conversions is six.

The other flag characters have the following meanings:
• The ‘ ’ flag means prefix non-negative numbers with a space.
• The ‘+’ flag means prefix non-negative numbers with a plus sign.
• The ‘#’ flag means print numbers in an alternate, more verbose format: octal numbers begin

with zero; hex numbers begin with a ‘0x’ or ‘0X’; a decimal point is printed in ‘%f’, ‘%e’, and
‘%E’ conversions even if no numbers are printed after it; and trailing zeroes are not omitted
in ‘%g’ and ‘%G’ conversions.

4.11 Character Case

The character case functions change the case of single characters or of the contents of strings.
The functions convert only alphabetic characters (the letters ‘A’ through ‘Z’ and ‘a’ through ‘z’);
other characters are not altered. The functions do not modify the strings that are passed to
them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

Functiondowncase string-or-char
This function converts a character or a string to lower case.
When the argument to downcase is a string, the function creates and returns a new string
in which each letter in the argument that is upper case is converted to lower case. When

66 XEmacs Lisp Reference Manual

the argument to downcase is a character, downcase returns the corresponding lower case
character. (This value is actually an integer under XEmacs 19.) If the original character
is lower case, or is not a letter, then the value equals the original character.

(downcase "The cat in the hat")
⇒ "the cat in the hat"

(downcase ?X)
⇒ ?x ;; Under XEmacs 20.
⇒ 120 ;; Under XEmacs 19.

Functionupcase string-or-char
This function converts a character or a string to upper case.
When the argument to upcase is a string, the function creates and returns a new string
in which each letter in the argument that is lower case is converted to upper case.
When the argument to upcase is a character, upcase returns the corresponding upper case
character. (This value is actually an integer under XEmacs 19.) If the original character
is upper case, or is not a letter, then the value equals the original character.

(upcase "The cat in the hat")
⇒ "THE CAT IN THE HAT"

(upcase ?x)
⇒ ?X ;; Under XEmacs 20.
⇒ 88 ;; Under XEmacs 19.

Functioncapitalize string-or-char
This function capitalizes strings or characters. If string-or-char is a string, the function
creates and returns a new string, whose contents are a copy of string-or-char in which each
word has been capitalized. This means that the first character of each word is converted
to upper case, and the rest are converted to lower case.
The definition of a word is any sequence of consecutive characters that are assigned to
the word constituent syntax class in the current syntax table (see Section 38.2.1 [Syntax
Class Table], page 514).
When the argument to capitalize is a character, capitalize has the same result as
upcase.

(capitalize "The cat in the hat")
⇒ "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
⇒ "The 77th-Hatted Cat"

(capitalize ?x)
⇒ ?X ;; Under XEmacs 20.
⇒ 88 ;; Under XEmacs 19.

4.12 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the string and character

Chapter 4: Strings and Characters 67

case conversion functions (see the previous section) and those that apply to text in the buffer
(see Section 36.17 [Case Changes], page 486). You need a case table if you are using a language
which has letters other than the standard ASCII letters.

A case table is a list of this form:
(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says how to
map each character to its lower-case equivalent. The element upcase maps each character to its
upper-case equivalent. If lower and upper case characters are in one-to-one correspondence, use
nil for upcase; then XEmacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in one-to-one correspondence. There
may be two different lower case letters with the same upper case equivalent. In these cases, you
need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two characters
that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of characters
with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’ into ‘A’ and ‘A’
into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs fills in
this string from upcase and downcase. You can also provide nil for equivalences; then Emacs
fills in this string from canonicalize. In a case table that is actually in use, those components
are non-nil. Do not try to specify equivalences without also specifying canonicalize.

Each buffer has a case table. XEmacs also has a standard case table which is copied into
each buffer when you create the buffer. Changing the standard case table doesn’t affect any
existing buffers.

Here are the functions for working with case tables:

Functioncase-table-p object
This predicate returns non-nil if object is a valid case table.

Functionset-standard-case-table table
This function makes table the standard case table, so that it will apply to any buffers
created subsequently.

Functionstandard-case-table
This returns the standard case table.

Functioncurrent-case-table
This function returns the current buffer’s case table.

Functionset-case-table table
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-ASCII

character sets. They modify a string downcase-table provided as an argument; this should be a
string to be used as the downcase part of a case table. They also modify the standard syntax
table. See Chapter 38 [Syntax Tables], page 513.

Functionset-case-syntax-pair uc lc downcase-table
This function specifies a pair of corresponding letters, one upper case and one lower case.

68 XEmacs Lisp Reference Manual

Functionset-case-syntax-delims l r downcase-table
This function makes characters l and r a matching pair of case-invariant delimiters.

Functionset-case-syntax char syntax downcase-table
This function makes char case-invariant, with syntax syntax.

Commanddescribe-buffer-case-table
This command displays a description of the contents of the current buffer’s case table.

You can load the library ‘iso-syntax’ to set up the standard syntax table and define a case
table for the 8-bit ISO Latin 1 character set.

4.13 The Char Table

A char table is a table that maps characters (or ranges of characters) to values. Char tables
are specialized for characters, only allowing particular sorts of ranges to be assigned values.
Although this loses in generality, it makes for extremely fast (constant-time) lookups, and thus
is feasible for applications that do an extremely large number of lookups (e.g. scanning a buffer
for a character in a particular syntax, where a lookup in the syntax table must occur once per
character).

Note that char tables as a primitive type, and all of the functions in this section, exist only
in XEmacs 20. In XEmacs 19, char tables are generally implemented using a vector of 256
elements.

When MULE support exists, the types of ranges that can be assigned values are
• all characters
• an entire charset
• a single row in a two-octet charset
• a single character

When MULE support is not present, the types of ranges that can be assigned values are
• all characters
• a single character

Functionchar-table-p object
This function returns non-nil if object is a char table.

4.13.1 Char Table Types

Each char table type is used for a different purpose and allows different sorts of values. The
different char table types are

category Used for category tables, which specify the regexp categories that a character is in.
The valid values are nil or a bit vector of 95 elements. Higher-level Lisp functions
are provided for working with category tables. Currently categories and category
tables only exist when MULE support is present.

char A generalized char table, for mapping from one character to another. Used for case
tables, syntax matching tables, keyboard-translate-table, etc. The valid values
are characters.

Chapter 4: Strings and Characters 69

generic An even more generalized char table, for mapping from a character to anything.

display Used for display tables, which specify how a particular character is to appear when
displayed. #### Not yet implemented.

syntax Used for syntax tables, which specify the syntax of a particular character. Higher-
level Lisp functions are provided for working with syntax tables. The valid values
are integers.

Functionchar-table-type table
This function returns the type of char table table.

Functionchar-table-type-list
This function returns a list of the recognized char table types.

Functionvalid-char-table-type-p type
This function returns t if type if a recognized char table type.

4.13.2 Working With Char Tables

Functionmake-char-table type
This function makes a new, empty char table of type type. type should be a symbol, one
of char, category, display, generic, or syntax.

Functionput-char-table range val table
This function sets the value for chars in range to be val in table.
range specifies one or more characters to be affected and should be one of the following:
• t (all characters are affected)
• A charset (only allowed when MULE support is present)
• A vector of two elements: a two-octet charset and a row number (only allowed when

MULE support is present)
• A single character

val must be a value appropriate for the type of table.

Functionget-char-table ch table
This function finds the value for char ch in table.

Functionget-range-char-table range table &optional multi
This function finds the value for a range in table. If there is more than one value, multi
is returned (defaults to nil).

Functionreset-char-table table
This function resets a char table to its default state.

Functionmap-char-table function table &optional range
This function maps function over entries in table, calling it with two args, each key and
value in the table.
range specifies a subrange to map over and is in the same format as the range argument
to put-range-table. If omitted or t, it defaults to the entire table.

70 XEmacs Lisp Reference Manual

Functionvalid-char-table-value-p value char-table-type
This function returns non-nil if value is a valid value for char-table-type.

Functioncheck-valid-char-table-value value char-table-type
This function signals an error if value is not a valid value for char-table-type.

Chapter 5: Lists 71

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects). The
important difference between lists and vectors is that two or more lists can share part of their
structure; in addition, you can insert or delete elements in a list without copying the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons cell is
a data object that represents an ordered pair. It records two Lisp objects, one labeled as the
car, and the other labeled as the cdr. These names are traditional; see Section 2.4.6 [Cons
Cell Type], page 20. cdr is pronounced “could-er.”

A list is a series of cons cells chained together, one cons cell per element of the list. By
convention, the cars of the cons cells are the elements of the list, and the cdrs are used to
chain the list: the cdr of each cons cell is the following cons cell. The cdr of the last cons cell
is nil. This asymmetry between the car and the cdr is entirely a matter of convention; at the
level of cons cells, the car and cdr slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to mean
any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements. For
convenience, the symbol nil is considered to have nil as its cdr (and also as its car).

The cdr of any nonempty list l is a list containing all the elements of l except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the car and the
second box represents the cdr. Here is an illustration of the two-element list, (tulip lily),
made from two cons cells:

--------------- ---------------
car	cdr		car	cdr
tulip	o---------->	lily	nil	
--------------- ---------------

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “contains” a
Lisp object. (These terms are synonymous.) The first box, which is the car of the first cons
cell, contains the symbol tulip. The arrow from the cdr of the first cons cell to the second
cons cell indicates that the cdr of the first cons cell points to the second cons cell.

The same list can be illustrated in a different sort of box notation like this:

___ ___ ___ ___
|___|___|--> |___|___|--> nil
| |
| |
--> tulip --> lily

Here is a more complex illustration, showing the three-element list, ((pine needles) oak
maple), the first element of which is a two-element list:

72 XEmacs Lisp Reference Manual

___ ___ ___ ___ ___ ___
|___|___|--> |___|___|--> |___|___|--> nil

| | |
| | |
| --> oak --> maple
|
| ___ ___ ___ ___
--> |___|___|--> |___|___|--> nil

| |
| |
--> pine --> needles

The same list represented in the first box notation looks like this:
-------------- -------------- --------------
car	cdr		car	cdr		car	cdr	
o	o------->	oak	o------->	maple	nil			
-- | --------- -------------- --------------

|
|
| -------------- ----------------
| | car | cdr | | car | cdr |
------>| pine | o------->| needles | nil |

| | | | | |
-------------- ----------------

See Section 2.4.6 [Cons Cell Type], page 20, for the read and print syntax of cons cells and
lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list, or
whether it is the distinguished object nil. (Many of these predicates can be defined in terms of
the others, but they are used so often that it is worth having all of them.)

Functionconsp object
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

Functionatom object
This function returns t if object is an atom, nil otherwise. All objects except cons cells
are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object that is
both.

(atom object) ≡ (not (consp object))

Functionlistp object
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(listp ’(1))
⇒ t

(listp ’())
⇒ t

Chapter 5: Lists 73

Functionnlistp object
This function is the opposite of listp: it returns t if object is not a list. Otherwise, it
returns nil.

(listp object) ≡ (not (nlistp object))

Functionnull object
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a list
and not when it is considered a truth value (see not in Section 9.3 [Combining Conditions],
page 119).

(null ’(1))
⇒ nil

(null ’())
⇒ t

5.4 Accessing Elements of Lists

Functioncar cons-cell
This function returns the value pointed to by the first pointer of the cons cell cons-cell.
Expressed another way, this function returns the car of cons-cell.
As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any list
is a valid argument for car. An error is signaled if the argument is not a cons cell or nil.

(car ’(a b c))
⇒ a

(car ’())
⇒ nil

Functioncdr cons-cell
This function returns the value pointed to by the second pointer of the cons cell cons-cell.
Expressed another way, this function returns the cdr of cons-cell.
As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any list
is a valid argument for cdr. An error is signaled if the argument is not a cons cell or nil.

(cdr ’(a b c))
⇒ (b c)

(cdr ’())
⇒ nil

Functioncar-safe object
This function lets you take the car of a cons cell while avoiding errors for other data
types. It returns the car of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)
≡
(let ((x object))

(if (consp x)
(car x)

nil))

74 XEmacs Lisp Reference Manual

Functioncdr-safe object
This function lets you take the cdr of a cons cell while avoiding errors for other data
types. It returns the cdr of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)
≡
(let ((x object))

(if (consp x)
(cdr x)

nil))

Functionnth n list
This function returns the nth element of list. Elements are numbered starting with zero,
so the car of list is element number zero. If the length of list is n or less, the value is nil.

If n is negative, nth returns the first element of list.

(nth 2 ’(1 2 3 4))
⇒ 3

(nth 10 ’(1 2 3 4))
⇒ nil

(nth -3 ’(1 2 3 4))
⇒ 1

(nth n x) ≡ (car (nthcdr n x))

Functionnthcdr n list
This function returns the nth cdr of list. In other words, it removes the first n links of
list and returns what follows.

If n is zero or negative, nthcdr returns all of list. If the length of list is n or less, nthcdr
returns nil.

(nthcdr 1 ’(1 2 3 4))
⇒ (2 3 4)

(nthcdr 10 ’(1 2 3 4))
⇒ nil

(nthcdr -3 ’(1 2 3 4))
⇒ (1 2 3 4)

Many convenience functions are provided to make it easier for you to access particular ele-
ments in a nested list. All of these can be rewritten in terms of the functions just described.

Chapter 5: Lists 75

Functioncaar cons-cell
Functioncadr cons-cell
Functioncdar cons-cell
Functioncddr cons-cell
Functioncaaar cons-cell
Functioncaadr cons-cell
Functioncadar cons-cell
Functioncaddr cons-cell
Functioncdaar cons-cell
Functioncdadr cons-cell
Functioncddar cons-cell
Functioncdddr cons-cell
Functioncaaaar cons-cell
Functioncaaadr cons-cell
Functioncaadar cons-cell
Functioncaaddr cons-cell
Functioncadaar cons-cell
Functioncadadr cons-cell
Functioncaddar cons-cell
Functioncadddr cons-cell
Functioncdaaar cons-cell
Functioncdaadr cons-cell
Functioncdadar cons-cell
Functioncdaddr cons-cell
Functioncddaar cons-cell
Functioncddadr cons-cell
Functioncdddar cons-cell
Functioncddddr cons-cell

Each of these functions is equivalent to one or more applications of car and/or cdr. For
example,

(cadr x)

is equivalent to

(car (cdr x))

and

(cdaddr x)

is equivalent to

(cdr (car (cdr (cdr x))))

That is to say, read the a’s and d’s from right to left and apply a car or cdr for each a or
d found, respectively.

Functionfirst list
This is equivalent to (nth 0 list), i.e. the first element of list. (Note that this is also
equivalent to car.)

Functionsecond list
This is equivalent to (nth 1 list), i.e. the second element of list.

76 XEmacs Lisp Reference Manual

Functionthird list
Functionfourth list
Functionfifth list
Functionsixth list
Functionseventh list
Functioneighth list
Functionninth list
Functiontenth list

These are equivalent to (nth 2 list) through (nth 9 list) respectively, i.e. the third
through tenth elements of list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the fundamental
list-building function; however, it is interesting to note that list is used more times in the
source code for Emacs than cons.

Functioncons object1 object2
This function is the fundamental function used to build new list structure. It creates a
new cons cell, making object1 the car, and object2 the cdr. It then returns the new
cons cell. The arguments object1 and object2 may be any Lisp objects, but most often
object2 is a list.

(cons 1 ’(2))
⇒ (1 2)

(cons 1 ’())
⇒ (1)

(cons 1 2)
⇒ (1 . 2)

cons is often used to add a single element to the front of a list. This is called consing the
element onto the list. For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example and
the function named list described below; any symbol can serve both purposes.

Functionlist &rest objects
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

(list 1 2 3 4 5)
⇒ (1 2 3 4 5)

(list 1 2 ’(3 4 5) ’foo)
⇒ (1 2 (3 4 5) foo)

(list)
⇒ nil

Functionmake-list length object
This function creates a list of length length, in which all the elements have the identical
value object. Compare make-list with make-string (see Section 4.3 [Creating Strings],
page 56).

Chapter 5: Lists 77

(make-list 3 ’pigs)
⇒ (pigs pigs pigs)

(make-list 0 ’pigs)
⇒ nil

Functionappend &rest sequences
This function returns a list containing all the elements of sequences. The sequences may
be lists, vectors, or strings, but the last one should be a list. All arguments except the
last one are copied, so none of them are altered.
More generally, the final argument to append may be any Lisp object. The final argument
is not copied or converted; it becomes the cdr of the last cons cell in the new list. If the
final argument is itself a list, then its elements become in effect elements of the result list.
If the final element is not a list, the result is a “dotted list” since its final cdr is not nil
as required in a true list.
See nconc in Section 5.6.3 [Rearrangement], page 81, for a way to join lists with no copying.
Here is an example of using append:

(setq trees ’(pine oak))
⇒ (pine oak)

(setq more-trees (append ’(maple birch) trees))
⇒ (maple birch pine oak)

trees
⇒ (pine oak)

more-trees
⇒ (maple birch pine oak)

(eq trees (cdr (cdr more-trees)))
⇒ t

You can see how append works by looking at a box diagram. The variable trees is set
to the list (pine oak) and then the variable more-trees is set to the list (maple birch
pine oak). However, the variable trees continues to refer to the original list:

more-trees trees
| |
| ___ ___ ___ ___ -> ___ ___ ___ ___
--> |___|___|--> |___|___|--> |___|___|--> |___|___|--> nil

| | | |
| | | |
--> maple -->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a consequence
of this, a final nil argument forces a copy of the previous argument.

trees
⇒ (pine oak)

(setq wood (append trees ()))
⇒ (pine oak)

wood
⇒ (pine oak)

(eq wood trees)
⇒ nil

This once was the usual way to copy a list, before the function copy-sequence was
invented. See Chapter 6 [Sequences Arrays Vectors], page 93.
With the help of apply, we can append all the lists in a list of lists:

78 XEmacs Lisp Reference Manual

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

If no sequences are given, nil is returned:
(append)

⇒ nil

Here are some examples where the final argument is not a list:
(append ’(x y) ’z)

⇒ (x y . z)
(append ’(x y) [z])

⇒ (x y . [z])

The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence
becomes the final cdr, like any other non-list final argument.
The append function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the strings
instead of the original integers. Don’t use this feature; we plan to eliminate it. If you
already use this feature, change your programs now! The proper way to convert an integer
to a decimal number in this way is with format (see Section 4.10 [Formatting Strings],
page 62) or number-to-string (see Section 4.7 [String Conversion], page 60).

Functionreverse list
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

(setq x ’(1 2 3 4))
⇒ (1 2 3 4)

(reverse x)
⇒ (4 3 2 1)

x
⇒ (1 2 3 4)

5.6 Modifying Existing List Structure

You can modify the car and cdr contents of a cons cell with the primitives setcar and
setcdr.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter list
structure; they change structure the same way as setcar and setcdr, but the
Common Lisp functions return the cons cell while setcar and setcdr return the
new car or cdr.

5.6.1 Altering List Elements with setcar

Changing the car of a cons cell is done with setcar. When used on a list, setcar replaces
one element of a list with a different element.

Functionsetcar cons object
This function stores object as the new car of cons, replacing its previous car. It returns
the value object. For example:

Chapter 5: Lists 79

(setq x ’(1 2))
⇒ (1 2)

(setcar x 4)
⇒ 4

x
⇒ (4 2)

When a cons cell is part of the shared structure of several lists, storing a new car into the
cons changes one element of each of these lists. Here is an example:

;; Create two lists that are partly shared.
(setq x1 ’(a b c))

⇒ (a b c)
(setq x2 (cons ’z (cdr x1)))

⇒ (z b c)

;; Replace the car of a shared link.
(setcar (cdr x1) ’foo)

⇒ foo
x1 ; Both lists are changed.

⇒ (a foo c)
x2

⇒ (z foo c)

;; Replace the car of a link that is not shared.
(setcar x1 ’baz)

⇒ baz
x1 ; Only one list is changed.

⇒ (baz foo c)
x2

⇒ (z foo c)

Here is a graphical depiction of the shared structure of the two lists in the variables x1 and
x2, showing why replacing b changes them both:

___ ___ ___ ___ ___ ___
x1---> |___|___|----> |___|___|--> |___|___|--> nil

| --> | |
| | | |
--> a | --> b --> c

|
___ ___ |

x2--> |___|___|--
|
|
--> z

Here is an alternative form of box diagram, showing the same relationship:

80 XEmacs Lisp Reference Manual

x1:
-------------- -------------- --------------
car	cdr		car	cdr		car	cdr
a	o------->	b	o------->	c	nil		
		-->					
-------------- | -------------- --------------

|
x2:
car
z

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a cdr is setcdr:

Functionsetcdr cons object
This function stores object as the new cdr of cons, replacing its previous cdr. It returns
the value object.

Here is an example of replacing the cdr of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element is
unchanged, because it resides in the car of the list, and is not reached via the cdr.

(setq x ’(1 2 3))
⇒ (1 2 3)

(setcdr x ’(4))
⇒ (4)

x
⇒ (1 4)

You can delete elements from the middle of a list by altering the cdrs of the cons cells in
the list. For example, here we delete the second element, b, from the list (a b c), by changing
the cdr of the first cell:

(setq x1 ’(a b c))
⇒ (a b c)

(setcdr x1 (cdr (cdr x1)))
⇒ (c)

x1
⇒ (a c)

Chapter 5: Lists 81

Here is the result in box notation:

| |

-------------- | -------------- | --------------
| car | cdr | | | car | cdr | -->| car | cdr |
| a | o----- | b | o-------->| c | nil |
| | | | | | | | |
-------------- -------------- --------------

The second cons cell, which previously held the element b, still exists and its car is still b, but
it no longer forms part of this list.

It is equally easy to insert a new element by changing cdrs:
(setq x1 ’(a b c))

⇒ (a b c)
(setcdr x1 (cons ’d (cdr x1)))

⇒ (d b c)
x1

⇒ (a d b c)

Here is this result in box notation:
-------------- ------------- -------------
car	cdr		car	cdr		car	cdr		
a	o	-->	b	o------->	c	nil			
--------- | -- | ------------- -------------

| |
----- --------

-->| d | o------

| | |

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the cdrs of their
component cons cells. We call these functions “destructive” because they chew up the original
lists passed to them as arguments, to produce a new list that is the returned value.

The function delq in the following section is another example of destructive list manipulation.

Functionnconc &rest lists
This function returns a list containing all the elements of lists. Unlike append (see Sec-
tion 5.5 [Building Lists], page 76), the lists are not copied. Instead, the last cdr of each
of the lists is changed to refer to the following list. The last of the lists is not altered. For
example:

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’(4 5))
⇒ (1 2 3 4 5)

82 XEmacs Lisp Reference Manual

x
⇒ (1 2 3 4 5)

Since the last argument of nconc is not itself modified, it is reasonable to use a constant
list, such as ’(4 5), as in the above example. For the same reason, the last argument need
not be a list:

(setq x ’(1 2 3))
⇒ (1 2 3)

(nconc x ’z)
⇒ (1 2 3 . z)

x
⇒ (1 2 3 . z)

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If you
do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
⇒ (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
⇒ (foo 1 2 3 4)

(eq xx xy)
⇒ t

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

Functionnreverse list
This function reverses the order of the elements of list. Unlike reverse, nreverse alters
its argument by reversing the cdrs in the cons cells forming the list. The cons cell that
used to be the last one in list becomes the first cell of the value.

For example:

(setq x ’(1 2 3 4))
⇒ (1 2 3 4)

x
⇒ (1 2 3 4)

(nreverse x)
⇒ (4 3 2 1)

;; The cell that was first is now last.
x

⇒ (1)

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c), presented graphically:

Chapter 5: Lists 83

Original list head: Reversed list:
------------- ------------- ------------
| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |<-- | c | o |
| | | | | | | | | | | | |
------------- | --------- | - | -------- | -

| | | |
------------- ------------

Functionsort list predicate
This function sorts list stably, though destructively, and returns the sorted list. It com-
pares elements using predicate. A stable sort is one in which elements with equal sort
keys maintain their relative order before and after the sort. Stability is important when
successive sorts are used to order elements according to different criteria.
The argument predicate must be a function that accepts two arguments. It is called with
two elements of list. To get an increasing order sort, the predicate should return t if the
first element is “less than” the second, or nil if not.
The destructive aspect of sort is that it rearranges the cons cells forming list by changing
cdrs. A nondestructive sort function would create new cons cells to store the elements
in their sorted order. If you wish to make a sorted copy without destroying the original,
copy it first with copy-sequence and then sort.
Sorting does not change the cars of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its car after sorting, but it now appears in a
different position in the list due to the change of cdrs. For example:

(setq nums ’(1 3 2 6 5 4 0))
⇒ (1 3 2 6 5 4 0)

(sort nums ’<)
⇒ (0 1 2 3 4 5 6)

nums
⇒ (1 2 3 4 5 6)

Note that the list in nums no longer contains 0; this is the same cons cell that it was before,
but it is no longer the first one in the list. Don’t assume a variable that formerly held the
argument now holds the entire sorted list! Instead, save the result of sort and use that.
Most often we store the result back into the variable that held the original list:

(setq nums (sort nums ’<))

See Section 36.14 [Sorting], page 479, for more functions that perform sorting. See
documentation in Section 27.2 [Accessing Documentation], page 346, for a useful example
of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element of
a set if it appears in the list, and ignore the order of the list. To form the union of two sets, use
append (as long as you don’t mind having duplicate elements). Other useful functions for sets
include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but XEmacs Lisp does not have
them. You can write them in Lisp if you wish.

84 XEmacs Lisp Reference Manual

Functionmemq object list
This function tests to see whether object is a member of list. If it is, memq returns a list
starting with the first occurrence of object. Otherwise, it returns nil. The letter ‘q’ in
memq says that it uses eq to compare object against the elements of the list. For example:

(memq ’b ’(a b c b a))
⇒ (b c b a)

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

Functiondelq object list
This function destructively removes all elements eq to object from list. The letter ‘q’ in
delq says that it uses eq to compare object against the elements of the list, like memq.

When delq deletes elements from the front of the list, it does so simply by advancing down
the list and returning a sublist that starts after those elements:

(delq ’a ’(a b c)) ≡ (cdr ’(a b c))

When an element to be deleted appears in the middle of the list, removing it involves changing
the cdrs (see Section 5.6.2 [Setcdr], page 80).

(setq sample-list ’(a b c (4)))
⇒ (a b c (4))

(delq ’a sample-list)
⇒ (b c (4))

sample-list
⇒ (a b c (4))

(delq ’c sample-list)
⇒ (a b (4))

sample-list
⇒ (a b (4))

Note that (delq ’c sample-list) modifies sample-list to splice out the third element, but
(delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t assume
that a variable which formerly held the argument list now has fewer elements, or that it still
holds the original list! Instead, save the result of delq and use that. Most often we store the
result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the sample-
list are not eq:

(delq ’(4) sample-list)
⇒ (a c (4))

The following two functions are like memq and delq but use equal rather than eq to compare
elements. They are new in Emacs 19.

Functionmember object list
The function member tests to see whether object is a member of list, comparing members
with object using equal. If object is a member, member returns a list starting with its
first occurrence in list. Otherwise, it returns nil.
Compare this with memq:

(member ’(2) ’((1) (2))) ; (2) and (2) are equal.
⇒ ((2))

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

Chapter 5: Lists 85

;; Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))

⇒ ("foo" "bar")

Functiondelete object list
This function destructively removes all elements equal to object from list. It is to delq
as member is to memq: it uses equal to compare elements with object, like member; when it
finds an element that matches, it removes the element just as delq would. For example:

(delete ’(2) ’((2) (1) (2)))
⇒ ’((1))

Common Lisp note: The functions member and delete in XEmacs Lisp are derived
from Maclisp, not Common Lisp. The Common Lisp versions do not use equal to
compare elements.

See also the function add-to-list, in Section 10.7 [Setting Variables], page 137, for another
way to add an element to a list stored in a variable.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list of
cons cells called associations: the car of each cell is the key, and the cdr is the associated
value.1

Here is an example of an alist. The key pine is associated with the value cones; the key oak
is associated with acorns; and the key maple is associated with seeds.

’((pine . cones)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example, in
the following alist, the symbol a is associated with the number 1, and the string "b" is associated
with the list (2 3), which is the cdr of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the car of the cdr

of the element. Here is an example:
’((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this method is that
you can store other related information—even a list of other items—in the cdr of the cdr. One
disadvantage is that you cannot use rassq (see below) to find the element containing a given
value. When neither of these considerations is important, the choice is a matter of taste, as long
as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value in
the cdr of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on a
stack, since new associations may be added easily to the front of the list. When searching an
association list for an association with a given key, the first one found is returned, if there is
more than one.

1 This usage of “key” is not related to the term “key sequence”; it means a value used to look
up an item in a table. In this case, the table is the alist, and the alist associations are the
items.

86 XEmacs Lisp Reference Manual

In XEmacs Lisp, it is not an error if an element of an association list is not a cons cell. The
alist search functions simply ignore such elements. Many other versions of Lisp signal errors in
such cases.

Note that property lists are similar to association lists in several respects. A property list
behaves like an association list in which each key can occur only once. See Section 5.9 [Property
Lists], page 88, for a comparison of property lists and association lists.

Functionassoc key alist
This function returns the first association for key in alist. It compares key against the
alist elements using equal (see Section 2.8 [Equality Predicates], page 37). It returns nil
if no association in alist has a car equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assoc ’oak trees)
⇒ (oak . acorns)

(cdr (assoc ’oak trees))
⇒ acorns

(assoc ’birch trees)
⇒ nil

Here is another example, in which the keys and values are not symbols:
(setq needles-per-cluster

’((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
⇒ ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
⇒ ("Austrian Pine" "Red Pine")

Functionrassoc value alist
This function returns the first association with value value in alist. It returns nil if no
association in alist has a cdr equal to value.
rassoc is like assoc except that it compares the cdr of each alist association instead of
the car. You can think of this as “reverse assoc”, finding the key for a given value.

Functionassq key alist
This function is like assoc in that it returns the first association for key in alist, but it
makes the comparison using eq instead of equal. assq returns nil if no association in
alist has a car eq to key. This function is used more often than assoc, since eq is faster
than equal and most alists use symbols as keys. See Section 2.8 [Equality Predicates],
page 37.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assq ’pine trees)
⇒ (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be symbols:
(setq leaves

’(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

Chapter 5: Lists 87

(assq "simple leaves" leaves)
⇒ nil

(assoc "simple leaves" leaves)
⇒ ("simple leaves" . oak)

Functionrassq value alist
This function returns the first association with value value in alist. It returns nil if no
association in alist has a cdr eq to value.
rassq is like assq except that it compares the cdr of each alist association instead of the
car. You can think of this as “reverse assq”, finding the key for a given value.
For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
⇒ (oak . acorns)

(rassq ’spores trees)
⇒ nil

Note that rassq cannot search for a value stored in the car of the cdr of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
⇒ nil

In this case, the cdr of the association (lily white) is not the symbol white, but rather
the list (white). This becomes clearer if the association is written in dotted pair notation:

(lily white) ≡ (lily . (white))

Functionremassoc key alist
This function deletes by side effect any associations with key key in alist – i.e. it removes
any elements from alist whose car is equal to key. The modified alist is returned.
If the first member of alist has a car that is equal to key, there is no way to remove it by
side effect; therefore, write (setq foo (remassoc key foo)) to be sure of changing the
value of foo.

Functionremassq key alist
This function deletes by side effect any associations with key key in alist – i.e. it removes
any elements from alist whose car is eq to key. The modified alist is returned.
This function is exactly like remassoc, but comparisons between key and keys in alist are
done using eq instead of equal.

Functionremrassoc value alist
This function deletes by side effect any associations with value value in alist – i.e. it
removes any elements from alist whose cdr is equal to value. The modified alist is
returned.
If the first member of alist has a car that is equal to value, there is no way to remove it
by side effect; therefore, write (setq foo (remassoc value foo)) to be sure of changing
the value of foo.
remrassoc is like remassoc except that it compares the cdr of each alist association
instead of the car. You can think of this as “reverse remassoc”, removing an association
based on its value instead of its key.

88 XEmacs Lisp Reference Manual

Functionremrassq value alist
This function deletes by side effect any associations with value value in alist – i.e. it
removes any elements from alist whose cdr is eq to value. The modified alist is returned.
This function is exactly like remrassoc, but comparisons between value and values in alist
are done using eq instead of equal.

Functioncopy-alist alist
This function returns a two-level deep copy of alist: it creates a new copy of each asso-
ciation, so that you can alter the associations of the new alist without changing the old
one.

(setq needles-per-cluster
’((2 . ("Austrian Pine" "Red Pine"))

(3 . ("Pitch Pine"))
(5 . ("White Pine"))))

⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
⇒
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(eq needles-per-cluster copy)
⇒ nil

(equal needles-per-cluster copy)
⇒ t

(eq (car needles-per-cluster) (car copy))
⇒ nil

(cdr (car (cdr needles-per-cluster)))
⇒ ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
⇒ t

This example shows how copy-alist makes it possible to change the associations of one
copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))

⇒ ("Pitch Pine")

5.9 Property Lists

A property list (or plist) is another way of representing a mapping from keys to values.
Instead of the list consisting of conses of a key and a value, the keys and values alternate as
successive entries in the list. Thus, the association list

((a . 1) (b . 2) (c . 3))

has the equivalent property list form

Chapter 5: Lists 89

(a 1 b 2 c 3)
Property lists are used to represent the properties associated with various sorts of objects,

such as symbols, strings, frames, etc. The convention is that property lists can be modified
in-place, while association lists generally are not.

Plists come in two varieties: normal plists, whose keys are compared with eq, and lax plists,
whose keys are compared with equal,

Functionvalid-plist-p plist
Given a plist, this function returns non-nil if its format is correct. If it returns nil, check-
valid-plist will signal an error when given the plist; that means it’s a malformed or
circular plist or has non-symbols as keywords.

Functioncheck-valid-plist plist
Given a plist, this function signals an error if there is anything wrong with it. This means
that it’s a malformed or circular plist.

5.9.1 Working With Normal Plists

Functionplist-get plist prop &optional default
This function extracts a value from a property list. The function returns the value corre-
sponding to the given prop, or default if prop is not one of the properties on the list.

Functionplist-put plist prop val
This function changes the value in plist of prop to val. If prop is already a property on
the list, its value is set to val, otherwise the new prop val pair is added. The new plist
is returned; use (setq x (plist-put x prop val)) to be sure to use the new value. The
plist is modified by side effects.

Functionplist-remprop plist prop
This function removes from plist the property prop and its value. The new plist is returned;
use (setq x (plist-remprop x prop val)) to be sure to use the new value. The plist is
modified by side effects.

Functionplist-member plist prop
This function returns t if prop has a value specified in plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a property
with a nil value is ignored or removed. This feature is a virus that has infected old Lisp
implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but should not
be used except for backward compatibility.

Functionplists-eq a b &optional nil-means-not-present
This function returns non-nil if property lists A and B are eq (i.e. their values are eq).

Functionplists-equal a b &optional nil-means-not-present
This function returns non-nil if property lists A and B are equal (i.e. their values are
equal; their keys are still compared using eq).

Functioncanonicalize-plist plist &optional nil-means-not-present
This function destructively removes any duplicate entries from a plist. In such cases, the
first entry applies.
The new plist is returned. If nil-means-not-present is given, the return value may not be
eq to the passed-in value, so make sure to setq the value back into where it came from.

90 XEmacs Lisp Reference Manual

5.9.2 Working With Lax Plists

Recall that a lax plist is a property list whose keys are compared using equal instead of eq.

Functionlax-plist-get lax-plist prop &optional default
This function extracts a value from a lax property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the list.

Functionlax-plist-put lax-plist prop val
This function changes the value in lax-plist of prop to val.

Functionlax-plist-remprop lax-plist prop
This function removes from lax-plist the property prop and its value. The new plist is
returned; use (setq x (lax-plist-remprop x prop val)) to be sure to use the new value.
The lax-plist is modified by side effects.

Functionlax-plist-member lax-plist prop
This function returns t if prop has a value specified in lax-plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a property
with a nil value is ignored or removed. This feature is a virus that has infected old Lisp
implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but should not
be used except for backward compatibility.

Functionlax-plists-eq a b &optional nil-means-not-present
This function returns non-nil if lax property lists A and B are eq (i.e. their values are
eq; their keys are still compared using equal).

Functionlax-plists-equal a b &optional nil-means-not-present
This function returns non-nil if lax property lists A and B are equal (i.e. their values
are equal).

Functioncanonicalize-lax-plist lax-plist &optional nil-means-not-present
This function destructively removes any duplicate entries from a lax plist. In such cases,
the first entry applies.
The new plist is returned. If nil-means-not-present is given, the return value may not be
eq to the passed-in value, so make sure to setq the value back into where it came from.

5.9.3 Converting Plists To/From Alists

Functionalist-to-plist alist
This function converts association list alist into the equivalent property-list form. The
plist is returned. This converts from

((a . 1) (b . 2) (c . 3))

into
(a 1 b 2 c 3)

The original alist is not modified.

Chapter 5: Lists 91

Functionplist-to-alist plist
This function converts property list plist into the equivalent association-list form. The
alist is returned. This converts from

(a 1 b 2 c 3)

into
((a . 1) (b . 2) (c . 3))

The original plist is not modified.

The following two functions are equivalent to the preceding two except that they destructively
modify their arguments, using cons cells from the original list to form the new list rather than
allocating new cons cells.

Functiondestructive-alist-to-plist alist
This function destructively converts association list alist into the equivalent property-list
form. The plist is returned.

Functiondestructive-plist-to-alist plist
This function destructively converts property list plist into the equivalent association-list
form. The alist is returned.

5.10 Weak Lists

A weak list is a special sort of list whose members are not counted as references for the purpose
of garbage collection. This means that, for any object in the list, if there are no references to
the object anywhere outside of the list (or other weak list or weak hash table), that object will
disappear the next time a garbage collection happens. Weak lists can be useful for keeping track
of things such as unobtrusive lists of another function’s buffers or markers. When that function
is done with the elements, they will automatically disappear from the list.

Weak lists are used internally, for example, to manage the list holding the children of an
extent – an extent that is unused but has a parent will still be reclaimed, and will automatically
be removed from its parent’s list of children.

Weak lists are similar to weak hash tables (see Section 46.3 [Weak Hash Tables], page 602).

Functionweak-list-p object
This function returns non-nil if object is a weak list.

Weak lists come in one of four types:

simple Objects in the list disappear if not referenced outside of the list.

assoc Objects in the list disappear if they are conses and either the car or the cdr of the
cons is not referenced outside of the list.

key-assoc
Objects in the list disappear if they are conses and the car is not referenced outside
of the list.

value-assoc
Objects in the list disappear if they are conses and the cdr is not referenced outside
of the list.

Functionmake-weak-list &optional type
This function creates a new weak list of type type. type is a symbol (one of simple,
assoc, key-assoc, or value-assoc, as described above) and defaults to simple.

92 XEmacs Lisp Reference Manual

Functionweak-list-type weak
This function returns the type of the given weak-list object.

Functionweak-list-list weak
This function returns the list contained in a weak-list object.

Functionset-weak-list-list weak new-list
This function changes the list contained in a weak-list object.

Chapter 6: Sequences, Arrays, and Vectors 93

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of four other Lisp types: lists, vectors, bit vectors,
and strings. In other words, any list is a sequence, any vector is a sequence, any bit vector is a
sequence, and any string is a sequence. The common property that all sequences have is that
each is an ordered collection of elements.

An array is a single primitive object that has a slot for each elements. All the elements are
accessible in constant time, but the length of an existing array cannot be changed. Strings,
vectors, and bit vectors are the three types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons cells,
one cell per element. Finding the nth element requires looking through n cons cells, so elements
farther from the beginning of the list take longer to access. But it is possible to add elements
to the list, or remove elements.

The following diagram shows the relationship between these types:

| |
| Sequence |
| ______ ______________________ |
	List		Array					
			________ _______					

		Vector		String				
		________		_______				

		Bit Vector						

The elements of vectors and lists may be any Lisp objects. The elements of strings are all
characters. The elements of bit vectors are the numbers 0 and 1.

6.1 Sequences

In XEmacs Lisp, a sequence is either a list, a vector, a bit vector, or a string. The common
property that all sequences have is that each is an ordered collection of elements. This section
describes functions that accept any kind of sequence.

Functionsequencep object
Returns t if object is a list, vector, bit vector, or string, nil otherwise.

Functioncopy-sequence sequence
Returns a copy of sequence. The copy is the same type of object as the original sequence,
and it has the same elements in the same order.
Storing a new element into the copy does not affect the original sequence, and vice versa.
However, the elements of the new sequence are not copies; they are identical (eq) to the

94 XEmacs Lisp Reference Manual

elements of the original. Therefore, changes made within these elements, as found via the
copied sequence, are also visible in the original sequence.
If the sequence is a string with extents or text properties, the extents and text properties
in the copy are also copied, not shared with the original. (This means that modifying the
extents or text properties of the original will not affect the copy.) However, the actual
values of the properties are shared. See Chapter 40 [Extents], page 529, See Section 36.18
[Text Properties], page 488.
See also append in Section 5.5 [Building Lists], page 76, concat in Section 4.3 [Creating
Strings], page 56, vconcat in Section 6.4 [Vectors], page 97, and bvconcat in Section 6.6
[Bit Vectors], page 99, for other ways to copy sequences.

(setq bar ’(1 2))
⇒ (1 2)

(setq x (vector ’foo bar))
⇒ [foo (1 2)]

(setq y (copy-sequence x))
⇒ [foo (1 2)]

(eq x y)
⇒ nil

(equal x y)
⇒ t

(eq (elt x 1) (elt y 1))
⇒ t

;; Replacing an element of one sequence.
(aset x 0 ’quux)
x ⇒ [quux (1 2)]
y ⇒ [foo (1 2)]

;; Modifying the inside of a shared element.
(setcar (aref x 1) 69)
x ⇒ [quux (69 2)]
y ⇒ [foo (69 2)]

;; Creating a bit vector.
(bit-vector 1 0 1 1 0 1 0 0)

⇒ #*10110100

Functionlength sequence
Returns the number of elements in sequence. If sequence is a cons cell that is not a list
(because the final cdr is not nil), a wrong-type-argument error is signaled.

(length ’(1 2 3))
⇒ 3

(length ())
⇒ 0

(length "foobar")
⇒ 6

(length [1 2 3])
⇒ 3

(length #*01101)
⇒ 5

Chapter 6: Sequences, Arrays, and Vectors 95

Functionelt sequence index
This function returns the element of sequence indexed by index. Legitimate values of
index are integers ranging from 0 up to one less than the length of sequence. If sequence
is a list, then out-of-range values of index return nil; otherwise, they trigger an args-
out-of-range error.

(elt [1 2 3 4] 2)
⇒ 3

(elt ’(1 2 3 4) 2)
⇒ 3

(char-to-string (elt "1234" 2))
⇒ "3"

(elt #*00010000 3)
⇒ 1

(elt [1 2 3 4] 4)
error Args out of range: [1 2 3 4], 4

(elt [1 2 3 4] -1)
error Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions], page 96) and nth (see
Section 5.4 [List Elements], page 73).

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements of
the array. Any element of an array may be accessed in constant time. In contrast, an element
of a list requires access time that is proportional to the position of the element in the list.

When you create an array, you must specify how many elements it has. The amount of space
allocated depends on the number of elements. Therefore, it is impossible to change the size of
an array once it is created; you cannot add or remove elements. However, you can replace an
element with a different value.

XEmacs defines three types of array, all of which are one-dimensional: strings, vectors, and
bit vectors. A vector is a general array; its elements can be any Lisp objects. A string is a
specialized array; its elements must be characters. A bit vector is another specialized array; its
elements must be bits (an integer, either 0 or 1). Each type of array has its own read syntax.
See Section 2.4.8 [String Type], page 22, Section 2.4.9 [Vector Type], page 23, and Section 2.4.10
[Bit Vector Type], page 23.

All kinds of array share these characteristics:
• The first element of an array has index zero, the second element has index 1, and so on.

This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3.

• The elements of an array may be referenced or changed with the functions aref and aset,
respectively (see Section 6.3 [Array Functions], page 96).

In principle, if you wish to have an array of text characters, you could use either a string or
a vector. In practice, we always choose strings for such applications, for four reasons:
• They usually occupy one-fourth the space of a vector of the same elements. (This is one-

eighth the space for 64-bit machines such as the DEC Alpha, and may also be different
when MULE support is compiled into XEmacs.)

• Strings are printed in a way that shows the contents more clearly as characters.
• Strings can hold extent and text properties. See Chapter 40 [Extents], page 529, See

Section 36.18 [Text Properties], page 488.

96 XEmacs Lisp Reference Manual

• Many of the specialized editing and I/O facilities of XEmacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert a
string. See Chapter 4 [Strings and Characters], page 55.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector may
be necessary, because many keyboard input characters are non-printable and are represented
with symbols rather than with characters. See Section 19.6.1 [Key Sequence Input], page 273.

Similarly, when representing an array of bits, a bit vector has the following advantages over
a regular vector:
• They occupy 1/32nd the space of a vector of the same elements. (1/64th on 64-bit machines

such as the DEC Alpha.)
• Bit vectors are printed in a way that shows the contents more clearly as bits.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept strings, vectors, and bit vectors.

Functionarrayp object
This function returns t if object is an array (i.e., a string, vector, or bit vector).

(arrayp "asdf")
⇒ t
(arrayp [a])
⇒ t
(arrayp #*101)
⇒ t

Functionaref array index
This function returns the indexth element of array. The first element is at index zero.

(setq primes [2 3 5 7 11 13])
⇒ [2 3 5 7 11 13]

(aref primes 4)
⇒ 11

(elt primes 4)
⇒ 11

(aref "abcdefg" 1)
⇒ ?b

(aref #*1101 2)
⇒ 0

See also the function elt, in Section 6.1 [Sequence Functions], page 93.

Functionaset array index object
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
⇒ [foo bar baz]

(aset w 0 ’fu)
⇒ fu

w
⇒ [fu bar baz]

Chapter 6: Sequences, Arrays, and Vectors 97

(setq x "asdfasfd")
⇒ "asdfasfd"

(aset x 3 ?Z)
⇒ ?Z

x
⇒ "asdZasfd"

(setq bv #*1111)
⇒ #*1111

(aset bv 2 0)
⇒ 0

bv
⇒ #*1101

If array is a string and object is not a character, a wrong-type-argument error results.

Functionfillarray array object
This function fills the array array with object, so that each element of array is object. It
returns array.

(setq a [a b c d e f g])
⇒ [a b c d e f g]

(fillarray a 0)
⇒ [0 0 0 0 0 0 0]

a
⇒ [0 0 0 0 0 0 0]

(setq s "When in the course")
⇒ "When in the course"

(fillarray s ?-)
⇒ "------------------"

(setq bv #*1101)
⇒ #*1101

(fillarray bv 0)
⇒ #*0000

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects known
to be arrays. See Section 6.1 [Sequence Functions], page 93.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements can
be accessed in constant time. A vector is a general-purpose array; its elements can be any
Lisp objects. (The other kind of array in XEmacs Lisp is the string, whose elements must
be characters.) Vectors in XEmacs serve as obarrays (vectors of symbols), although this is a
shortcoming that should be fixed. They are also used internally as part of the representation of
a byte-compiled function; if you print such a function, you will see a vector in it.

In XEmacs Lisp, the indices of the elements of a vector start from zero and count up from
there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]. You can write vectors in the same
way in Lisp input.

98 XEmacs Lisp Reference Manual

A vector, like a string or a number, is considered a constant for evaluation: the result of
evaluating it is the same vector. This does not evaluate or even examine the elements of the
vector. See Section 8.2.1 [Self-Evaluating Forms], page 111.

Here are examples of these principles:
(setq avector [1 two ’(three) "four" [five]])

⇒ [1 two (quote (three)) "four" [five]]
(eval avector)

⇒ [1 two (quote (three)) "four" [five]]
(eq avector (eval avector))

⇒ t

6.5 Functions That Operate on Vectors

Here are some functions that relate to vectors:

Functionvectorp object
This function returns t if object is a vector.

(vectorp [a])
⇒ t

(vectorp "asdf")
⇒ nil

Functionvector &rest objects
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
⇒ [foo 23 [bar baz] "rats"]

(vector)
⇒ []

Functionmake-vector length object
This function returns a new vector consisting of length elements, each initialized to object.

(setq sleepy (make-vector 9 ’Z))
⇒ [Z Z Z Z Z Z Z Z Z]

Functionvconcat &rest sequences
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or strings. If no sequences are given, an empty
vector is returned.
The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat ’(A B C) ’(D E F)))
⇒ [A B C D E F]

(eq a (vconcat a))
⇒ nil

(vconcat)
⇒ []

(vconcat [A B C] "aa" ’(foo (6 7)))
⇒ [A B C 97 97 foo (6 7)]

The vconcat function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the strings

Chapter 6: Sequences, Arrays, and Vectors 99

instead of the original integers. Don’t use this feature; we plan to eliminate it. If you
already use this feature, change your programs now! The proper way to convert an integer
to a decimal number in this way is with format (see Section 4.10 [Formatting Strings],
page 62) or number-to-string (see Section 4.7 [String Conversion], page 60).
For other concatenation functions, see mapconcat in Section 11.6 [Mapping Functions],
page 154, concat in Section 4.3 [Creating Strings], page 56, append in Section 5.5 [Building
Lists], page 76, and bvconcat in Section 6.7 [Bit Vector Functions], page 99.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists], page 76):

(setq avector [1 two (quote (three)) "four" [five]])
⇒ [1 two (quote (three)) "four" [five]]

(append avector nil)
⇒ (1 two (quote (three)) "four" [five])

6.6 Bit Vectors

Bit vectors are specialized vectors that can only represent arrays of 1’s and 0’s. Bit vectors
have a very efficient representation and are useful for representing sets of boolean (true or false)
values.

There is no limit on the size of a bit vector. You could, for example, create a bit vector with
100,000 elements if you really wanted to.

Bit vectors have a special printed representation consisting of ‘#*’ followed by the bits of the
vector. For example, a bit vector whose elements are 0, 1, 1, 0, and 1, respectively, is printed as

#*01101

Bit vectors are considered constants for evaluation, like vectors, strings, and numbers. See
Section 8.2.1 [Self-Evaluating Forms], page 111.

6.7 Functions That Operate on Bit Vectors

Here are some functions that relate to bit vectors:

Functionbit-vector-p object
This function returns t if object is a bit vector.

(bit-vector-p #*01)
⇒ t

(bit-vector-p [0 1])
⇒ nil

(bit-vector-p "01")
⇒ nil

Functionbitp object
This function returns t if object is either 0 or 1.

Functionbit-vector &rest objects
This function creates and returns a bit vector whose elements are the arguments objects.
The elements must be either of the two integers 0 or 1.

100 XEmacs Lisp Reference Manual

(bit-vector 0 0 0 1 0 0 0 0 1 0)
⇒ #*0001000010

(bit-vector)
⇒ #*

Functionmake-bit-vector length object
This function creates and returns a bit vector consisting of length elements, each initialized
to object.

(setq picket-fence (make-bit-vector 9 1))
⇒ #*111111111

Functionbvconcat &rest sequences
This function returns a new bit vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or bit vectors, all of whose elements are the
integers 0 or 1. If no sequences are given, an empty bit vector is returned.
The value is a newly constructed bit vector that is not eq to any existing bit vector.

(setq a (bvconcat ’(1 1 0) ’(0 0 1)))
⇒ #*110001

(eq a (bvconcat a))
⇒ nil

(bvconcat)
⇒ #*

(bvconcat [1 0 0 0 0] #*111 ’(0 0 0 0 1))
⇒ #*1000011100001

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Functions],
page 154, concat in Section 4.3 [Creating Strings], page 56, vconcat in Section 6.5 [Vector
Functions], page 98, and append in Section 5.5 [Building Lists], page 76.

The append function provides a way to convert a bit vector into a list with the same elements
(see Section 5.5 [Building Lists], page 76):

(setq bv #*00001110)
⇒ #*00001110

(append bv nil)
⇒ (0 0 0 0 1 1 1 0)

Chapter 7: Symbols 101

7 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their components,
their property lists, and how they are created and interned. Separate chapters describe the use of
symbols as variables and as function names; see Chapter 10 [Variables], page 131, and Chapter 11
[Functions], page 147. For the precise read syntax for symbols, see Section 2.4.4 [Symbol Type],
page 18.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

Functionsymbolp object
This function returns t if object is a symbol, nil otherwise.

7.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and printing.
See symbol-name in Section 7.3 [Creating Symbols], page 103.

Value The value cell holds the current value of the symbol as a variable. When a symbol
is used as a form, the value of the form is the contents of the symbol’s value cell.
See symbol-value in Section 10.6 [Accessing Variables], page 137.

Function The function cell holds the function definition of the symbol. When a symbol is
used as a function, its function definition is used in its place. This cell is also used
to make a symbol stand for a keymap or a keyboard macro, for editor command
execution. Because each symbol has separate value and function cells, variables and
function names do not conflict. See symbol-function in Section 11.8 [Function
Cells], page 156.

Property list
The property list cell holds the property list of the symbol. See symbol-plist in
Section 7.4 [Symbol Properties], page 105.

The print name cell always holds a string, and cannot be changed. The other three cells can
be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing symbol
with the specified name before it creates a new one. (In XEmacs Lisp, this lookup uses a hashing
algorithm and an obarray; see Section 7.3 [Creating Symbols], page 103.)

In normal usage, the function cell usually contains a function or macro, as that is what the
Lisp interpreter expects to see there (see Chapter 8 [Evaluation], page 109). Keyboard macros
(see Section 19.13 [Keyboard Macros], page 283), keymaps (see Chapter 20 [Keymaps], page 285)
and autoload objects (see Section 8.2.8 [Autoloading], page 116) are also sometimes stored in the
function cell of symbols. We often refer to “the function foo” when we really mean the function
stored in the function cell of the symbol foo. We make the distinction only when necessary.

The property list cell normally should hold a correctly formatted property list (see Section 5.9
[Property Lists], page 88), as a number of functions expect to see a property list there.

The function cell or the value cell may be void, which means that the cell does not reference
any object. (This is not the same thing as holding the symbol void, nor the same as holding

102 XEmacs Lisp Reference Manual

the symbol nil.) Examining a cell that is void results in an error, such as ‘Symbol’s value as
variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function re-
turn the contents of the four cells of a symbol. Here as an example we show the contents of the
four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)
⇒ "buffer-file-name"

(symbol-value ’buffer-file-name)
⇒ "/gnu/elisp/symbols.texi"

(symbol-plist ’buffer-file-name)
⇒ (variable-documentation 29529)

(symbol-function ’buffer-file-name)
⇒ #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the current
buffer, the value cell contents we see are the name of the source file of this chapter of the
XEmacs Lisp Manual. The property list cell contains the list (variable-documentation 29529)
which tells the documentation functions where to find the documentation string for the variable
buffer-file-name in the ‘DOC’ file. (29529 is the offset from the beginning of the ‘DOC’ file to
where that documentation string begins.) The function cell contains the function for returning
the name of the file. buffer-file-name names a primitive function, which has no read syntax
and prints in hash notation (see Section 2.4.13 [Primitive Function Type], page 24). A symbol
naming a function written in Lisp would have a lambda expression (or a byte-code object) in
this cell.

7.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain symbol
in a particular way. In XEmacs Lisp, you can define a symbol as a variable, or define it as a
function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a
symbol as a variable, you can supply an initial value for the variable, plus documentation for
the variable.

defvar and defconst are special forms that define a symbol as a global variable. They are
documented in detail in Section 10.5 [Defining Variables], page 134.

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of the
symbol. (The term “function definition”, meaning the contents of the function cell, is derived
from the idea that defun gives the symbol its definition as a function.) defsubst, define-
function and defalias are other ways of defining a function. See Chapter 11 [Functions],
page 147.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the function
cell of the symbol. Note that a given symbol can be a macro or a function, but not both at
once, because both macro and function definitions are kept in the function cell, and that cell
can hold only one Lisp object at any given time. See Chapter 12 [Macros], page 161.

In XEmacs Lisp, a definition is not required in order to use a symbol as a variable or function.
Thus, you can make a symbol a global variable with setq, whether you define it first or not.
The real purpose of definitions is to guide programmers and programming tools. They inform
programmers who read the code that certain symbols are intended to be used as variables, or
as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’ recognize definitions,

Chapter 7: Symbols 103

and add appropriate information to tag tables and the ‘DOC’ file. See Section 27.2 [Accessing
Documentation], page 346.

7.3 Creating and Interning Symbols

To understand how symbols are created in XEmacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of
characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then it
“hashes” those characters to find an index in a table called an obarray. Hashing is an efficient
method of looking something up. For example, instead of searching a telephone book cover to
cover when looking up Jan Jones, you start with the J’s and go from there. That is a simple
version of hashing. Each element of the obarray is a bucket which holds all the symbols with a
given hash code; to look for a given name, it is sufficient to look through all the symbols in the
bucket for that name’s hash code.

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to the
obarray. Finding or adding a symbol with a certain name is called interning it, and the symbol
is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the value
of a variable.

In XEmacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, and you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend to
result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern can
enter a symbol in an obarray properly. Do not try to intern one symbol in two obarrays. This
would garble both obarrays, because a symbol has just one slot to hold the following symbol in
the obarray bucket. The results would be unpredictable.

It is possible for two different symbols to have the same name in different obarrays; these
symbols are not eq or equal. However, this normally happens only as part of the abbrev
mechanism (see Chapter 39 [Abbrevs], page 523).

Common Lisp note: In Common Lisp, a single symbol may be interned in several
obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A wrong-
type-argument error is signaled if the name is not a string, or if the obarray is not a vector.

Functionsymbol-name symbol
This function returns the string that is symbol’s name. For example:

104 XEmacs Lisp Reference Manual

(symbol-name ’foo)
⇒ "foo"

Changing the string by substituting characters, etc, does change the name of the symbol,
but fails to update the obarray, so don’t do it!

Functionmake-symbol name
This function returns a newly-allocated, uninterned symbol whose name is name (which
must be a string). Its value and function definition are void, and its property list is nil.
In the example below, the value of sym is not eq to foo because it is a distinct uninterned
symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
⇒ foo

(eq sym ’foo)
⇒ nil

Functionintern name &optional obarray
This function returns the interned symbol whose name is name. If there is no such symbol
in the obarray obarray, intern creates a new one, adds it to the obarray, and returns it.
If obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))
⇒ foo

(eq sym ’foo)
⇒ t

(setq sym1 (intern "foo" other-obarray))
⇒ foo

(eq sym ’foo)
⇒ nil

Functionintern-soft name &optional obarray
This function returns the symbol in obarray whose name is name, or nil if obarray has
no symbol with that name. Therefore, you can use intern-soft to test whether a symbol
with a given name is already interned. If obarray is omitted, the value of the global
variable obarray is used.

(intern-soft "frazzle") ; No such symbol exists.
⇒ nil

(make-symbol "frazzle") ; Create an uninterned one.
⇒ frazzle

(intern-soft "frazzle") ; That one cannot be found.
⇒ nil

(setq sym (intern "frazzle")) ; Create an interned one.
⇒ frazzle

(intern-soft "frazzle") ; That one can be found!
⇒ frazzle

(eq sym ’frazzle) ; And it is the same one.
⇒ t

Variableobarray
This variable is the standard obarray for use by intern and read.

Chapter 7: Symbols 105

Functionmapatoms function &optional obarray
This function calls function for each symbol in the obarray obarray. It returns nil. If
obarray is omitted, it defaults to the value of obarray, the standard obarray for ordinary
symbols.

(setq count 0)
⇒ 0

(defun count-syms (s)
(setq count (1+ count)))
⇒ count-syms

(mapatoms ’count-syms)
⇒ nil

count
⇒ 1871

See documentation in Section 27.2 [Accessing Documentation], page 346, for another
example using mapatoms.

Functionunintern symbol &optional obarray
This function deletes symbol from the obarray obarray. If symbol is not actually in the
obarray, unintern does nothing. If obarray is nil, the current obarray is used.
If you provide a string instead of a symbol as symbol, it stands for a symbol name. Then
unintern deletes the symbol (if any) in the obarray which has that name. If there is no
such symbol, unintern does nothing.
If unintern does delete a symbol, it returns t. Otherwise it returns nil.

7.4 Symbol Properties

A property list (plist for short) is a list of paired elements stored in the property list cell
of a symbol. Each of the pairs associates a property name (usually a symbol) with a property
or value. Property lists are generally used to record information about a symbol, such as its
documentation as a variable, the name of the file where it was defined, or perhaps even the
grammatical class of the symbol (representing a word) in a language-understanding system.

Many objects other than symbols can have property lists associated with them, and XEmacs
provides a full complement of functions for working with property lists. See Section 5.9 [Property
Lists], page 88.

The property names and values in a property list can be any Lisp objects, but the names are
usually symbols. They are compared using eq. Here is an example of a property list, found on
the symbol progn when the compiler is loaded:

(lisp-indent-function 0 byte-compile byte-compile-progn)

Here lisp-indent-function and byte-compile are property names, and the other two ele-
ments are the corresponding values.

7.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists], page 85) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not significant
since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If all the associations are recorded in one association list, the

106 XEmacs Lisp Reference Manual

program will need to search that entire list each time a function or variable is to be operated
on. By contrast, if the information is recorded in the property lists of the function names or
variables themselves, each search will scan only the length of one property list, which is usually
short. This is why the documentation for a variable is recorded in a property named variable-
documentation. The byte compiler likewise uses properties to record those functions needing
special treatment.

However, association lists have their own advantages. Depending on your application, it may
be faster to add an association to the front of an association list than to update a property. All
properties for a symbol are stored in the same property list, so there is a possibility of a conflict
between different uses of a property name. (For this reason, it is a good idea to choose property
names that are probably unique, such as by including the name of the library in the property
name.) An association list may be used like a stack where associations are pushed on the front
of the list and later discarded; this is not possible with a property list.

7.4.2 Property List Functions for Symbols

Functionsymbol-plist symbol
This function returns the property list of symbol.

Functionsetplist symbol plist
This function sets symbol’s property list to plist. Normally, plist should be a well-formed
property list, but this is not enforced.

(setplist ’foo ’(a 1 b (2 3) c nil))
⇒ (a 1 b (2 3) c nil)

(symbol-plist ’foo)
⇒ (a 1 b (2 3) c nil)

For symbols in special obarrays, which are not used for ordinary purposes, it may make
sense to use the property list cell in a nonstandard fashion; in fact, the abbrev mechanism
does so (see Chapter 39 [Abbrevs], page 523).

Functionget symbol property
This function finds the value of the property named property in symbol’s property list. If
there is no such property, nil is returned. Thus, there is no distinction between a value
of nil and the absence of the property.
The name property is compared with the existing property names using eq, so any object
is a legitimate property.
See put for an example.

Functionput symbol property value
This function puts value onto symbol’s property list under the property name property,
replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)
⇒’transitive

(put ’fly ’noun ’(a buzzing little bug))
⇒ (a buzzing little bug)

(get ’fly ’verb)
⇒ transitive

(symbol-plist ’fly)
⇒ (verb transitive noun (a buzzing little bug))

Chapter 7: Symbols 107

7.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other than
symbols:

Functiongetf plist property &optional default
This returns the value of the property property stored in the property list plist. For
example,

(getf ’(foo 4) ’foo)
⇒ 4

Functionputf plist property value
This stores value as the value of the property property in the property list plist. It may
modify plist destructively, or it may construct a new list structure without altering the
old. The function returns the modified property list, so you can store that back in the
place where you got plist. For example,

(setq my-plist ’(bar t foo 4))
⇒ (bar t foo 4)

(setq my-plist (putf my-plist ’foo 69))
⇒ (bar t foo 69)

(setq my-plist (putf my-plist ’quux ’(a)))
⇒ (quux (a) bar t foo 5)

Functionplists-eq a b
This function returns non-nil if property lists a and b are eq. This means that the
property lists have the same values for all the same properties, where comparison between
values is done using eq.

Functionplists-equal a b
This function returns non-nil if property lists a and b are equal.

Both of the above functions do order-insensitive comparisons.
(plists-eq ’(a 1 b 2 c nil) ’(b 2 a 1))

⇒ t
(plists-eq ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))

⇒ nil
(plists-equal ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))

⇒ t

108 XEmacs Lisp Reference Manual

Chapter 8: Evaluation 109

8 Evaluation

The evaluation of expressions in XEmacs Lisp is performed by the Lisp interpreter—a pro-
gram that receives a Lisp object as input and computes its value as an expression. How it
does this depends on the data type of the object, according to rules described in this chapter.
The interpreter runs automatically to evaluate portions of your program, but can also be called
explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The fact that
expressions are data objects and not merely text is one of the fundamental differences between
Lisp-like languages and typical programming languages. Any object can be evaluated, but in
practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se does
not evaluate anything; it converts the printed representation of a Lisp object to the object itself.
It is up to the caller of read whether this object is a form to be evaluated, or serves some entirely
different purpose. See Section 17.3 [Input Functions], page 229.

Do not confuse evaluation with command key interpretation. The editor command loop
translates keyboard input into a command (an interactively callable function) using the active
keymaps, and then uses call-interactively to invoke the command. The execution of the
command itself involves evaluation if the command is written in Lisp, but that is not a part of
command key interpretation itself. See Chapter 19 [Command Loop], page 255.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument of
the function call, and then evaluates each form in the function body. Consider evaluation of the
form (car x): the subform x must first be evaluated recursively, so that its value can be passed
as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 11
[Functions], page 147. The execution of the function may itself work by evaluating the function
definition; or the function may be a Lisp primitive implemented in C, or it may be a byte-
compiled function (see Chapter 15 [Byte Compilation], page 187).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.1 Whenever the form refers to a variable
without creating a new binding for it, the value of the binding in the current environment is
used. See Chapter 10 [Variables], page 131.

Evaluation of a form may create new environments for recursive evaluation by binding vari-
ables (see Section 10.3 [Local Variables], page 132). These environments are temporary and
vanish by the time evaluation of the form is complete. The form may also make changes that
persist; these changes are called side effects. An example of a form that produces side effects is
(setq foo 1).

The details of what evaluation means for each kind of form are described below (see Section 8.2
[Forms], page 111).

8.1 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is computed

1 This definition of “environment” is specifically not intended to include all the data that can
affect the result of a program.

110 XEmacs Lisp Reference Manual

at run time, such as after reading a form from text being edited or getting one from a property
list. On these occasions, use the eval function.

Please note: it is generally cleaner and more flexible to call functions that are stored in
data structures, rather than to evaluate expressions stored in data structures. Using functions
provides the ability to pass information to them as arguments.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation (see
Chapter 14 [Loading], page 177).

Functioneval form
This is the basic function for performing evaluation. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the type of
the object (see Section 8.2 [Forms], page 111).
Since eval is a function, the argument expression that appears in a call to eval is evaluated
twice: once as preparation before eval is called, and again by the eval function itself.
Here is an example:

(setq foo ’bar)
⇒ bar

(setq bar ’baz)
⇒ baz

;; eval receives argument bar, which is the value of foo
(eval foo)

⇒ baz
(eval ’foo)

⇒ bar

The number of currently active calls to eval is limited to max-lisp-eval-depth (see
below).

Commandeval-region start end &optional stream
This function evaluates the forms in the current buffer in the region defined by the positions
start and end. It reads forms from the region and calls eval on them until the end of the
region is reached, or until an error is signaled and not handled.
If stream is supplied, standard-output is bound to it during the evaluation.
You can use the variable load-read-function to specify a function for eval-region to
use instead of read for reading expressions. See Section 14.1 [How Programs Do Loading],
page 177.
eval-region always returns nil.

Commandeval-buffer buffer &optional stream
This is like eval-region except that it operates on the whole contents of buffer.

Variablemax-lisp-eval-depth
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-eval-
depth"). This counts internal uses of those functions, such as for calling the functions
mentioned in Lisp expressions, and recursive evaluation of function call arguments and
function body forms.
This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

Chapter 8: Evaluation 111

The default value of this variable is 500. If you set it to a value less than 100, Lisp will
reset it to 100 if the given value is reached.
max-specpdl-size provides another limit on nesting. See Section 10.3 [Local Variables],
page 132.

Variablevalues
The value of this variable is a list of the values returned by all the expressions that were
read from buffers (including the minibuffer), evaluated, and printed. The elements are
ordered most recent first.

(setq x 1)
⇒ 1

(list ’A (1+ 2) auto-save-default)
⇒ (A 3 t)

values
⇒ ((A 3 t) 1 ...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;; Refer to the most recent evaluation result.
(nth 0 values)

⇒ (A 3 t)
;; That put a new element on,
;; so all elements move back one.
(nth 1 values)

⇒ (A 3 t)
;; This gets the element that was next-to-most-recent
;; before this example.
(nth 3 values)

⇒ 1

8.2 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How XEmacs evaluates a
form depends on its data type. XEmacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds, starting
with “all other types” which are self-evaluating forms.

8.2.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms evaluate
to themselves: the result of evaluation is the same object that was evaluated. Thus, the number
25 evaluates to 25, and the string "foo" evaluates to the string "foo". Likewise, evaluation of a
vector does not cause evaluation of the elements of the vector—it returns the same vector with
its contents unchanged.

’123 ; An object, shown without evaluation.
⇒ 123

123 ; Evaluated as usual—result is the same.
⇒ 123

112 XEmacs Lisp Reference Manual

(eval ’123) ; Evaluated “by hand”—result is the same.
⇒ 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
⇒ 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for types
that lack a read syntax, because there’s no way to write them textually. It is possible to construct
Lisp expressions containing these types by means of a Lisp program. Here is an example:

;; Build an expression containing a buffer object.
(setq buffer (list ’print (current-buffer)))

⇒ (print #<buffer eval.texi>)
;; Evaluate it.
(eval buffer)

a #<buffer eval.texi>
⇒ #<buffer eval.texi>

8.2.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s value, if
it has one. If it has none (if its value cell is void), an error is signaled. For more information on
the use of variables, see Chapter 10 [Variables], page 131.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)
⇒ 123

(eval ’a)
⇒ 123

a
⇒ 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and the
value of t is always t; you cannot set or bind them to any other values. Thus, these two symbols
act like self-evaluating forms, even though eval treats them like any other symbol.

8.2.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form, ac-
cording to its first element. These three kinds of forms are evaluated in different ways, described
below. The remaining list elements constitute the arguments for the function, macro, or special
form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

8.2.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol. See

Chapter 8: Evaluation 113

Section 11.3 [Function Names], page 151, for more information about using a symbol as a name
for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in which
case the subroutine symbol-function signals a void-function error. But if neither of these
things happens, we eventually obtain a non-symbol, which ought to be a function or other
suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of these
types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set the
function cell of a symbol and symbol-function to get the function cell contents (see Section 11.8
[Function Cells], page 156). Specifically, we store the symbol car into the function cell of first,
and the symbol first into the function cell of erste.

;; Build this function cell linkage:
;; ------------- ----- ------- -------
;; | #<subr car> | <-- | car | <-- | first | <-- | erste |
;; ------------- ----- ------- -------

(symbol-function ’car)
⇒ #<subr car>

(fset ’first ’car)
⇒ car

(fset ’erste ’first)
⇒ first

(erste ’(1 2 3)) ; Call the function referenced by erste.
⇒ 1

By contrast, the following example calls a function without any symbol function indirection,
because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
’(1 2 3))

⇒ 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol function
indirection explicitly.

Functionindirect-function function
This function returns the meaning of function as a function. If function is a symbol, then
it finds function’s function definition and starts over with that value. If function is not a
symbol, then it returns function itself.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)

(indirect-function (symbol-function function))
function))

114 XEmacs Lisp Reference Manual

8.2.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object or
primitive function object, then that list is a function call. For example, here is a call to the
function +:

(+ 1 x)

The first step in evaluating a function call is to evaluate the remaining elements of the list
from left to right. The results are the actual argument values, one value for each list element.
The next step is to call the function with this list of arguments, effectively using the function
apply (see Section 11.5 [Calling Functions], page 153). If the function is written in Lisp, the
arguments are used to bind the argument variables of the function (see Section 11.2 [Lambda
Expressions], page 148); then the forms in the function body are evaluated in order, and the
value of the last body form becomes the value of the function call.

8.2.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro call.
When a macro call is evaluated, the elements of the rest of the list are not initially evaluated.
Instead, these elements themselves are used as the arguments of the macro. The macro definition
computes a replacement form, called the expansion of the macro, to be evaluated in place of the
original form. The expansion may be any sort of form: a self-evaluating constant, a symbol, or
a list. If the expansion is itself a macro call, this process of expansion repeats until some other
sort of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the macro
expansion is not necessarily evaluated right away, or at all, because other programs also expand
macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro ex-
pansion, but instead appear as part of the expansion, so they are computed when the expansion
is computed.

For example, given a macro defined as follows:
(defmacro cadr (x)

(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))

Note that the argument (assq ’handler list) appears in the expansion.
See Chapter 12 [Macros], page 161, for a complete description of XEmacs Lisp macros.

8.2.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are used
without evaluation. Whether a particular argument is evaluated may depend on the results of
evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in XEmacs Lisp with a reference
to where each is described.

Chapter 8: Evaluation 115

and see Section 9.3 [Combining Conditions], page 119
catch see Section 9.5.1 [Catch and Throw], page 121
cond see Section 9.2 [Conditionals], page 118
condition-case

see Section 9.5.3.3 [Handling Errors], page 125
defconst see Section 10.5 [Defining Variables], page 134
defmacro see Section 12.4 [Defining Macros], page 163
defun see Section 11.4 [Defining Functions], page 151
defvar see Section 10.5 [Defining Variables], page 134
function see Section 11.7 [Anonymous Functions], page 155
if see Section 9.2 [Conditionals], page 118
interactive

see Section 19.3 [Interactive Call], page 260
let
let* see Section 10.3 [Local Variables], page 132
or see Section 9.3 [Combining Conditions], page 119
prog1
prog2
progn see Section 9.1 [Sequencing], page 117
quote see Section 8.3 [Quoting], page 116
save-current-buffer

see Section 34.3 [Excursions], page 448
save-excursion

see Section 34.3 [Excursions], page 448
save-restriction

see Section 34.4 [Narrowing], page 449
save-selected-window

see Section 34.3 [Excursions], page 448
save-window-excursion

see Section 31.16 [Window Configurations], page 423
setq see Section 10.7 [Setting Variables], page 137
setq-default

see Section 10.9.2 [Creating Buffer-Local], page 142
unwind-protect

see Section 9.5 [Nonlocal Exits], page 121
while see Section 9.4 [Iteration], page 121
with-output-to-temp-buffer

see Section 45.8 [Temporary Displays], page 593

Common Lisp note: here are some comparisons of special forms in XEmacs Lisp
and Common Lisp. setq, if, and catch are special forms in both XEmacs Lisp
and Common Lisp. defun is a special form in XEmacs Lisp, but a macro in Com-
mon Lisp. save-excursion is a special form in XEmacs Lisp, but doesn’t exist in
Common Lisp. throw is a special form in Common Lisp (because it must be able
to throw multiple values), but it is a function in XEmacs Lisp (which doesn’t have
multiple values).

116 XEmacs Lisp Reference Manual

8.2.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has not
yet been loaded into XEmacs. It specifies which file contains the definition. When an autoload
object appears as a symbol’s function definition, calling that symbol as a function automatically
loads the specified file; then it calls the real definition loaded from that file. See Section 14.2
[Autoload], page 180.

8.3 Quoting

The special form quote returns its single argument, as written, without evaluating it. This
provides a way to include constant symbols and lists, which are not self-evaluating objects, in
a program. (It is not necessary to quote self-evaluating objects such as numbers, strings, and
vectors.)

Special Formquote object
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for it.
An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a list whose
first element is quote, and whose second element is the object. Thus, the read syntax ’x is an
abbreviation for (quote x).

Here are some examples of expressions that use quote:
(quote (+ 1 2))

⇒ (+ 1 2)
(quote foo)

⇒ foo
’foo

⇒ foo
’’foo

⇒ (quote foo)
’(quote foo)

⇒ (quote foo)
[’foo]

⇒ [(quote foo)]

Other quoting constructs include function (see Section 11.7 [Anonymous Functions],
page 155), which causes an anonymous lambda expression written in Lisp to be compiled, and
‘‘’ (see Section 12.5 [Backquote], page 163), which is used to quote only part of a list, while
computing and substituting other parts.

Chapter 9: Control Structures 117

9 Control Structures

A Lisp program consists of expressions or forms (see Section 8.2 [Forms], page 111). We
control the order of execution of the forms by enclosing them in control structures. Control
structures are special forms which control when, whether, or how many times to execute the
forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and so
on. This is what happens when you write several forms in succession in the body of a function,
or at top level in a file of Lisp code—the forms are executed in the order written. We call this
textual order. For example, if a function body consists of two forms a and b, evaluation of the
function evaluates first a and then b, and the function’s value is the value of b.

Explicit control structures make possible an order of execution other than sequential.
XEmacs Lisp provides several kinds of control structure, including other varieties of sequenc-

ing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in control
structures are special forms since their subforms are not necessarily evaluated or not evaluated
sequentially. You can use macros to define your own control structure constructs (see Chapter 12
[Macros], page 161).

9.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes from one
form to another. In some contexts, such as in a function body, this happens automatically.
Elsewhere you must use a control structure construct to do this: progn, the simplest control
construct of Lisp.

A progn special form looks like this:
(progn a b c ...)

and it says to execute the forms a, b, c and so on, in that order. These forms are called the
body of the progn form. The value of the last form in the body becomes the value of the entire
progn.

In the early days of Lisp, progn was the only way to execute two or more forms in succession
and use the value of the last of them. But programmers found they often needed to use a progn
in the body of a function, where (at that time) only one form was allowed. So the body of
a function was made into an “implicit progn”: several forms are allowed just as in the body
of an actual progn. Many other control structures likewise contain an implicit progn. As a
result, progn is not used as often as it used to be. It is needed now most often inside an
unwind-protect, and, or, or in the then-part of an if.

Special Formprogn forms. . .
This special form evaluates all of the forms, in textual order, returning the result of the
final form.

(progn (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The third form"

Two other control constructs likewise evaluate a series of forms but return a different value:

118 XEmacs Lisp Reference Manual

Special Formprog1 form1 forms. . .
This special form evaluates form1 and all of the forms, in textual order, returning the
result of form1.

(prog1 (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The first form"

Here is a way to remove the first element from a list in the variable x, then return the
value of that former element:

(prog1 (car x) (setq x (cdr x)))

Special Formprog2 form1 form2 forms. . .
This special form evaluates form1, form2, and all of the following forms, in textual order,
returning the result of form2.

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
a "The first form"
a "The second form"
a "The third form"

⇒ "The second form"

9.2 Conditionals

Conditional control structures choose among alternatives. XEmacs Lisp has two conditional
forms: if, which is much the same as in other languages, and cond, which is a generalized case
statement.

Special Formif condition then-form else-forms. . .
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 9.1
[Sequencing], page 117.)
If condition has the value nil, and no else-forms are given, if returns nil.
if is a special form because the branch that is not selected is never evaluated—it is
ignored. Thus, in the example below, true is not printed because print is never called.

(if nil
(print ’true)

’very-false)
⇒ very-false

Special Formcond clause. . .
cond chooses among an arbitrary number of alternatives. Each clause in the cond must be
a list. The car of this list is the condition; the remaining elements, if any, the body-forms.
Thus, a clause looks like this:

Chapter 9: Control Structures 119

(condition body-forms...)

cond tries the clauses in textual order, by evaluating the condition of each clause. If the
value of condition is non-nil, the clause “succeeds”; then cond evaluates its body-forms,
and the value of the last of body-forms becomes the value of the cond. The remaining
clauses are ignored.
If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.
If every condition evaluates to nil, so that every clause fails, cond returns nil.
A clause may also look like this:

(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value of the
cond form.
The following example has four clauses, which test for the cases where the value of x is a
number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause

((symbolp x) (symbol-value x)))

Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t body-
forms). The form t evaluates to t, which is never nil, so this clause never fails, provided
the cond gets to it at all.
For example,

(cond ((eq a ’hack) ’foo)
(t "default"))

⇒ "default"

This expression is a cond which returns foo if the value of a is 1, and returns the string
"default" otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b c)
≡
(cond (a b) (t c))

9.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually as
kinds of multiple conditional constructs.

Functionnot condition
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the name
null if you are testing for an empty list.

120 XEmacs Lisp Reference Manual

Special Formand conditions. . .
The and special form tests whether all the conditions are true. It works by evaluating the
conditions one by one in the order written.
If any of the conditions evaluates to nil, then the result of the and must be nil regardless
of the remaining conditions; so and returns right away, ignoring the remaining conditions.
If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form.
Here is an example. The first condition returns the integer 1, which is not nil. Similarly,
the second condition returns the integer 2, which is not nil. The third condition is nil,
so the remaining condition is never evaluated.

(and (print 1) (print 2) nil (print 3))
a 1
a 2

⇒ nil

Here is a more realistic example of using and:

(if (and (consp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an error.
and can be expressed in terms of either if or cond. For example:

(and arg1 arg2 arg3)
≡
(if arg1 (if arg2 arg3))
≡
(cond (arg1 (cond (arg2 arg3))))

Special Formor conditions. . .
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.
If any of the conditions evaluates to a non-nil value, then the result of the or must be
non-nil; so or returns right away, ignoring the remaining conditions. The value it returns
is the non-nil value of the condition just evaluated.
If all the conditions turn out nil, then the or expression returns nil.
For example, this expression tests whether x is either 0 or nil:

(or (eq x nil) (eq x 0))

Like the and construct, or can be written in terms of cond. For example:

(or arg1 arg2 arg3)
≡
(cond (arg1)

(arg2)
(arg3))

You could almost write or in terms of if, but not quite:

(if arg1 arg1
(if arg2 arg2

arg3))

This is not completely equivalent because it can evaluate arg1 or arg2 twice. By contrast,
(or arg1 arg2 arg3) never evaluates any argument more than once.

Chapter 9: Control Structures 121

9.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want to
repeat some computation once for each element of a list, or once for each integer from 0 to n.
You can do this in XEmacs Lisp with the special form while:

Special Formwhile condition forms. . .
while first evaluates condition. If the result is non-nil, it evaluates forms in textual order.
Then it reevaluates condition, and if the result is non-nil, it evaluates forms again. This
process repeats until condition evaluates to nil.
There is no limit on the number of iterations that may occur. The loop will continue until
either condition evaluates to nil or until an error or throw jumps out of it (see Section 9.5
[Nonlocal Exits], page 121).
The value of a while form is always nil.

(setq num 0)
⇒ 0

(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
a Iteration 0.
a Iteration 1.
a Iteration 2.
a Iteration 3.
⇒ nil

If you would like to execute something on each iteration before the end-test, put it together
with the end-test in a progn as the first argument of while, as shown here:

(while (progn
(forward-line 1)
(not (looking-at "^$"))))

This moves forward one line and continues moving by lines until it reaches an empty. It
is unusual in that the while has no body, just the end test (which also does the real work
of moving point).

9.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in XEmacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs being
exited.

9.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The function
throw is the exception to this rule of normal program execution: it performs a nonlocal exit on
request. (There are other exceptions, but they are for error handling only.) throw is used inside
a catch, and jumps back to that catch. For example:

122 XEmacs Lisp Reference Manual

(catch ’foo
(progn

...
(throw ’foo t)
...))

The throw transfers control straight back to the corresponding catch, which returns immedi-
ately. The code following the throw is not executed. The second argument of throw is used as
the return value of the catch.

The throw and the catch are matched through the first argument: throw searches for a
catch whose first argument is eq to the one specified. Thus, in the above example, the throw
specifies foo, and the catch specifies the same symbol, so that catch is applicable. If there is
more than one applicable catch, the innermost one takes precedence.

Executing throw exits all Lisp constructs up to the matching catch, including function calls.
When binding constructs such as let or function calls are exited in this way, the bindings are
unbound, just as they are when these constructs exit normally (see Section 10.3 [Local Vari-
ables], page 132). Likewise, throw restores the buffer and position saved by save-excursion
(see Section 34.3 [Excursions], page 448), and the narrowing status saved by save-restriction
and the window selection saved by save-window-excursion (see Section 31.16 [Window Con-
figurations], page 423). It also runs any cleanups established with the unwind-protect special
form when it exits that form (see Section 9.5.4 [Cleanups], page 128).

The throw need not appear lexically within the catch that it jumps to. It can equally well
be called from another function called within the catch. As long as the throw takes place
chronologically after entry to the catch, and chronologically before exit from it, it has access to
that catch. This is why throw can be used in commands such as exit-recursive-edit that
throw back to the editor command loop (see Section 19.10 [Recursive Editing], page 281).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and go,
for example. XEmacs Lisp has only throw.

Special Formcatch tag body. . .
catch establishes a return point for the throw function. The return point is distinguished
from other such return points by tag, which may be any Lisp object. The argument tag
is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual order.
If the forms execute normally, without error or nonlocal exit, the value of the last body
form is returned from the catch.

If a throw is done within body specifying the same value tag, the catch exits immediately;
the value it returns is whatever was specified as the second argument of throw.

Functionthrow tag value
The purpose of throw is to return from a return point previously established with catch.
The argument tag is used to choose among the various existing return points; it must be
eq to the value specified in the catch. If multiple return points match tag, the innermost
one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with data
(tag value).

Chapter 9: Control Structures 123

9.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0 to 9:

(defun search-foo ()
(catch ’loop

(let ((i 0))
(while (< i 10)

(let ((j 0))
(while (< j 10)

(if (foo i j)
(throw ’loop (list i j)))

(setq j (1+ j))))
(setq i (1+ i))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)
(catch tag

(throw ’hack ’yes)))
⇒ catch2

(catch ’hack
(print (catch2 ’hack))
’no)
a yes
⇒ no

Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value is
printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:

(defun catch2 (tag)
(catch tag

(throw ’hack ’yes)))
⇒ catch2

(catch ’hack
(print (catch2 ’quux))
’no)

⇒ yes

We still have two return points, but this time only the outer one has the tag hack; the inner one
has the tag quux instead. Therefore, throw makes the outer catch return the value yes. The
function print is never called, and the body-form ’no is never evaluated.

9.5.3 Errors

124 XEmacs Lisp Reference Manual

When XEmacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated,
it signals an error.

When an error is signaled, XEmacs’s default reaction is to print an error message and ter-
minate execution of the current command. This is the right thing to do in most cases, such as
if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example, the
program may have made temporary changes in data structures, or created temporary buffers
that should be deleted before the program is finished. In such cases, you would use unwind-
protect to establish cleanup expressions to be evaluated in case of error. (See Section 9.5.4
[Cleanups], page 128.) Occasionally, you may wish the program to continue execution despite an
error in a subroutine. In these cases, you would use condition-case to establish error handlers
to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the program
to another; use catch and throw instead. See Section 9.5.1 [Catch and Throw], page 121.

9.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the car of an integer or move forward a character at the
end of the buffer; you can also signal errors explicitly with the functions error and signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is handled
almost like an error. See Section 19.8 [Quitting], page 278.

Functionerror format-string &rest args
This function signals an error with an error message constructed by applying format (see
Section 4.7 [String Conversion], page 60) to format-string and args.
These examples show typical uses of error:

(error "You have committed an error.
Try something else.")

error You have committed an error.
Try something else.

(error "You have committed %d errors." 10)
error You have committed 10 errors.

error works by calling signal with two arguments: the error symbol error, and a list
containing the string returned by format.
If you want to use your own string as an error message verbatim, don’t just write (error
string). If string contains ‘%’, it will be interpreted as a format specifier, with undesirable
results. Instead, use (error "%s" string).

Functionsignal error-symbol data
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.
The argument error-symbol must be an error symbol—a symbol bearing a property error-
conditions whose value is a list of condition names. This is how XEmacs Lisp classifies
different sorts of errors.
The number and significance of the objects in data depends on error-symbol. For example,
with a wrong-type-arg error, there are two objects in the list: a predicate that describes

Chapter 9: Control Structures 125

the type that was expected, and the object that failed to fit that type. See Section 9.5.3.4
[Error Symbols], page 127, for a description of error symbols.
Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data) (see
Section 9.5.3.3 [Handling Errors], page 125). If the error is not handled, these two values
are used in printing the error message.
The function signal never returns (though in older Emacs versions it could sometimes
return).

(signal ’wrong-number-of-arguments ’(x y))
error Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition."))
error peculiar error: "My unknown error condition."

Common Lisp note: XEmacs Lisp has nothing like the Common Lisp concept of
continuable errors.

9.5.3.2 How XEmacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler is
a sequence of Lisp expressions designated to be executed if an error happens in part of the Lisp
program. If the error has an applicable handler, the handler is executed, and control resumes
following the handler. The handler executes in the environment of the condition-case that
established it; all functions called within that condition-case have already been exited, and
the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and control
returns to the editor command loop, because the command loop has an implicit handler for all
kinds of errors. The command loop’s handler uses the error symbol and associated data to print
an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is enabled if
the variable debug-on-error (see Section 16.1.1 [Error Debugging], page 197) is non-nil. Unlike
error handlers, the debugger runs in the environment of the error, so that you can examine values
of variables precisely as they were at the time of the error.

9.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and return
immediately to the XEmacs editor command loop. You can arrange to trap errors occurring in
a part of your program by establishing an error handler, with the special form condition-case.
A simple example looks like this:

(condition-case nil
(delete-file filename)

(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.
The second argument of condition-case is called the protected form. (In the example

above, the protected form is a call to delete-file.) The error handlers go into effect when this
form begins execution and are deactivated when this form returns. They remain in effect for all
the intervening time. In particular, they are in effect during the execution of functions called by
this form, in their subroutines, and so on. This is a good thing, since, strictly speaking, errors

126 XEmacs Lisp Reference Manual

can be signaled only by Lisp primitives (including signal and error) called by the protected
form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more condition
names (which are symbols) to specify which errors it will handle. The error symbol specified
when an error is signaled also defines a list of condition names. A handler applies to an error if
they have any condition names in common. In the example above, there is one handler, and it
specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle the
same error, the inner of the two will actually handle it.

When an error is handled, control returns to the handler. Before this happens, XEmacs
unbinds all variable bindings made by binding constructs that are being exited and executes the
cleanups of all unwind-protect forms that are exited. Once control arrives at the handler, the
body of the handler is executed.

After execution of the handler body, execution continues by returning from the condition-
case form. Because the protected form is exited completely before execution of the handler, the
handler cannot resume execution at the point of the error, nor can it examine variable bindings
that were made within the protected form. All it can do is clean up and proceed.

condition-case is often used to trap errors that are predictable, such as failure to open a file
in a call to insert-file-contents. It is also used to trap errors that are totally unpredictable,
such as when the program evaluates an expression read from the user.

Error signaling and handling have some resemblance to throw and catch, but they are entirely
separate facilities. An error cannot be caught by a catch, and a throw cannot be handled by
an error handler (though using throw when there is no suitable catch signals an error that can
be handled).

Special Formcondition-case var protected-form handlers. . .
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-form.
Each of the handlers is a list of the form (conditions body...). Here conditions is an
error condition name to be handled, or a list of condition names; body is one or more
Lisp expressions to be executed when this handler handles an error. Here are examples of
handlers:

(error nil)

(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it is. The
error-conditions property of this symbol is a list of condition names (see Section 9.5.3.4
[Error Symbols], page 127). Emacs searches all the active condition-case forms for a
handler that specifies one or more of these condition names; the innermost matching
condition-case handles the error. Within this condition-case, the first applicable
handler handles the error.
After executing the body of the handler, the condition-case returns normally, using the
value of the last form in the handler body as the overall value.

Chapter 9: Control Structures 127

The argument var is a variable. condition-case does not bind this variable when execut-
ing the protected-form, only when it handles an error. At that time, it binds var locally to
a list of the form (error-symbol . data), giving the particulars of the error. The handler
can refer to this list to decide what to do. For example, if the error is for failure opening
a file, the file name is the second element of data—the third element of var.
If var is nil, that means no variable is bound. Then the error symbol and associated data
are not available to the handler.

Here is an example of using condition-case to handle the error that results from dividing
by zero. The handler prints out a warning message and returns a very large number.

(defun safe-divide (dividend divisor)
(condition-case err

;; Protected form.
(/ dividend divisor)

;; The handler.
(arith-error ; Condition.
(princ (format "Arithmetic error: %s" err))
1000000)))

⇒ safe-divide

(safe-divide 5 0)
a Arithmetic error: (arith-error)

⇒ 1000000

The handler specifies condition name arith-error so that it will handle only division-by-zero
errors. Other kinds of errors will not be handled, at least not by this condition-case. Thus,

(safe-divide nil 3)
error Wrong type argument: integer-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with
error:

(setq baz 34)
⇒ 34

(condition-case err
(if (eq baz 35)

t
;; This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))

;; This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))

2))
a The error was: (error "Rats! The variable baz was 34, not 35")
⇒ 2

9.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you have
in mind. Each error has one and only one error symbol to categorize it. This is the finest
classification of errors defined by the XEmacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error con-
ditions, identified by condition names. The narrowest such classes belong to the error symbols
themselves: each error symbol is also a condition name. There are also condition names for

128 XEmacs Lisp Reference Manual

more extensive classes, up to the condition name error which takes in all kinds of errors. Thus,
each error has one or more condition names: error, the error symbol if that is distinct from
error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members of this
list.) Thus, the hierarchy of condition names is defined by the error-conditions properties of
the error symbols.

In addition to the error-conditions list, the error symbol should have an error-message
property whose value is a string to be printed when that error is signaled but not handled. If
the error-message property exists, but is not a string, the error message ‘peculiar error’ is
used.

Here is how we define a new error symbol, new-error:
(put ’new-error

’error-conditions
’(error my-own-errors new-error))

⇒ (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
⇒ "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-errors,
which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period. This
is for consistency with the rest of Emacs.

Naturally, XEmacs will never signal new-error on its own; only an explicit call to signal
(see Section 9.5.3.1 [Signaling Errors], page 124) in your code can do this:

(signal ’new-error ’(x y))
error A new error: x, y

This error can be handled through any of the three condition names. This example handles
new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)

(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names used
to match errors with handlers. An error symbol serves only as a convenient way to specify the
intended error message and list of condition names. It would be cumbersome to give signal a
list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease the
power of condition-case. Condition names make it possible to categorize errors at various
levels of generality when you write an error handler. Using error symbols alone would eliminate
all but the narrowest level of classification.

See Appendix C [Standard Errors], page 701, for a list of all the standard error symbols and
their conditions.

9.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data structure
in an inconsistent state; it permits you to ensure the data are consistent in the event of an error
or throw.

Chapter 9: Control Structures 129

Special Formunwind-protect body cleanup-forms. . .
unwind-protect executes the body with a guarantee that the cleanup-forms will be eval-
uated if control leaves body, no matter how that happens. The body may complete
normally, or execute a throw out of the unwind-protect, or cause an error; in all cases,
the cleanup-forms will be evaluated.
If the body forms finish normally, unwind-protect returns the value of the last body form,
after it evaluates the cleanup-forms. If the body forms do not finish, unwind-protect
does not return any value in the normal sense.
Only the body is actually protected by the unwind-protect. If any of the cleanup-
forms themselves exits nonlocally (e.g., via a throw or an error), unwind-protect is not
guaranteed to evaluate the rest of them. If the failure of one of the cleanup-forms has
the potential to cause trouble, then protect it with another unwind-protect around that
form.
The number of currently active unwind-protect forms counts, together with the number
of local variable bindings, against the limit max-specpdl-size (see Section 10.3 [Local
Variables], page 132).

For example, here we make an invisible buffer for temporary use, and make sure to kill it
before finishing:

(save-excursion
(let ((buffer (get-buffer-create " *temp*")))

(set-buffer buffer)
(unwind-protect

body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and dis-
pense with the variable buffer. However, the way shown above is safer, if body happens to
get an error after switching to a different buffer! (Alternatively, you could write another save-
excursion around the body, to ensure that the temporary buffer becomes current in time to
kill it.)

Here is an actual example taken from the file ‘ftp.el’. It creates a process (see Chapter 49
[Processes], page 607) to try to establish a connection to a remote machine. As the function
ftp-login is highly susceptible to numerous problems that the writer of the function cannot
anticipate, it is protected with a form that guarantees deletion of the process in the event of
failure. Otherwise, XEmacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect

(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))

(message "Logged in")
(error "Ftp login failed")))

(or win (and process (delete-process process)))))

This example actually has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process is
set, the process will not be killed. There is no easy way to fix this bug, but at least it is very
unlikely.

Here is another example which uses unwind-protect to make sure to kill a temporary buffer.
In this example, the value returned by unwind-protect is used.

(defun shell-command-string (cmd)
"Return the output of the shell command CMD, as a string."

130 XEmacs Lisp Reference Manual

(save-excursion
(set-buffer (generate-new-buffer " OS*cmd"))
(shell-command cmd t)
(unwind-protect

(buffer-string)
(kill-buffer (current-buffer)))))

Chapter 10: Variables 131

10 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written using
the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 7.1 [Symbol Components], page 101.

The Lisp objects that constitute a Lisp program determine the textual form of the program—
it is simply the read syntax for those Lisp objects. This is why, for example, a variable in a
textual Lisp program is written using the read syntax for the symbol that represents the variable.

10.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just one
value at a time, and this value is in effect (at least for the moment) throughout the Lisp system.
The value remains in effect until you specify a new one. When a new value replaces the old one,
no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument, the
name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an expression.
Thus,

x ⇒ (a b)

assuming the setq form shown above has already been executed.
If you do another setq, the new value replaces the old one:

x
⇒ (a b)

(setq x 4)
⇒ 4

x
⇒ 4

10.2 Variables That Never Change

In XEmacs Lisp, some symbols always evaluate to themselves: the two special symbols nil
and t, as well as keyword symbols, that is, symbols whose name begins with the character ‘:’.
These symbols cannot be rebound, nor can their value cells be changed. An attempt to change
the value of nil or t signals a setting-constant error.

nil ≡ ’nil
⇒ nil

(setq nil 500)
error Attempt to set constant symbol: nil

132 XEmacs Lisp Reference Manual

10.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Sometimes
it is useful to create variable values that exist temporarily—only while within a certain part of
the program. These values are called local, and the variables so used are called local variables.

For example, when a function is called, its argument variables receive new local values that
last until the function exits. The let special form explicitly establishes new local values for
specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean time,
we say that the previous value is shadowed and not visible. Both global and local values may
be shadowed (see Section 10.8.1 [Scope], page 139).

If you set a variable (such as with setq) while it is local, this replaces the local value; it does
not alter the global value, or previous local values that are shadowed. To model this behavior,
we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored within
it. Use of setq or set while there is a local binding stores a different value into the local binding;
it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is kept.
A variable can have more than one local binding at a time (for example, if there are nested

let forms that bind it). In such a case, the most recently created local binding that still exists is
the current binding of the variable. (This is called dynamic scoping ; see Section 10.8 [Variable
Scoping], page 139.) If there are no local bindings, the variable’s global binding is its current
binding. We also call the current binding the most-local existing binding, for emphasis. Ordinary
evaluation of a symbol always returns the value of its current binding.

The special forms let and let* exist to create local bindings.

Special Formlet (bindings. . .) forms. . .
This special form binds variables according to bindings and then evaluates all of the forms
in textual order. The let-form returns the value of the last form in forms.
Each of the bindings is either (i) a symbol, in which case that symbol is bound to nil; or
(ii) a list of the form (symbol value-form), in which case symbol is bound to the result of
evaluating value-form. If value-form is omitted, nil is used.
All of the value-forms in bindings are evaluated in the order they appear and before any
of the symbols are bound. Here is an example of this: Z is bound to the old value of Y,
which is 2, not the new value, 1.

(setq Y 2)
⇒ 2

(let ((Y 1)
(Z Y))

(list Y Z))
⇒ (1 2)

Special Formlet* (bindings. . .) forms. . .
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression in
bindings can reasonably refer to the preceding symbols bound in this let* form. Compare
the following example with the example above for let.

Chapter 10: Variables 133

(setq Y 2)
⇒ 2

(let* ((Y 1)
(Z Y)) ; Use the just-established value of Y.

(list Y Z))
⇒ (1 1)

Here is a complete list of the other facilities that create local bindings:
• Function calls (see Chapter 11 [Functions], page 147).
• Macro calls (see Chapter 12 [Macros], page 161).
• condition-case (see Section 9.5.3 [Errors], page 124).

Variables can also have buffer-local bindings (see Section 10.9 [Buffer-Local Variables],
page 141). These kinds of bindings work somewhat like ordinary local bindings, but they are
localized depending on “where” you are in Emacs, rather than localized in time.

Variablemax-specpdl-size
This variable defines the limit on the total number of local variable bindings and unwind-
protect cleanups (see Section 9.5 [Nonlocal Exits], page 121) that are allowed before
signaling an error (with data "Variable binding depth exceeds max-specpdl-size").
This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.
The default value is 600.
max-lisp-eval-depth provides another limit on depth of nesting. See Section 8.1 [Eval],
page 109.

10.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object in it.
If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and can
be the value of a variable just as any other object can be; but it is a value. A void variable does
not have any value.

After you have given a variable a value, you can make it void once more using makunbound.

Functionmakunbound symbol
This function makes the current binding of symbol void. Subsequent attempts to use this
symbol’s value as a variable will signal the error void-variable, unless or until you set
it again.
makunbound returns symbol.

(makunbound ’x) ; Make the global value
; of x void.

⇒ x
x

error Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This is
the only way a symbol can have a void local binding, since all the constructs that create
local bindings create them with values. In this case, the voidness lasts at most as long as

134 XEmacs Lisp Reference Manual

the binding does; when the binding is removed due to exit from the construct that made
it, the previous or global binding is reexposed as usual, and the variable is no longer void
unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
⇒ 1

(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)

error Symbol’s value as variable is void: x
x ; The global binding is unchanged.

⇒ 1

(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))

(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
⇒ 2

A variable that has been made void with makunbound is indistinguishable from one that has
never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

Functionboundp variable
boundp returns t if variable (a symbol) is not void; more precisely, if its current binding
is not void. It returns nil otherwise.

(boundp ’abracadabra) ; Starts out void.
⇒ nil

(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))
⇒ t

(boundp ’abracadabra) ; Still globally void.
⇒ nil

(setq abracadabra 5) ; Make it globally nonvoid.
⇒ 5

(boundp ’abracadabra)
⇒ t

10.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable defi-
nition: a special form, either defconst or defvar.

In XEmacs Lisp, definitions serve three purposes. First, they inform people who read the
code that certain symbols are intended to be used a certain way (as variables). Second, they
inform the Lisp system of these things, supplying a value and documentation. Third, they

Chapter 10: Variables 135

provide information to utilities such as etags and make-docfile, which create data bases of
the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving to
inform human readers of whether programs will change the variable. XEmacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes the
variable, while defvar initializes it only if it is void.

One would expect user option variables to be defined with defconst, since programs do not
change them. Unfortunately, this has bad results if the definition is in a library that is not
preloaded: defconst would override any prior value when the library is loaded. Users would
like to be able to set user options in their init files, and override the default values given in the
definitions. For this reason, user options must be defined with defvar.

Special Formdefvar symbol [value [doc-string]]
This special form defines symbol as a value and initializes it. The definition informs a
person reading your code that symbol is used as a variable that programs are likely to
set or change. It is also used for all user option variables except in the preloaded parts
of XEmacs. Note that symbol is not evaluated; the symbol to be defined must appear
explicitly in the defvar.
If symbol already has a value (i.e., it is not void), value is not even evaluated, and symbol’s
value remains unchanged. If symbol is void and value is specified, defvar evaluates it and
sets symbol to the result. (If value is omitted, the value of symbol is not changed in any
case.)
When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun evaluates it as a defconst. The purpose of this is to make
sure the variable’s value is reinitialized, when you ask for it specifically.
If symbol has a buffer-local binding in the current buffer, defvar sets the default value,
not the local value. See Section 10.9 [Buffer-Local Variables], page 141.
If the doc-string argument appears, it specifies the documentation for the variable. (This
opportunity to specify documentation is one of the main benefits of defining the variable.)
The documentation is stored in the symbol’s variable-documentation property. The
XEmacs help functions (see Chapter 27 [Documentation], page 345) look for this property.
If the first character of doc-string is ‘*’, it means that this variable is considered a user
option. This lets users set the variable conveniently using the commands set-variable
and edit-options.
For example, this form defines foo but does not set its value:

(defvar foo)
⇒ foo

The following example sets the value of bar to 23, and gives it a documentation string:
(defvar bar 23

"The normal weight of a bar.")
⇒ bar

The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ 23) is
not even performed.)

(defvar bar (1+ 23)
"*The normal weight of a bar.")
⇒ bar

bar
⇒ 23

136 XEmacs Lisp Reference Manual

Here is an equivalent expression for the defvar special form:

(defvar symbol value doc-string)
≡
(progn

(if (not (boundp ’symbol))
(setq symbol value))

(put ’symbol ’variable-documentation ’doc-string)
’symbol)

The defvar form returns symbol, but it is normally used at top level in a file where its
value does not matter.

Special Formdefconst symbol [value [doc-string]]
This special form defines symbol as a value and initializes it. It informs a person reading
your code that symbol has a global value, established here, that will not normally be
changed or locally bound by the execution of the program. The user, however, may be
welcome to change it. Note that symbol is not evaluated; the symbol to be defined must
appear explicitly in the defconst.
defconst always evaluates value and sets the global value of symbol to the result, provided
value is given. If symbol has a buffer-local binding in the current buffer, defconst sets
the default value, not the local value.
Please note: Don’t use defconst for user option variables in libraries that are not stan-
dardly preloaded. The user should be able to specify a value for such a variable in the
‘.emacs’ file, so that it will be in effect if and when the library is loaded later.
Here, pi is a constant that presumably ought not to be changed by anyone (attempts by
the Indiana State Legislature notwithstanding). As the second form illustrates, however,
this is only advisory.

(defconst pi 3.1415 "Pi to five places.")
⇒ pi

(setq pi 3)
⇒ pi

pi
⇒ 3

Functionuser-variable-p variable
This function returns t if variable is a user option—a variable intended to be set by the
user for customization—and nil otherwise. (Variables other than user options exist for
the internal purposes of Lisp programs, and users need not know about them.)
User option variables are distinguished from other variables by the first character of the
variable-documentation property. If the property exists and is a string, and its first
character is ‘*’, then the variable is a user option.

If a user option variable has a variable-interactive property, the set-variable command
uses that value to control reading the new value for the variable. The property’s value is used
as if it were the argument to interactive.

Warning: If the defconst and defvar special forms are used while the variable has a local
binding, they set the local binding’s value; the global binding is not changed. This is not what
we really want. To prevent it, use these special forms at top level in a file, where normally no
local binding is in effect, and make sure to load the file before making a local binding for the
variable.

Chapter 10: Variables 137

10.6 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Section 8.2.2
[Symbol Forms], page 112). This requires you to specify the variable name when you write the
program. Usually that is exactly what you want to do. Occasionally you need to choose at run
time which variable to reference; then you can use symbol-value.

Functionsymbol-value symbol
This function returns the value of symbol. This is the value in the innermost local binding
of the symbol, or its global value if it has no local bindings.

(setq abracadabra 5)
⇒ 5

(setq foo 9)
⇒ 9

;; Here the symbol abracadabra
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value ’abracadabra))
⇒ foo

;; Here the value of abracadabra,
;; which is foo,
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value abracadabra))
⇒ 9

(symbol-value ’abracadabra)
⇒ 5

A void-variable error is signaled if symbol has neither a local binding nor a global value.

10.7 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When you
need to compute the choice of variable at run time, use the function set.

Special Formsetq [symbol form]. . .
This special form is the most common method of changing a variable’s value. Each symbol
is given a new value, which is the result of evaluating the corresponding form. The most-
local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”
The value of the setq form is the value of the last form.

(setq x (1+ 2))
⇒ 3

x ; x now has a global value.
⇒ 3

(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
⇒ 6

138 XEmacs Lisp Reference Manual

x ; The global value is unchanged.
⇒ 3

Note that the first form is evaluated, then the first symbol is set, then the second form is
evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
⇒ 11

Functionset symbol value
This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.
The most-local existing binding of the variable is the binding that is set; shadowed bindings
are not affected.

(set one 1)
error Symbol’s value as variable is void: one
(set ’one 1)

⇒ 1
(set ’two ’one)

⇒ one
(set two 2) ; two evaluates to symbol one.

⇒ 2
one ; So it is one that was set.

⇒ 2
(let ((one 1)) ; This binding of one is set,

(set ’one 3) ; not the global value.
one)
⇒ 3

one
⇒ 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.
(set ’(x y) ’z)

error Wrong type argument: symbolp, (x y)

Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given the
availability of set. However, set itself is rarely used; beginners hardly need to know
about it. It is useful only for choosing at run time which variable to set. For example, the
command set-variable, which reads a variable name from the user and then sets the
variable, needs to use set.

Common Lisp note: In Common Lisp, set always changes the symbol’s special
value, ignoring any lexical bindings. In XEmacs Lisp, all variables and all
bindings are (in effect) special, so set always affects the most local existing
binding.

One other function for setting a variable is designed to add an element to a list if it is not
already present in the list.

Functionadd-to-list symbol element
This function sets the variable symbol by consing element onto the old value, if element
is not already a member of that value. It returns the resulting list, whether updated or
not. The value of symbol had better be a list already before the call.

Chapter 10: Variables 139

The argument symbol is not implicitly quoted; add-to-list is an ordinary function, like
set and unlike setq. Quote the argument yourself if that is what you want.
Here’s a scenario showing how to use add-to-list:

(setq foo ’(a b))
⇒ (a b)

(add-to-list ’foo ’c) ;; Add c.
⇒ (c a b)

(add-to-list ’foo ’b) ;; No effect.
⇒ (c a b)

foo ;; foo was changed.
⇒ (c a b)

An equivalent expression for (add-to-list ’var value) is this:
(or (member value var)

(setq var (cons value var)))

10.8 Scoping Rules for Variable Bindings

A given symbol foo may have several local variable bindings, established at different places
in the Lisp program, as well as a global binding. The most recently established binding takes
precedence over the others.

Local bindings in XEmacs Lisp have indefinite scope and dynamic extent. Scope refers to
where textually in the source code the binding can be accessed. Indefinite scope means that any
part of the program can potentially access the variable binding. Extent refers to when, as the
program is executing, the binding exists. Dynamic extent means that the binding lasts as long
as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local variable
must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynamically
scoped, like variables in XEmacs Lisp.

10.8.1 Scope

XEmacs Lisp uses indefinite scope for local variable bindings. This means that any function
anywhere in the program text might access a given binding of a variable. Consider the following
function definitions:

(defun binder (x) ; x is bound in binder.
(foo 5)) ; foo is some other function.

(defun user () ; x is used in user.
(list x))

In a lexically scoped language, the binding of x in binder would never be accessible in user,
because user is not textually contained within the function binder. However, in dynamically
scoped XEmacs Lisp, user may or may not refer to the binding of x established in binder,
depending on circumstances:

140 XEmacs Lisp Reference Manual

• If we call user directly without calling binder at all, then whatever binding of x is found,
it cannot come from binder.

• If we define foo as follows and call binder, then the binding made in binder will be seen
in user:

(defun foo (lose)
(user))

• If we define foo as follows and call binder, then the binding made in binder will not be
seen in user:

(defun foo (x)
(user))

Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow the
one made in binder.) Therefore, user will access the x bound by foo instead of the one
bound by binder.

10.8.2 Extent

Extent refers to the time during program execution that a variable name is valid. In XEmacs
Lisp, a variable is valid only while the form that bound it is executing. This is called dynamic
extent. “Local” or “automatic” variables in most languages, including C and Pascal, have
dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable binding
can live on past the exit from the form that made the binding. Common Lisp and Scheme, for
example, support this, but XEmacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to add n
to its own argument m. This would work in Common Lisp, but it does not work as intended in
XEmacs Lisp, because after the call to make-add exits, the variable n is no longer bound to the
actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
⇒ make-add

(fset ’add2 (make-add 2)) ; Define function add2
; with (make-add 2).

⇒ (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.

error Symbol’s value as variable is void: n

Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. XEmacs Lisp does not have closures.

10.8.3 Implementation of Dynamic Scoping

A simple sample implementation (which is not how XEmacs Lisp actually works) may help
you understand dynamic binding. This technique is called deep binding and was used in early
Lisp systems.

Suppose there is a stack of bindings: variable-value pairs. At entry to a function or to a let
form, we can push bindings on the stack for the arguments or local variables created there. We
can pop those bindings from the stack at exit from the binding construct.

We can find the value of a variable by searching the stack from top to bottom for a binding
for that variable; the value from that binding is the value of the variable. To set the variable,
we search for the current binding, then store the new value into that binding.

Chapter 10: Variables 141

As you can see, a function’s bindings remain in effect as long as it continues execution, even
during its calls to other functions. That is why we say the extent of the binding is dynamic.
And any other function can refer to the bindings, if it uses the same variables while the bindings
are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in XEmacs Lisp uses a technique called shallow
binding. Each variable has a standard place in which its current value is always found—the value
cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Creating a
new binding works by pushing the old value (belonging to a previous binding) on a stack, and
storing the local value in the value cell. Eliminating a binding works by popping the old value
off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster, since
there is never a need to search for a binding.

10.8.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but if used
without restraint, it can make programs hard to understand. There are two clean ways to use
this technique:
• Use or bind the variable only in a few related functions, written close together in one file.

Such a variable is used for communication within one program.
You should write comments to inform other programmers that they can see all uses of the
variable before them, and to advise them not to add uses elsewhere.

• Give the variable a well-defined, documented meaning, and make all appropriate functions
refer to it (but not bind it or set it) wherever that meaning is relevant. For example,
the variable case-fold-search is defined as “non-nil means ignore case when searching”;
various search and replace functions refer to it directly or through their subroutines, but
do not bind or set it.
Then you can bind the variable in other programs, knowing reliably what the effect will be.

In either case, you should define the variable with defvar. This helps other people understand
your program by telling them to look for inter-function usage. It also avoids a warning from the
byte compiler. Choose the variable’s name to avoid name conflicts—don’t use short names like
x.

10.9 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form or
another. XEmacs also supports another, unusual kind of variable binding: buffer-local bindings,
which apply only to one buffer. XEmacs Lisp is meant for programming editing commands, and
having different values for a variable in different buffers is an important customization method.

10.9.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so the global
binding is unchanged; this means that the change is visible in that buffer alone.

142 XEmacs Lisp Reference Manual

A variable may have buffer-local bindings in some buffers but not in others. The global
binding is shared by all the buffers that don’t have their own bindings. Thus, if you set the
variable in a buffer that does not have a buffer-local binding for it, the new value is visible in
all buffers except those with buffer-local bindings. (Here we are assuming that there are no
let-style local bindings to complicate the issue.)

The most common use of buffer-local bindings is for major modes to change variables that
control the behavior of commands. For example, C mode and Lisp mode both set the variable
paragraph-start to specify that only blank lines separate paragraphs. They do this by making
the variable buffer-local in the buffer that is being put into C mode or Lisp mode, and then
setting it to the new value for that mode.

The usual way to make a buffer-local binding is with make-local-variable, which is what
major mode commands use. This affects just the current buffer; all other buffers (including
those yet to be created) continue to share the global value.

A more powerful operation is to mark the variable as automatically buffer-local by calling
make-variable-buffer-local. You can think of this as making the variable local in all buffers,
even those yet to be created. More precisely, the effect is that setting the variable automatically
makes the variable local to the current buffer if it is not already so. All buffers start out by
sharing the global value of the variable as usual, but any setq creates a buffer-local binding
for the current buffer. The new value is stored in the buffer-local binding, leaving the (default)
global binding untouched. The global value can no longer be changed with setq; you need to
use setq-default to do that.

Local variables in a file you edit are also represented by buffer-local bindings for the buffer
that holds the file within XEmacs. See Section 26.1.3 [Auto Major Mode], page 332.

10.9.2 Creating and Deleting Buffer-Local Bindings

Commandmake-local-variable variable
This function creates a buffer-local binding in the current buffer for variable (a symbol).
Other buffers are not affected. The value returned is variable.

The buffer-local value of variable starts out as the same value variable previously had. If
variable was void, it remains void.

;; In buffer ‘b1’:
(setq foo 5) ; Affects all buffers.

⇒ 5
(make-local-variable ’foo) ; Now it is local in ‘b1’.

⇒ foo
foo ; That did not change

⇒ 5 ; the value.
(setq foo 6) ; Change the value

⇒ 6 ; in ‘b1’.
foo

⇒ 6

;; In buffer ‘b2’, the value hasn’t changed.
(save-excursion

(set-buffer "b2")
foo)
⇒ 5

Chapter 10: Variables 143

Making a variable buffer-local within a let-binding for that variable does not work. This
is because let does not distinguish between different kinds of bindings; it knows only
which variable the binding was made for.
Please note: do not use make-local-variable for a hook variable. Instead, use make-
local-hook. See Section 26.4 [Hooks], page 342.

Commandmake-variable-buffer-local variable
This function marks variable (a symbol) automatically buffer-local, so that any subsequent
attempt to set it will make it local to the current buffer at the time.
The value returned is variable.

Functionlocal-variable-p variable &optional buffer
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

Functionbuffer-local-variables &optional buffer
This function returns a list describing the buffer-local variables in buffer buffer. It returns
an association list (see Section 5.8 [Association Lists], page 85) in which each association
contains one buffer-local variable and its value. When a buffer-local variable is void in
buffer, then it appears directly in the resulting list. If buffer is omitted, the current buffer
is used.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq lcl (buffer-local-variables))

;; First, built-in variables local in all buffers:
⇒ ((mark-active . nil)

(buffer-undo-list nil)
(mode-name . "Fundamental")
...
;; Next, non-built-in local variables.
;; This one is local and void:
foobar
;; This one is local and nonvoid:
(bind-me . 69))

Note that storing new values into the cdrs of cons cells in this list does not change the
local values of the variables.

Commandkill-local-variable variable
This function deletes the buffer-local binding (if any) for variable (a symbol) in the current
buffer. As a result, the global (default) binding of variable becomes visible in this buffer.
Usually this results in a change in the value of variable, since the global value is usually
different from the buffer-local value just eliminated.
If you kill the local binding of a variable that automatically becomes local when set, this
makes the global value visible in the current buffer. However, if you set the variable again,
that will once again create a local binding for it.
kill-local-variable returns variable.
This function is a command because it is sometimes useful to kill one buffer-local variable
interactively, just as it is useful to create buffer-local variables interactively.

144 XEmacs Lisp Reference Manual

Functionkill-all-local-variables
This function eliminates all the buffer-local variable bindings of the current buffer except
for variables marked as “permanent”. As a result, the buffer will see the default values of
most variables.
This function also resets certain other information pertaining to the buffer: it sets the
local keymap to nil, the syntax table to the value of standard-syntax-table, and the
abbrev table to the value of fundamental-mode-abbrev-table.
Every major mode command begins by calling this function, which has the effect of switch-
ing to Fundamental mode and erasing most of the effects of the previous major mode. To
ensure that this does its job, the variables that major modes set should not be marked
permanent.
kill-all-local-variables returns nil.

A local variable is permanent if the variable name (a symbol) has a permanent-local prop-
erty that is non-nil. Permanent locals are appropriate for data pertaining to where the file
came from or how to save it, rather than with how to edit the contents.

10.9.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect except when specifically overridden.

The functions default-value and setq-default access and change a variable’s default value
regardless of whether the current buffer has a buffer-local binding. For example, you could use
setq-default to change the default setting of paragraph-start for most buffers; and this
would work even when you are in a C or Lisp mode buffer that has a buffer-local value for this
variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any local value.

Functiondefault-value symbol
This function returns symbol’s default value. This is the value that is seen in buffers
that do not have their own values for this variable. If symbol is not buffer-local, this is
equivalent to symbol-value (see Section 10.6 [Accessing Variables], page 137).

Functiondefault-boundp symbol
The function default-boundp tells you whether symbol’s default value is nonvoid. If
(default-boundp ’foo) returns nil, then (default-value ’foo) would get an error.
default-boundp is to default-value as boundp is to symbol-value.

Special Formsetq-default symbol value
This sets the default value of symbol to value. It does not evaluate symbol, but does
evaluate value. The value of the setq-default form is value.
If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for the
current buffer, then this changes the value that other buffers will see (as long as they don’t
have a buffer-local value), but not the value that the current buffer sees.

;; In buffer ‘foo’:
(make-local-variable ’local)

⇒ local

Chapter 10: Variables 145

(setq local ’value-in-foo)
⇒ value-in-foo

(setq-default local ’new-default)
⇒ new-default

local
⇒ value-in-foo

(default-value ’local)
⇒ new-default

;; In (the new) buffer ‘bar’:
local

⇒ new-default
(default-value ’local)

⇒ new-default
(setq local ’another-default)

⇒ another-default
(default-value ’local)

⇒ another-default

;; Back in buffer ‘foo’:
local

⇒ value-in-foo
(default-value ’local)

⇒ another-default

Functionset-default symbol value
This function is like setq-default, except that symbol is evaluated.

(set-default (car ’(a b c)) 23)
⇒ 23

(default-value ’a)
⇒ 23

10.10 Variable Aliases

You can define a variable as an alias for another. Any time you reference the former variable,
the current value of the latter is returned. Any time you change the value of the former variable,
the value of the latter is actually changed. This is useful in cases where you want to rename a
variable but still make old code work (see Section 27.6 [Obsoleteness], page 352).

Functiondefvaralias variable alias
This function defines variable as an alias for alias. Thenceforth, any operations performed
on variable will actually be performed on alias. Both variable and alias should be symbols.
If alias is nil, remove any aliases for variable. alias can itself be aliased, and the chain of
variable aliases will be followed appropriately. If variable already has a value, this value
will be shadowed until the alias is removed, at which point it will be restored. Currently
variable cannot be a built-in variable, a variable that has a buffer-local value in any buffer,
or the symbols nil or t.

Functionvariable-alias variable
If variable is aliased to another variable, this function returns that variable. variable
should be a symbol. If variable is not aliased, this function returns nil.

146 XEmacs Lisp Reference Manual

Functionindirect-variable object
This function returns the variable at the end of object’s variable-alias chain. If object is
a symbol, follow all variable aliases and return the final (non-aliased) symbol. If object is
not a symbol, just return it. Signal a cyclic-variable-indirection error if there is a
loop in the variable chain of symbols.

Chapter 11: Functions 147

11 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what functions
are, how they accept arguments, and how to define them.

11.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values called
arguments. The result of the computation is called the value of the function. The computation
can also have side effects: lasting changes in the values of variables or the contents of data
structures.

Here are important terms for functions in XEmacs Lisp and for other function-like objects.

function In XEmacs Lisp, a function is anything that can be applied to arguments in a Lisp
program. In some cases, we use it more specifically to mean a function written in
Lisp. Special forms and macros are not functions.

primitive A primitive is a function callable from Lisp that is written in C, such as car or
append. These functions are also called built-in functions or subrs. (Special forms
are also considered primitives.)
Usually the reason that a function is a primitives is because it is fundamental,
because it provides a low-level interface to operating system services, or because
it needs to run fast. Primitives can be modified or added only by changing the
C sources and recompiling the editor. See section “Writing Lisp Primitives” in
XEmacs Internals Manual.

lambda expression
A lambda expression is a function written in Lisp. These are described in the
following section.

special form
A special form is a primitive that is like a function but does not evaluate all of
its arguments in the usual way. It may evaluate only some of the arguments, or
may evaluate them in an unusual order, or several times. Many special forms are
described in Chapter 9 [Control Structures], page 117.

macro A macro is a construct defined in Lisp by the programmer. It differs from a function
in that it translates a Lisp expression that you write into an equivalent expression to
be evaluated instead of the original expression. Macros enable Lisp programmers to
do the sorts of things that special forms can do. See Chapter 12 [Macros], page 161,
for how to define and use macros.

command A command is an object that command-execute can invoke; it is a possible defini-
tion for a key sequence. Some functions are commands; a function written in Lisp
is a command if it contains an interactive declaration (see Section 19.2 [Defining
Commands], page 256). Such a function can be called from Lisp expressions like
other functions; in this case, the fact that the function is a command makes no
difference.
Keyboard macros (strings and vectors) are commands also, even though they are
not functions. A symbol is a command if its function definition is a command; such
symbols can be invoked with M-x. The symbol is a function as well if the definition
is a function. See Section 19.1 [Command Overview], page 255.

148 XEmacs Lisp Reference Manual

keystroke command
A keystroke command is a command that is bound to a key sequence (typically one
to three keystrokes). The distinction is made here merely to avoid confusion with
the meaning of “command” in non-Emacs editors; for Lisp programs, the distinction
is normally unimportant.

compiled function
A compiled function is a function that has been compiled by the byte compiler. See
Section 2.4.14 [Compiled-Function Type], page 25.

Functionsubrp object
This function returns t if object is a built-in function (i.e., a Lisp primitive).

(subrp ’message) ; message is a symbol,
⇒ nil ; not a subr object.

(subrp (symbol-function ’message))
⇒ t

Functioncompiled-function-p object
This function returns t if object is a compiled function. For example:

(compiled-function-p (symbol-function ’next-line))
⇒ t

11.2 Lambda Expressions

A function written in Lisp is a list that looks like this:
(lambda (arg-variables...)

[documentation-string]
[interactive-declaration]
body-forms...)

Such a list is called a lambda expression. In XEmacs Lisp, it actually is valid as an expression—
it evaluates to itself. In some other Lisp dialects, a lambda expression is not a valid expression
at all. In either case, its main use is not to be evaluated as an expression, but to be called as a
function.

11.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates that
the list represents a function. The reason functions are defined to start with lambda is so that
other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols–the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided. See
Section 10.3 [Local Variables], page 132.

The documentation string is a Lisp string object placed within the function definition to de-
scribe the function for the XEmacs help facilities. See Section 11.2.4 [Function Documentation],
page 150.

The interactive declaration is a list of the form (interactive code-string). This declares
how to provide arguments if the function is used interactively. Functions with this declaration
are called commands; they can be called using M-x or bound to a key. Functions not intended

Chapter 11: Functions 149

to be called in this way should not have interactive declarations. See Section 19.2 [Defining
Commands], page 256, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of the
function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The value
returned by the function is the value returned by the last element of the body.

11.2.2 A Simple Lambda-Expression Example

Consider for example the following function:
(lambda (a b c) (+ a b c))

We can call this function by writing it as the car of an expression, like this:
((lambda (a b c) (+ a b c))
1 2 3)

This call evaluates the body of the lambda expression with the variable a bound to 1, b bound
to 2, and c bound to 3. Evaluation of the body adds these three numbers, producing the result
6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:
((lambda (a b c) (+ a b c))
1 (* 2 3) (- 5 4))

This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies the
lambda expression to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the car of a form in this way. You can
get the same result, of making local variables and giving them values, using the special form let
(see Section 10.3 [Local Variables], page 132). And let is clearer and easier to use. In practice,
lambda expressions are either stored as the function definitions of symbols, to produce named
functions, or passed as arguments to other functions (see Section 11.7 [Anonymous Functions],
page 155).

However, calls to explicit lambda expressions were very useful in the old days of Lisp, before
the special form let was invented. At that time, they were the only way to bind and initialize
local variables.

11.2.3 Advanced Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument variables,
so it must be called with three arguments: if you try to call it with only two arguments or four
arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted. For
example, the function substring accepts three arguments—a string, the start index and the
end index—but the third argument defaults to the length of the string if you omit it. It is also
convenient for certain functions to accept an indefinite number of arguments, as the functions
list and + do.

To specify optional arguments that may be omitted when a function is called, simply include
the keyword &optional before the optional arguments. To specify a list of zero or more extra
arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:
(required-vars...
[&optional optional-vars...]
[&rest rest-var])

150 XEmacs Lisp Reference Manual

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any actual
arguments beyond that unless the lambda list uses &rest. In that case, there may be any
number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always default
to nil. There is no way for the function to distinguish between an explicit argument of nil and
an omitted argument. However, the body of the function is free to consider nil an abbreviation
for some other meaningful value. This is what substring does; nil as the third argument to
substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default value
to use when an optional argument is omitted; XEmacs Lisp always uses nil.

For example, an argument list that looks like this:
(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more arguments
are provided, c and d are bound to them respectively; any arguments after the first four are
collected into a list and e is bound to that list. If there are only two arguments, c is nil; if two
or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that c in the example were optional and d were
required. Suppose three actual arguments are given; which variable would the third argument
be for? Similarly, it makes no sense to have any more arguments (either required or optional)
after a &rest argument.

Here are some examples of argument lists and proper calls:
((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.

⇒ 2
((lambda (n &optional n1) ; One required and one optional:

(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
1 2)

⇒ 3
((lambda (n &rest ns) ; One required and one rest:

(+ n (apply ’+ ns))) ; 1 or more arguments.
1 2 3 4 5)

⇒ 15

11.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda list.
This string does not affect execution of the function; it is a kind of comment, but a systematized
comment which actually appears inside the Lisp world and can be used by the XEmacs help
facilities. See Chapter 27 [Documentation], page 345, for how the documentation-string is
accessed.

It is a good idea to provide documentation strings for all the functions in your program, even
those that are only called from within your program. Documentation strings are like comments,
except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos displays
just this first line. It should consist of one or two complete sentences that summarize the
function’s purpose.

Chapter 11: Functions 151

The start of the documentation string is usually indented in the source file, but since these
spaces come before the starting double-quote, they are not part of the string. Some people make
a practice of indenting any additional lines of the string so that the text lines up in the program
source. This is a mistake. The indentation of the following lines is inside the string; what looks
nice in the source code will look ugly when displayed by the help commands.

You may wonder how the documentation string could be optional, since there are required
components of the function that follow it (the body). Since evaluation of a string returns that
string, without any side effects, it has no effect if it is not the last form in the body. Thus, in
practice, there is no confusion between the first form of the body and the documentation string;
if the only body form is a string then it serves both as the return value and as the documentation.

11.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without a
name is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a list
whose first element is lambda, or a primitive subr-object.

However, a symbol can serve as the name of a function. This happens when you put the
function in the symbol’s function cell (see Section 7.1 [Symbol Components], page 101). Then
the symbol itself becomes a valid, callable function, equivalent to the list or subr-object that its
function cell refers to. The contents of the function cell are also called the symbol’s function
definition. The procedure of using a symbol’s function definition in place of the symbol is called
symbol function indirection; see Section 8.2.4 [Function Indirection], page 112.

In practice, nearly all functions are given names in this way and referred to through their
names. For example, the symbol car works as a function and does what it does because the
primitive subr-object #<subr car> is stored in its function cell.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. For primitive subr-objects such as #<subr car>, names are the only way you can
refer to them: there is no read syntax for such objects. For functions written in Lisp, the name
is more convenient to use in a call than an explicit lambda expression. Also, a function with a
name can refer to itself—it can be recursive. Writing the function’s name in its own definition
is much more convenient than making the function definition point to itself (something that is
not impossible but that has various disadvantages in practice).

We often identify functions with the symbols used to name them. For example, we often speak
of “the function car”, not distinguishing between the symbol car and the primitive subr-object
that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given function
object usually appears in the function cell of only one symbol, this is just a matter of convenience.
It is easy to store it in several symbols using fset; then each of the symbols is equally well a
name for the same function.

A symbol used as a function name may also be used as a variable; these two uses of a symbol
are independent and do not conflict.

11.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun special form.

Special Formdefun name argument-list body-forms
defun is the usual way to define new Lisp functions. It defines the symbol name as a
function that looks like this:

152 XEmacs Lisp Reference Manual

(lambda argument-list . body-forms)

defun stores this lambda expression in the function cell of name. It returns the value
name, but usually we ignore this value.
As described previously (see Section 11.2 [Lambda Expressions], page 148), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two forms in body-forms may be a documentation string and an interactive
declaration.
There is no conflict if the same symbol name is also used as a variable, since the symbol’s
value cell is independent of the function cell. See Section 7.1 [Symbol Components],
page 101.
Here are some examples:

(defun foo () 5)
⇒ foo

(foo)
⇒ 5

(defun bar (a &optional b &rest c)
(list a b c))
⇒ bar

(bar 1 2 3 4 5)
⇒ (1 2 (3 4 5))

(bar 1)
⇒ (1 nil nil)

(bar)
error Wrong number of arguments.

(defun capitalize-backwards ()
"Upcase the last letter of a word."
(interactive)
(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))
⇒ capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even primitive
functions such as car without any hesitation or notification. Redefining a function already
defined is often done deliberately, and there is no way to distinguish deliberate redefinition
from unintentional redefinition.

Functiondefine-function name definition
Functiondefalias name definition

These equivalent special forms define the symbol name as a function, with definition
definition (which can be any valid Lisp function).
The proper place to use define-function or defalias is where a specific function name
is being defined—especially where that name appears explicitly in the source file being
loaded. This is because define-function and defalias record which file defined the
function, just like defun. (see Section 14.5 [Unloading], page 184).
By contrast, in programs that manipulate function definitions for other purposes, it is
better to use fset, which does not keep such records.

See also defsubst, which defines a function like defun and tells the Lisp compiler to open-
code it. See Section 11.9 [Inline Functions], page 158.

Chapter 11: Functions 153

11.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call them,
i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example, evaluating
the list (concat "a" "b") calls the function concat with arguments "a" and "b". See Chapter 8
[Evaluation], page 109, for a description of evaluation.

When you write a list as an expression in your program, the function name is part of the
program. This means that you choose which function to call, and how many arguments to give
it, when you write the program. Usually that’s just what you want. Occasionally you need to
decide at run time which function to call. To do that, use the functions funcall and apply.

Functionfuncall function &rest arguments
funcall calls function with arguments, and returns whatever function returns.
Since funcall is a function, all of its arguments, including function, are evaluated before
funcall is called. This means that you can use any expression to obtain the function
to be called. It also means that funcall does not see the expressions you write for the
arguments, only their values. These values are not evaluated a second time in the act of
calling function; funcall enters the normal procedure for calling a function at the place
where the arguments have already been evaluated.
The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the “uneval-
uated” argument expressions. funcall cannot provide these because, as we saw above, it
never knows them in the first place.

(setq f ’list)
⇒ list

(funcall f ’x ’y ’z)
⇒ (x y z)

(funcall f ’x ’y ’(z))
⇒ (x y (z))

(funcall ’and t nil)
error Invalid function: #<subr and>

Compare these example with the examples of apply.

Functionapply function &rest arguments
apply calls function with arguments, just like funcall but with one difference: the last
of arguments is a list of arguments to give to function, rather than a single argument. We
also say that apply spreads this list so that each individual element becomes an argument.
apply returns the result of calling function. As with funcall, function must either be
a Lisp function or a primitive function; special forms and macros do not make sense in
apply.

(setq f ’list)
⇒ list

(apply f ’x ’y ’z)
error Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

⇒ 10
(apply ’+ ’(1 2 3 4))

⇒ 10

154 XEmacs Lisp Reference Manual

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

For an interesting example of using apply, see the description of mapcar, in Section 11.6
[Mapping Functions], page 154.

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the argument.
Here are two different kinds of no-op function:

Functionidentity arg
This function returns arg and has no side effects.

Functionignore &rest args
This function ignores any arguments and returns nil.

11.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collection.
XEmacs Lisp has three such functions; mapcar and mapconcat, which scan a list, are described
here. For the third mapping function, mapatoms, see Section 7.3 [Creating Symbols], page 103.

Functionmapcar function sequence
mapcar applies function to each element of sequence in turn, and returns a list of the
results.
The argument sequence may be a list, a vector, or a string. The result is always a list.
The length of the result is the same as the length of sequence.
For example:

(mapcar ’car ’((a b) (c d) (e f)))
⇒ (a c e)

(mapcar ’1+ [1 2 3])
⇒ (2 3 4)

(mapcar ’char-to-string "abc")
⇒ ("a" "b" "c")

;; Call each function in my-hooks.
(mapcar ’funcall my-hooks)

(defun mapcar* (f &rest args)
"Apply FUNCTION to successive cars of all ARGS.

Return the list of results."
;; If no list is exhausted,
(if (not (memq ’nil args))

;; apply function to CARs.
(cons (apply f (mapcar ’car args))

(apply ’mapcar* f
;; Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) ’(1 2 3 4))
⇒ ((a . 1) (b . 2) (c . 3))

Chapter 11: Functions 155

Functionmapconcat function sequence separator
mapconcat applies function to each element of sequence: the results, which must be
strings, are concatenated. Between each pair of result strings, mapconcat inserts the string
separator. Usually separator contains a space or comma or other suitable punctuation.
The argument function must be a function that can take one argument and return a string.

(mapconcat ’symbol-name
’(The cat in the hat)
" ")

⇒ "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"
"")

⇒ "IBM.9111"

11.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda, a byte-code function compiled from such
a list, or alternatively a primitive subr-object; names are “extra”. Although usually functions
are defined with defun and given names at the same time, it is occasionally more concise to use
an explicit lambda expression—an anonymous function. Such a list is valid wherever a function
name is.

Any method of creating such a list makes a valid function. Even this:
(setq silly (append ’(lambda (x)) (list (list ’+ (* 3 4) ’x))))
⇒ (lambda (x) (+ 12 x))

This computes a list that looks like (lambda (x) (+ 12 x)) and makes it the value (not the
function definition!) of silly.

Here is how we might call this function:
(funcall silly 1)
⇒ 13

(It does not work to write (silly 1), because this function is not the function definition of
silly. We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For
example, you might want to pass one as an argument to the function mapcar, which applies any
given function to each element of a list. Here we pass an anonymous function that multiplies a
number by two:

(defun double-each (list)
(mapcar ’(lambda (x) (* 2 x)) list))

⇒ double-each
(double-each ’(2 11))
⇒ (4 22)

In such cases, we usually use the special form function instead of simple quotation to quote
the anonymous function.

Special Formfunction function-object
This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the XEmacs Lisp compiler that function-object
is intended to be used only as a function, and therefore can safely be compiled. Contrast
this with quote, in Section 8.3 [Quoting], page 116.

156 XEmacs Lisp Reference Manual

Using function instead of quote makes a difference inside a function or macro that you are
going to compile. For example:

(defun double-each (list)
(mapcar (function (lambda (x) (* 2 x))) list))

⇒ double-each
(double-each ’(2 11))
⇒ (4 22)

If this definition of double-each is compiled, the anonymous function is compiled as well. By
contrast, in the previous definition where ordinary quote is used, the argument passed to mapcar
is the precise list shown:

(lambda (x) (* x 2))

The Lisp compiler cannot assume this list is a function, even though it looks like one, since it
does not know what mapcar does with the list. Perhaps mapcar will check that the car of the
third element is the symbol *! The advantage of function is that it tells the compiler to go
ahead and compile the constant function.

We sometimes write function instead of quote when quoting the name of a function, but
this usage is just a sort of comment.

(function symbol) ≡ (quote symbol) ≡ ’symbol

See documentation in Section 27.2 [Accessing Documentation], page 346, for a realistic
example using function and an anonymous function.

11.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function in Section 8.2.4 [Function Indirection], page 112.

Functionsymbol-function symbol
This returns the object in the function cell of symbol. If the symbol’s function cell is void,
a void-function error is signaled.
This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))
⇒ bar

(symbol-function ’bar)
⇒ (lambda (n) (+ n 2))

(fset ’baz ’bar)
⇒ bar

(symbol-function ’baz)
⇒ bar

If you have never given a symbol any function definition, we say that that symbol’s function
cell is void. In other words, the function cell does not have any Lisp object in it. If you try to
call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void are
Lisp objects, and can be stored into a function cell just as any other object can be (and they
can be valid functions if you define them in turn with defun). A void function cell contains no
object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

Chapter 11: Functions 157

Functionfboundp symbol
This function returns t if the symbol has an object in its function cell, nil otherwise. It
does not check that the object is a legitimate function.

Functionfmakunbound symbol
This function makes symbol’s function cell void, so that a subsequent attempt to access
this cell will cause a void-function error. (See also makunbound, in Section 10.3 [Local
Variables], page 132.)

(defun foo (x) x)
⇒ x

(foo 1)
⇒1

(fmakunbound ’foo)
⇒ x

(foo 1)
error Symbol’s function definition is void: foo

Functionfset symbol object
This function stores object in the function cell of symbol. The result is object. Normally
object should be a function or the name of a function, but this is not checked.
There are three normal uses of this function:
• Copying one symbol’s function definition to another. (In other words, making an

alternate name for a function.)
• Giving a symbol a function definition that is not a list and therefore cannot be made

with defun. For example, you can use fset to give a symbol s1 a function definition
which is another symbol s2; then s1 serves as an alias for whatever definition s2
presently has.

• In constructs for defining or altering functions. If defun were not a primitive, it could
be written in Lisp (as a macro) using fset.

Here are examples of the first two uses:
;; Give first the same definition car has.
(fset ’first (symbol-function ’car))

⇒ #<subr car>
(first ’(1 2 3))

⇒ 1

;; Make the symbol car the function definition of xfirst.
(fset ’xfirst ’car)

⇒ car
(xfirst ’(1 2 3))

⇒ 1
(symbol-function ’xfirst)

⇒ car
(symbol-function (symbol-function ’xfirst))

⇒ #<subr car>

;; Define a named keyboard macro.
(fset ’kill-two-lines "\^u2\^k")

⇒ "\^u2\^k"

See also the related functions define-function and defalias, in Section 11.4 [Defining
Functions], page 151.

158 XEmacs Lisp Reference Manual

When writing a function that extends a previously defined function, the following idiom is
sometimes used:

(fset ’old-foo (symbol-function ’foo))
(defun foo ()
"Just like old-foo, except more so."
(old-foo)
(more-so))

This does not work properly if foo has been defined to autoload. In such a case, when foo
calls old-foo, Lisp attempts to define old-foo by loading a file. Since this presumably defines
foo rather than old-foo, it does not produce the proper results. The only way to avoid this
problem is to make sure the file is loaded before moving aside the old definition of foo.

But it is unmodular and unclean, in any case, for a Lisp file to redefine a function defined
elsewhere.

11.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function
works just like an ordinary function except for one thing: when you compile a call to the function,
the function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages. For
one thing, it reduces flexibility; if you change the definition of the function, calls already inlined
still use the old definition until you recompile them. Since the flexibility of redefining functions
is an important feature of XEmacs, you should not make a function inline unless its speed is
really crucial.

Another disadvantage is that making a large function inline can increase the size of compiled
code both in files and in memory. Since the speed advantage of inline functions is greatest for
small functions, you generally should not make large functions inline.

It’s possible to define a macro to expand into the same code that an inline function would
execute. But the macro would have a limitation: you can use it only explicitly—a macro cannot
be called with apply, mapcar and so on. Also, it takes some work to convert an ordinary function
into a macro. (See Chapter 12 [Macros], page 161.) To convert it into an inline function is very
easy; simply replace defun with defsubst. Since each argument of an inline function is evaluated
exactly once, you needn’t worry about how many times the body uses the arguments, as you do
for macros. (See Section 12.6.1 [Argument Evaluation], page 164.)

Inline functions can be used and open-coded later on in the same file, following the definition,
just like macros.

11.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 11.5 [Calling Functions], page 153.

autoload See Section 14.2 [Autoload], page 180.

call-interactively
See Section 19.3 [Interactive Call], page 260.

commandp See Section 19.3 [Interactive Call], page 260.

Chapter 11: Functions 159

documentation
See Section 27.2 [Accessing Documentation], page 346.

eval See Section 8.1 [Eval], page 109.

funcall See Section 11.5 [Calling Functions], page 153.

ignore See Section 11.5 [Calling Functions], page 153.

indirect-function
See Section 8.2.4 [Function Indirection], page 112.

interactive
See Section 19.2.1 [Using Interactive], page 256.

interactive-p
See Section 19.3 [Interactive Call], page 260.

mapatoms See Section 7.3 [Creating Symbols], page 103.

mapcar See Section 11.6 [Mapping Functions], page 154.

mapconcat
See Section 11.6 [Mapping Functions], page 154.

undefined
See Section 20.8 [Key Lookup], page 293.

160 XEmacs Lisp Reference Manual

Chapter 12: Macros 161

12 Macros

Macros enable you to define new control constructs and other language features. A macro
is defined much like a function, but instead of telling how to compute a value, it tells how to
compute another Lisp expression which will in turn compute the value. We call this expression
the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the arguments,
not on the argument values as functions do. They can therefore construct an expansion con-
taining these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the sake of
speed, consider using an inline function instead. See Section 11.9 [Inline Functions], page 158.

12.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much like
the ++ operator in C. We would like to write (inc x) and have the effect of (setq x (1+ x)).
Here’s a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var has the value x—not the value of x.
The body of the macro uses this to construct the expansion, which is (setq x (1+ x)). Once
the macro definition returns this expansion, Lisp proceeds to evaluate it, thus incrementing x.

12.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name of
the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one crucial
difference: the macro arguments are the actual expressions appearing in the macro call. They
are not evaluated before they are given to the macro definition. By contrast, the arguments of
a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is in-
voked. The argument variables of the macro are bound to the argument values from the macro
call, or to a list of them in the case of a &rest argument. And the macro body executes and
returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned by
the macro body is not the value of the macro call. Instead, it is an alternate expression for
computing that value, also known as the expansion of the macro. The Lisp interpreter proceeds
to evaluate the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other macros.
It may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

Functionmacroexpand form &optional environment
This function expands form, if it is a macro call. If the result is another macro call, it
is expanded in turn, until something which is not a macro call results. That is the value

162 XEmacs Lisp Reference Manual

returned by macroexpand. If form is not a macro call to begin with, it is returned as
given.

Note that macroexpand does not look at the subexpressions of form (although some macro
definitions may do so). Even if they are macro calls themselves, macroexpand does not
expand them.

The function macroexpand does not expand calls to inline functions. Normally there is
no need for that, since a call to an inline function is no harder to understand than a call
to an ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the cur-
rently defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))
⇒ inc

(macroexpand ’(inc r))
⇒ (setq r (1+ r))

(defmacro inc2 (var1 var2)
(list ’progn (list ’inc var1) (list ’inc var2)))
⇒ inc2

(macroexpand ’(inc2 r s))
⇒ (progn (inc r) (inc s)) ; inc not expanded here.

12.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls the
macro definition just as the interpreter would, and receives an expansion. But instead of eval-
uating this expansion, it compiles the expansion as if it had appeared directly in the program.
As a result, the compiled code produces the value and side effects intended for the macro, but
executes at full compiled speed. This would not work if the macro body computed the value
and side effects itself—they would be computed at compile time, which is not useful.

In order for compilation of macro calls to work, the macros must be defined in Lisp when
the calls to them are compiled. The compiler has a special feature to help you do this: if a file
being compiled contains a defmacro form, the macro is defined temporarily for the rest of the
compilation of that file. To use this feature, you must define the macro in the same file where
it is used and before its first use.

Byte-compiling a file executes any require calls at top-level in the file. This is in case
the file needs the required packages for proper compilation. One way to ensure that necessary
macro definitions are available during compilation is to require the files that define them (see
Section 14.4 [Named Features], page 182). To avoid loading the macro definition files when
someone runs the compiled program, write eval-when-compile around the require calls (see
Section 15.5 [Eval During Compile], page 191).

12.4 Defining Macros

Chapter 12: Macros 163

A Lisp macro is a list whose car is macro. Its cdr should be a function; expansion of
the macro works by applying the function (with apply) to the list of unevaluated argument-
expressions from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this is
never done, because it does not make sense to pass an anonymous macro to functionals such as
mapcar. In practice, all Lisp macros have names, and they are usually defined with the special
form defmacro.

Special Formdefmacro name argument-list body-forms. . .
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

This macro object is stored in the function cell of name. The value returned by evaluating
the defmacro form is name, but usually we ignore this value.
The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 11.2.3 [Argument List], page 149). Macros
may have a documentation string, but any interactive declaration is ignored since
macros cannot be called interactively.

12.5 Backquote

Macros often need to construct large list structures from a mixture of constants and noncon-
stant parts. To make this easier, use the macro ‘‘’ (often called backquote).

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 8.3 [Quoting], page 116). For
example, these two forms yield identical results:

‘(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

’(a list of (+ 2 3) elements)
⇒ (a list of (+ 2 3) elements)

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. Backquote evaluates the argument of ‘,’ and puts the value in the list structure:

(list ’a ’list ’of (+ 2 3) ’elements)
⇒ (a list of 5 elements)

‘(a list of ,(+ 2 3) elements)
⇒ (a list of 5 elements)

You can also splice an evaluated value into the resulting list, using the special marker ‘,@’.
The elements of the spliced list become elements at the same level as the other elements of
the resulting list. The equivalent code without using ‘‘’ is often unreadable. Here are some
examples:

(setq some-list ’(2 3))
⇒ (2 3)

(cons 1 (append some-list ’(4) some-list))
⇒ (1 2 3 4 2 3)

‘(1 ,@some-list 4 ,@some-list)
⇒ (1 2 3 4 2 3)

(setq list ’(hack foo bar))
⇒ (hack foo bar)

164 XEmacs Lisp Reference Manual

(cons ’use
(cons ’the

(cons ’words (append (cdr list) ’(as elements)))))
⇒ (use the words foo bar as elements)

‘(use the words ,@(cdr list) as elements)
⇒ (use the words foo bar as elements)

Before Emacs version 19.29, ‘‘’ used a different syntax which required an extra level
of parentheses around the entire backquote construct. Likewise, each ‘,’ or ‘,@’
substitution required an extra level of parentheses surrounding both the ‘,’ or ‘,@’
and the following expression. The old syntax required whitespace between the ‘‘’,
‘,’ or ‘,@’ and the following expression.

This syntax is still accepted, but no longer recommended except for compatibility
with old Emacs versions.

12.6 Common Problems Using Macros

The basic facts of macro expansion have counterintuitive consequences. This section describes
some important consequences that can lead to trouble, and rules to follow to avoid trouble.

12.6.1 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments will
be evaluated when the expansion is executed. The following macro (used to facilitate iteration)
illustrates the problem. This macro allows us to write a simple “for” loop such as one might
find in Pascal.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))

(cons ’while (cons (list ’<= var final)
(append body (list (list ’inc var)))))))

⇒ for

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\n%d %d" i square)))

7→
(let ((i 1))

(while (<= i 3)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

a 1 1
a 2 4
a 3 9

⇒ nil

Chapter 12: Macros 165

(The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely ignored.
The idea is that you will write noise words (such as from, to, and do) in those positions in the
macro call.)

Here’s an equivalent definition simplified through use of backquote:
(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."
‘(let ((,var ,init))

(while (<= ,var ,final)
,@body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that final is
evaluated on every iteration. If final is a constant, this is not a problem. If it is a more complex
form, say (long-complex-calculation x), this can slow down the execution significantly. If
final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an expansion
that evaluates the argument expressions exactly once unless repeated evaluation is part of the
intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((i 1)
(max 3))

(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc i)))

Here is a macro definition that creates this expansion:
(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)

(max ,final))
(while (<= ,var max)

,@body
(inc ,var))))

Unfortunately, this introduces another problem.

12.6.2 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max which
the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do

(let ((this (frob x)))
(if (< max this)

(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 7.3
[Creating Symbols], page 103). The uninterned symbol can be bound and referred to just like
any other symbol, but since it is created by for, we know that it cannot already appear in the
user’s program. Since it is not interned, there is no way the user can put it into the program

166 XEmacs Lisp Reference Manual

later. It will never appear anywhere except where put by for. Here is a definition of for that
works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))

‘(let ((,var ,init)
(,tempvar ,final))

(while (<= ,var ,tempvar)
,@body
(inc ,var)))))

This creates an uninterned symbol named max and puts it in the expansion instead of the usual
interned symbol max that appears in expressions ordinarily.

12.6.3 Evaluating Macro Arguments in Expansion

Another problem can happen if you evaluate any of the macro argument expressions during
the computation of the expansion, such as by calling eval (see Section 8.1 [Eval], page 109).
If the argument is supposed to refer to the user’s variables, you may have trouble if the user
happens to use a variable with the same name as one of the macro arguments. Inside the macro
body, the macro argument binding is the most local binding of this variable, so any references
inside the form being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(list ’setq (eval a) t))
⇒ foo

(setq x ’b)
(foo x) 7→ (setq b t)

⇒ t ; and b has been set.
;; but
(setq a ’c)
(foo a) 7→ (setq a t)

⇒ t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts with
the macro argument variable a.

Another reason not to call eval in a macro definition is that it probably won’t do what you
intend in a compiled program. The byte-compiler runs macro definitions while compiling the
program, when the program’s own computations (which you might have wished to access with
eval) don’t occur and its local variable bindings don’t exist.

The safe way to work with the run-time value of an expression is to put the expression into
the macro expansion, so that its value is computed as part of executing the expansion.

12.6.4 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it is
evaluated in an interpreted function, but is expanded only once (during compilation) for a
compiled function. If the macro definition has side effects, they will work differently depending
on how many times the macro is expanded.

In particular, constructing objects is a kind of side effect. If the macro is called once, then
the objects are constructed only once. In other words, the same structure of objects is used each

Chapter 12: Macros 167

time the macro call is executed. In interpreted operation, the macro is reexpanded each time,
producing a fresh collection of objects each time. Usually this does not matter—the objects
have the same contents whether they are shared or not. But if the surrounding program does
side effects on the objects, it makes a difference whether they are shared. Here is an example:

(defmacro empty-object ()
(list ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))

(if condition
(setcar object condition))

object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is called.
Thus, no side effect survives between calls. If initialize is compiled, then the macro empty-
object is expanded during compilation, producing a single “constant” (nil) that is reused and
altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny kind of
constant, not as a memory allocation construct. You wouldn’t use setcar on a constant such
as ’(nil), so naturally you won’t use it on (empty-object) either.

168 XEmacs Lisp Reference Manual

Chapter 13: Writing Customization Definitions 169

13 Writing Customization Definitions

This chapter describes how to declare user options for customization, and also customization
groups for classifying them. We use the term customization item to include both kinds of
customization definitions—as well as face definitions.

13.1 Common Keywords for All Kinds of Items

All kinds of customization declarations (for variables and groups, and for faces) accept key-
word arguments for specifying various information. This section describes some keywords that
apply to all kinds.

All of these keywords, except :tag, can be used more than once in a given item. Each use
of the keyword has an independent effect. The keyword :tag is an exception because any given
item can only display one name.

:tag name
Use name, a string, instead of the item’s name, to label the item in customization
menus and buffers.

:group group
Put this customization item in group group. When you use :group in a defgroup,
it makes the new group a subgroup of group.
If you use this keyword more than once, you can put a single item into more than
one group. Displaying any of those groups will show this item. Be careful not to
overdo this!

:link link-data
Include an external link after the documentation string for this item. This is a
sentence containing an active field which references some other documentation.
There are three alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in "(emacs)Top". The link appears as ‘[manual]’ in the cus-
tomization buffer.

(info-link info-node)
Like custom-manual except that the link appears in the customization
buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the url. The link
appears in the customization buffer as url.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-link :tag "foo"
"(emacs)Top") makes a link to the Emacs manual which appears in the buffer as
‘foo’.
An item can have more than one external link; however, most items have none at
all.

:load file Load file file (a string) before displaying this customization item. Loading is done
with load-library, and only if the file is not already loaded.

170 XEmacs Lisp Reference Manual

:require feature
Require feature feature (a symbol) when installing a value for this item (an option
or a face) that was saved using the customization feature. This is done by calling
require.
The most common reason to use :require is when a variable enables a feature such
as a minor mode, and just setting the variable won’t have any effect unless the code
which implements the mode is loaded.

13.2 Defining Custom Groups

Each Emacs Lisp package should have one main customization group which contains all the
options, faces and other groups in the package. If the package has a small number of options
and faces, use just one group and put everything in it. When there are more than twelve or so
options and faces, then you should structure them into subgroups, and put the subgroups under
the package’s main customization group. It is OK to put some of the options and faces in the
package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one or
more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

Macrodefgroup group members doc [keyword value]...
Declare group as a customization group containing members. Do not quote the symbol
group. The argument doc specifies the documentation string for the group.
The argument members is a list specifying an initial set of customization items to be
members of the group. However, most often members is nil, and you specify the group’s
members by using the :group keyword when defining those members.
If you want to specify group members through members, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing that
symbol. Useful widgets are custom-variable for a variable, custom-face for a face, and
custom-group for a group.
In addition to the common keywords (see Section 13.1 [Common Keywords], page 169),
you can use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, then the tag for that
item is constructed (by default) by omitting prefix.
One group can have any number of prefixes.

13.3 Defining Customization Variables

Use defcustom to declare user-editable variables.

Macrodefcustom option default doc [keyword value]...
Declare option as a customizable user option variable. Do not quote option. The argument
doc specifies the documentation string for the variable.

Chapter 13: Writing Customization Definitions 171

If option is void, defcustom initializes it to default. default should be an expression to
compute the value; be careful in writing it, because it can be evaluated on more than one
occasion.
The following additional keywords are defined:

:type type
Use type as the data type for this option. It specifies which values are legiti-
mate, and how to display the value. See Section 13.4 [Customization Types],
page 172, for more information.

:options list
Specify list as the list of reasonable values for use in this option.
Currently this is meaningful only when the type is hook. In that case, the
elements of list should be functions that are useful as elements of the hook
value. The user is not restricted to using only these functions, but they are
offered as convenient alternatives.

:version version
This option specifies that the variable was first introduced, or its default value
was changed, in Emacs version version. The value version must be a string.
For example,

(defcustom foo-max 34
"*Maximum number of foo’s allowed."
:type ’integer
:group ’foo
:version "20.3")

:set setfunction
Specify setfunction as the way to change the value of this option. The function
setfunction should take two arguments, a symbol and the new value, and
should do whatever is necessary to update the value properly for this option
(which may not mean simply setting the option as a Lisp variable). The
default for setfunction is set-default.

:get getfunction
Specify getfunction as the way to extract the value of this option. The func-
tion getfunction should take one argument, a symbol, and should return the
“current value” for that symbol (which need not be the symbol’s Lisp value).
The default is default-value.

:initialize function
function should be a function used to initialize the variable when the
defcustom is evaluated. It should take two arguments, the symbol and value.
Here are some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable, but do
not reinitialize it if it is already non-void. This is the default
:initialize function.

custom-initialize-default
Like custom-initialize-set, but use the function set-default
to set the variable, instead of the variable’s :set function. This
is the usual choice for a variable whose :set function enables or
disables a minor mode; with this choice, defining the variable will
not call the minor mode function, but customizing the variable
will do so.

172 XEmacs Lisp Reference Manual

custom-initialize-reset
Always use the :set function to initialize the variable. If the
variable is already non-void, reset it by calling the :set function
using the current value (returned by the :get method).

custom-initialize-changed
Use the :set function to initialize the variable, if it is already set
or has been customized; otherwise, just use set-default.

The :require option is useful for an option that turns on the operation of a certain feature.
Assuming that the package is coded to check the value of the option, you still need to arrange
for the package to be loaded. You can do that with :require. See Section 13.1 [Common
Keywords], page 169. Here is an example, from the library ‘paren.el’:

(defcustom show-paren-mode nil
"Toggle Show Paren mode...."
:set (lambda (symbol value)
(show-paren-mode (or value 0)))
:initialize ’custom-initialize-default
:type ’boolean
:group ’paren-showing
:require ’paren)

Internally, defcustom uses the symbol property standard-value to record the expression for
the default value, and saved-value to record the value saved by the user with the customization
buffer. The saved-value property is actually a list whose car is an expression which evaluates
to the value.

13.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display the
value in the customization buffer for editing.

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated; since types that vary at run time are rarely useful, normally you use a
quoted constant. For example:

(defcustom diff-command "diff"
"*The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number of
arguments, depending on the symbol. Between the type symbol and its arguments, you can
optionally write keyword-value pairs (see Section 13.4.4 [Type Keywords], page 175).

Some of the type symbols do not use any arguments; those are called simple types. For a
simple type, if you do not use any keyword-value pairs, you can omit the parentheses around
the type symbol. For example just string as a customization type is equivalent to (string).

13.4.1 Simple Types

This section describes all the simple customization types.

Chapter 13: Writing Customization Definitions 173

sexp The value may be any Lisp object that can be printed and read back. You can use
sexp as a fall-back for any option, if you don’t want to take the time to work out a
more specific type to use.

integer The value must be an integer, and is represented textually in the customization
buffer.

number The value must be a number, and is represented textually in the customization
buffer.

string The value must be a string, and the customization buffer shows just the contents,
with no delimiting ‘"’ characters and no quoting with ‘\’.

regexp Like string except that the string must be a valid regular expression.

character
The value must be a character code. A character code is actually an integer, but
this type shows the value by inserting the character in the buffer, rather than by
showing the number.

file The value must be a file name, and you can do completion with M-〈TAB〉.

(file :must-match t)
The value must be a file name for an existing file, and you can do completion with
M-〈TAB〉.

directory
The value must be a directory name, and you can do completion with M-〈TAB〉.

symbol The value must be a symbol. It appears in the customization buffer as the name of
the symbol.

function The value must be either a lambda expression or a function name. When it is a
function name, you can do completion with M-〈TAB〉.

variable The value must be a variable name, and you can do completion with M-〈TAB〉.

face The value must be a symbol which is a face name.

boolean The value is boolean—either nil or t. Note that by using choice and const
together (see the next section), you can specify that the value must be nil or t, but
also specify the text to describe each value in a way that fits the specific meaning
of the alternative.

13.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build new
types from other types. Here are several ways of doing that:

(restricted-sexp :match-alternatives criteria)
The value may be any Lisp object that satisfies one of criteria. criteria should be a
list, and each elements should be one of these possibilities:
• A predicate—that is, a function of one argument that returns non-nil if the

argument fits a certain type. This means that objects of that type are accept-
able.

• A quoted constant—that is, ’object. This means that object itself is an ac-
ceptable value.

For example,

174 XEmacs Lisp Reference Manual

(restricted-sexp :match-alternatives (integerp ’t ’nil))

allows integers, t and nil as legitimate values.
The customization buffer shows all legitimate values using their read syntax, and
the user edits them textually.

(cons car-type cdr-type)
The value must be a cons cell, its car must fit car-type, and its cdr must fit cdr-
type. For example, (cons string symbol) is a customization type which matches
values such as ("foo" . foo).
In the customization buffer, the car and the cdr are displayed and edited sepa-
rately, each according to the type that you specify for it.

(list element-types...)
The value must be a list with exactly as many elements as the element-types you
have specified; and each element must fit the corresponding element-type.
For example, (list integer string function) describes a list of three elements;
the first element must be an integer, the second a string, and the third a function.
In the customization buffer, the each element is displayed and edited separately,
according to the type specified for it.

(vector element-types...)
Like list except that the value must be a vector instead of a list. The elements
work the same as in list.

(choice alternative-types...)
The value must fit at least one of alternative-types. For example, (choice integer
string) allows either an integer or a string.
In the customization buffer, the user selects one of the alternatives using a menu,
and can then edit the value in the usual way for that alternative.
Normally the strings in this menu are determined automatically from the choices;
however, you can specify different strings for the menu by including the :tag key-
word in the alternatives. For example, if an integer stands for a number of spaces,
while a string is text to use verbatim, you might write the customization type this
way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal Text’.
In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword. See
Section 13.4.4 [Type Keywords], page 175.

(const value)
The value must be value—nothing else is allowed.
The main use of const is inside of choice. For example, (choice integer (const
nil)) allows either an integer or nil.
:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(const :tag "Ask" foo))

(function-item function)
Like const, but used for values which are functions. This displays the documenta-
tion string as well as the function name. The documentation string is either the one
you specify with :doc, or function’s own documentation string.

Chapter 13: Writing Customization Definitions 175

(variable-item variable)
Like const, but used for values which are variable names. This displays the docu-
mentation string as well as the variable name. The documentation string is either
the one you specify with :doc, or variable’s own documentation string.

(set elements...)
The value must be a list and each element of the list must be one of the elements
specified. This appears in the customization buffer as a checklist.

(repeat element-type)
The value must be a list and each element of the list must fit the type element-type.
This appears in the customization buffer as a list of elements, with ‘[INS]’ and
‘[DEL]’ buttons for adding more elements or removing elements.

13.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of a list
or vector. You use it in a set, choice or repeat type which appears among the element-types
of a list or vector.

Normally, each of the element-types in a list or vector describes one and only one element
of the list or vector. Thus, if an element-type is a repeat, that specifies a list of unspecified
length which appears as one element.

But when the element-type uses :inline, the value it matches is merged directly into the
containing sequence. For example, if it matches a list with three elements, those become three
elements of the overall sequence. This is analogous to using ‘,@’ in the backquote construct.

For example, to specify a list whose first element must be t and whose remaining arguments
should be zero or more of foo and bar, use this customization type:

(list (const t) (set :inline t foo bar))

This matches values such as (t), (t foo), (t bar) and (t foo bar).
When the element-type is a choice, you use :inline not in the choice itself, but in (some

of) the alternatives of the choice. For example, to match a list which must start with a file
name, followed either by the symbol t or two strings, use this customization type:

(list file
(choice (const t)

(list :inline t string string)))

If the user chooses the first alternative in the choice, then the overall list has two elements and
the second element is t. If the user chooses the second alternative, then the overall list has three
elements and the second and third must be strings.

13.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name symbol.
Here are the keywords you can use, and their meanings:

:value default
This is used for a type that appears as an alternative inside of choice; it specifies
the default value to use, at first, if and when the user selects this alternative with
the menu in the customization buffer.
Of course, if the actual value of the option fits this alternative, it will appear showing
the actual value, not default.

176 XEmacs Lisp Reference Manual

If nil is not a valid value for the alternative, then it is essential to specify a valid
default with :value.

:format format-string
This string will be inserted in the buffer to represent the value corresponding to the
type. The following ‘%’ escapes are available for use in format-string :

‘%[button%]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is
a function which takes two arguments—the widget which the button
appears in, and the event.
There is no way to specify two different buttons with different actions.

‘%{sample%}’
Show sample in a special face specified by :sample-face.

‘%v’ Substitute the item’s value. How the value is represented depends on
the kind of item, and (for variables) on the customization type.

‘%d’ Substitute the item’s documentation string.

‘%h’ Like ‘%d’, but if the documentation string is more than one line, add an
active field to control whether to show all of it or just the first line.

‘%t’ Substitute the tag here. You specify the tag with the :tag keyword.

‘%%’ Display a literal ‘%’.

:action action
Perform action if the user clicks on a button.

:button-face face
Use the face face (a face name or a list of face names) for button text displayed with
‘%[...%]’.

:button-prefix prefix
:button-suffix suffix

These specify the text to display before and after a button. Each can be:

nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

:tag tag Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value for
:format, and use ‘%d’ or ‘%h’ in that value.
The usual reason to specify a documentation string for a type is to provide more
information about the meanings of alternatives inside a :choice type or the parts
of some other composite type.

:help-echo motion-doc
When you move to this item with widget-forward or widget-backward, it will
display the string motion-doc in the echo area.

:match function
Specify how to decide whether a value matches the type. The corresponding value,
function, should be a function that accepts two arguments, a widget and a value; it
should return non-nil if the value is acceptable.

Chapter 14: Loading 177

14 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the form
of Lisp objects. XEmacs finds and opens the file, reads the text, evaluates each form, and then
closes the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer
function evaluates all the expressions in a buffer. The difference is that the load functions read
and evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled code.
Each form in the file is called a top-level form. There is no special format for the forms in a
loadable file; any form in a file may equally well be typed directly into a buffer and evaluated
there. (Indeed, most code is tested this way.) Most often, the forms are function definitions and
variable definitions.

A file containing Lisp code is often called a library. Thus, the “Rmail library” is a file
containing code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files
containing Lisp code.

14.1 How Programs Do Loading

XEmacs Lisp has several interfaces for loading. For example, autoload creates a placeholder
object for a function in a file; trying to call the autoloading function loads the file to get the
function’s real definition (see Section 14.2 [Autoload], page 180). require loads a file if it isn’t
already loaded (see Section 14.4 [Named Features], page 182). Ultimately, all these facilities call
the load function to do the work.

Functionload filename &optional missing-ok nomessage nosuffix
This function finds and opens a file of Lisp code, evaluates all the forms in it, and closes
the file.
To find the file, load first looks for a file named ‘filename.elc’, that is, for a file whose
name is filename with ‘.elc’ appended. If such a file exists, it is loaded. If there is no
file by that name, then load looks for a file named ‘filename.el’. If that file exists, it is
loaded. Finally, if neither of those names is found, load looks for a file named filename
with nothing appended, and loads it if it exists. (The load function is not clever about
looking at filename. In the perverse case of a file named ‘foo.el.el’, evaluation of (load
"foo.el") will indeed find it.)
If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el’ are not
tried. In this case, you must specify the precise file name you want.
If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for the
file using the variable load-path. It appends filename to each of the directories listed
in load-path, and loads the first file it finds whose name matches. The current default
directory is tried only if it is specified in load-path, where nil stands for the default
directory. load tries all three possible suffixes in the first directory in load-path, then
all three suffixes in the second directory, and so on.
If you get a warning that ‘foo.elc’ is older than ‘foo.el’, it means you should consider
recompiling ‘foo.el’. See Chapter 15 [Byte Compilation], page 187.
Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area during
loading unless nomessage is non-nil.
Any unhandled errors while loading a file terminate loading. If the load was done for the
sake of autoload, any function definitions made during the loading are undone.

178 XEmacs Lisp Reference Manual

If load can’t find the file to load, then normally it signals the error file-error (with
‘Cannot open load file filename’). But if missing-ok is non-nil, then load just returns
nil.
You can use the variable load-read-function to specify a function for load to use instead
of read for reading expressions. See below.
load returns t if the file loads successfully.

User Optionload-path
The value of this variable is a list of directories to search when loading files with load.
Each element is a string (which must be a directory name) or nil (which stands for
the current working directory). The value of load-path is initialized from the environ-
ment variable EMACSLOADPATH, if that exists; otherwise its default value is specified in
‘emacs/src/paths.h’ when XEmacs is built.
The syntax of EMACSLOADPATH is the same as used for PATH; ‘:’ (or ‘;’, according to
the operating system) separates directory names, and ‘.’ is used for the current default
directory. Here is an example of how to set your EMACSLOADPATH variable from a csh
‘.login’ file:

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/lib/emacs/lisp

Here is how to set it using sh:
export EMACSLOADPATH
EMACSLOADPATH=.:/user/bil/emacs:/usr/local/lib/emacs/lisp

Here is an example of code you can place in a ‘.emacs’ file to add several directories to
the front of your default load-path:

(setq load-path
(append (list nil "/user/bil/emacs"

"/usr/local/lisplib"
"~/emacs")

load-path))

In this example, the path searches the current working directory first, followed then by
the ‘/user/bil/emacs’ directory, the ‘/usr/local/lisplib’ directory, and the ‘~/emacs’
directory, which are then followed by the standard directories for Lisp code.
The command line options ‘-l’ or ‘-load’ specify a Lisp library to load as part of Emacs
startup. Since this file might be in the current directory, Emacs 18 temporarily adds the
current directory to the front of load-path so the file can be found there. Newer Emacs
versions also find such files in the current directory, but without altering load-path.
Dumping Emacs uses a special value of load-path. If the value of load-path at the end of
dumping is unchanged (that is, still the same special value), the dumped Emacs switches
to the ordinary load-path value when it starts up, as described above. But if load-path
has any other value at the end of dumping, that value is used for execution of the dumped
Emacs also.
Therefore, if you want to change load-path temporarily for loading a few libraries in
‘site-init.el’ or ‘site-load.el’, you should bind load-path locally with let around
the calls to load.

Functionlocate-file filename path-list &optional suffixes mode
This function searches for a file in the same way that load does, and returns the
file found (if any). (In fact, load uses this function to search through load-path.)
It searches for filename through path-list, expanded by one of the optional
suffixes (string of suffixes separated by ‘:’s), checking for access mode (0|1|2|4 =
exists|executable|writeable|readable), default readable.

Chapter 14: Loading 179

locate-file keeps hash tables of the directories it searches through, in order to speed
things up. It tries valiantly to not get confused in the face of a changing and unpredictable
environment, but can occasionally get tripped up. In this case, you will have to call
locate-file-clear-hashing to get it back on track. See that function for details.

Functionlocate-file-clear-hashing path
This function clears the hash records for the specified list of directories. locate-file uses
a hashing scheme to speed lookup, and will correctly track the following environmental
changes:

• changes of any sort to the list of directories to be searched.
• addition and deletion of non-shadowing files (see below) from the directories in the

list.
• byte-compilation of a .el file into a .elc file.

locate-file will primarily get confused if you add a file that shadows (i.e. has the
same name as) another file further down in the directory list. In this case, you must call
locate-file-clear-hashing.

Variableload-in-progress
This variable is non-nil if Emacs is in the process of loading a file, and it is nil otherwise.

Variableload-read-function
This variable specifies an alternate expression-reading function for load and eval-region
to use instead of read. The function should accept one argument, just as read does.

Normally, the variable’s value is nil, which means those functions should use read.

User Optionload-warn-when-source-newer
This variable specifies whether load should check whether the source is newer than the
binary. If this variable is true, then when a ‘.elc’ file is being loaded and the corresponding
‘.el’ is newer, a warning message will be printed. The default is nil, but it is bound to
t during the initial loadup.

User Optionload-warn-when-source-only
This variable specifies whether load should warn when loading a ‘.el’ file instead of
an ‘.elc’. If this variable is true, then when load is called with a filename without an
extension, and the ‘.elc’ version doesn’t exist but the ‘.el’ version does, then a message
will be printed. If an explicit extension is passed to load, no warning will be printed. The
default is nil, but it is bound to t during the initial loadup.

User Optionload-ignore-elc-files
This variable specifies whether load should ignore ‘.elc’ files when a suffix is not given.
This is normally used only to bootstrap the ‘.elc’ files when building XEmacs, when
you use the command ‘make all-elc’. (This forces the ‘.el’ versions to be loaded in the
process of compiling those same files, so that existing out-of-date ‘.elc’ files do not make
it mess things up.)

To learn how load is used to build XEmacs, see Section B.1 [Building XEmacs], page 693.

180 XEmacs Lisp Reference Manual

14.2 Autoload

The autoload facility allows you to make a function or macro known in Lisp, but put off
loading the file that defines it. The first call to the function automatically reads the proper file
to install the real definition and other associated code, then runs the real definition as if it had
been loaded all along.

There are two ways to set up an autoloaded function: by calling autoload, and by writing
a special “magic” comment in the source before the real definition. autoload is the low-level
primitive for autoloading; any Lisp program can call autoload at any time. Magic comments
do nothing on their own; they serve as a guide for the command update-file-autoloads,
which constructs calls to autoload and arranges to execute them when Emacs is built. Magic
comments are the most convenient way to make a function autoload, but only for packages
installed along with Emacs.

Functionautoload function filename &optional docstring interactive type
This function defines the function (or macro) named function so as to load automatically
from filename. The string filename specifies the file to load to get the real definition of
function.
The argument docstring is the documentation string for the function. Normally, this is the
identical to the documentation string in the function definition itself. Specifying the doc-
umentation string in the call to autoload makes it possible to look at the documentation
without loading the function’s real definition.
If interactive is non-nil, then the function can be called interactively. This lets comple-
tion in M-x work without loading the function’s real definition. The complete interactive
specification need not be given here; it’s not needed unless the user actually calls function,
and when that happens, it’s time to load the real definition.
You can autoload macros and keymaps as well as ordinary functions. Specify type as
macro if function is really a macro. Specify type as keymap if function is really a keymap.
Various parts of Emacs need to know this information without loading the real definition.
An autoloaded keymap loads automatically during key lookup when a prefix key’s binding
is the symbol function. Autoloading does not occur for other kinds of access to the keymap.
In particular, it does not happen when a Lisp program gets the keymap from the value of a
variable and calls define-key; not even if the variable name is the same symbol function.
If function already has a non-void function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of function is void, or is
already an autoload object, then it is defined as an autoload object like this:

(autoload filename docstring interactive type)

For example,
(symbol-function ’run-prolog)

⇒ (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documentation
string in the ‘DOC’ file (see Section 27.1 [Documentation Basics], page 345), t means the
function is interactive, and nil that it is not a macro or a keymap.

The autoloaded file usually contains other definitions and may require or provide one or more
features. If the file is not completely loaded (due to an error in the evaluation of its contents),
any function definitions or provide calls that occurred during the load are undone. This is to
ensure that the next attempt to call any function autoloading from this file will try again to
load the file. If not for this, then some of the functions in the file might appear defined, but

Chapter 14: Loading 181

they might fail to work properly for the lack of certain subroutines defined later in the file and
not loaded successfully.

XEmacs as distributed comes with many autoloaded functions. The calls to autoload are in
the file ‘loaddefs.el’. There is a convenient way of updating them automatically.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment looks like ‘;;;###autoload’, on a line by itself, just before
the real definition of the function in its autoloadable source file. The command M-x update-
file-autoloads writes a corresponding autoload call into ‘loaddefs.el’. Building Emacs
loads ‘loaddefs.el’ and thus calls autoload. M-x update-directory-autoloads is even more
powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into ‘loaddefs.el’. If the form following
the magic comment is not a function definition, it is copied verbatim. You can also use a magic
comment to execute a form at build time without executing it when the file itself is loaded. To
do this, write the form on the same line as the magic comment. Since it is in a comment, it does
nothing when you load the source file; but update-file-autoloads copies it to ‘loaddefs.el’,
where it is executed while building Emacs.

The following example shows how doctor is prepared for autoloading with a magic comment:
;;;###autoload
(defun doctor ()

"Switch to *doctor* buffer and start giving psychotherapy."
(interactive)
(switch-to-buffer "*doctor*")
(doctor-mode))

Here’s what that produces in ‘loaddefs.el’:
(autoload ’doctor "doctor"

"\
Switch to *doctor* buffer and start giving psychotherapy."

t)

The backslash and newline immediately following the double-quote are a convention used only in
the preloaded Lisp files such as ‘loaddefs.el’; they tell make-docfile to put the documentation
string in the ‘DOC’ file. See Section B.1 [Building XEmacs], page 693.

14.3 Repeated Loading

You may load one file more than once in an Emacs session. For example, after you have
rewritten and reinstalled a function definition by editing it in a buffer, you may wish to return
to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name. If you
rewrite a file that you intend to save and reinstall, remember to byte-compile it if necessary;
otherwise you may find yourself inadvertently reloading the older, byte-compiled file instead of
your newer, non-compiled file!

When writing the forms in a Lisp library file, keep in mind that the file might be loaded more
than once. For example, the choice of defvar vs. defconst for defining a variable depends on
whether it is desirable to reinitialize the variable if the library is reloaded: defconst does so,
and defvar does not. (See Section 10.5 [Defining Variables], page 134.)

The simplest way to add an element to an alist is like this:

182 XEmacs Lisp Reference Manual

(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist))

But this would add multiple elements if the library is reloaded. To avoid the problem, write
this:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

To add an element to a list just once, use add-to-list (see Section 10.7 [Setting Variables],
page 137).

Occasionally you will want to test explicitly whether a library has already been loaded. Here’s
one way to test, in a library, whether it has been loaded before:

(defvar foo-was-loaded)

(if (not (boundp ’foo-was-loaded))
execute-first-time-only)

(setq foo-was-loaded t)

If the library uses provide to provide a named feature, you can use featurep to test whether
the library has been loaded.

14.4 Features

provide and require are an alternative to autoload for loading files automatically. They
work in terms of named features. Autoloading is triggered by calling a specific function, but a
feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The file
that defines them should provide the feature. Another program that uses them may ensure they
are defined by requiring the feature. This loads the file of definitions if it hasn’t been loaded
already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals an
error.

Features are normally named after the files that provide them, so that require need not be
given the file name.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the follow-
ing code:

(defun run-prolog ()
"Run an inferior Prolog process, input and output via buffer *prolog*."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’comint) loads the file ‘comint.el’ if it has not yet been loaded. This
ensures that make-comint is defined.

The ‘comint.el’ file contains the following top-level expression:

Chapter 14: Loading 183

(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth know
that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that file
(see Chapter 15 [Byte Compilation], page 187) as well as when you load it. This is in case the
required package contains macros that the byte compiler must know about.

Although top-level calls to require are evaluated during byte compilation, provide calls are
not. Therefore, you can ensure that a file of definitions is loaded before it is byte-compiled by
including a provide followed by a require for the same feature, as in the following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.

(require ’my-feature) ; Evaluated by byte compiler.
The compiler ignores the provide, then processes the require by loading the file in question.
Loading the file does execute the provide call, so the subsequent require call does nothing
while loading.

Functionprovide feature
This function announces that feature is now loaded, or being loaded, into the current
XEmacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.
The direct effect of calling provide is to add feature to the front of the list features if
it is not already in the list. The argument feature must be a symbol. provide returns
feature.

features
⇒ (bar bish)

(provide ’foo)
⇒ foo

features
⇒ (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the evaluating
its contents, any function definitions or provide calls that occurred during the load are
undone. See Section 14.2 [Autoload], page 180.

Functionrequire feature &optional filename
This function checks whether feature is present in the current XEmacs session (using
(featurep feature); see below). If it is not, then require loads filename with load. If
filename is not supplied, then the name of the symbol feature is used as the file name to
load.
If loading the file fails to provide feature, require signals an error, ‘Required feature
feature was not provided’.

Functionfeaturep fexp
This function returns t if feature fexp is present in this Emacs. Use this to conditionalize
execution of lisp code based on the presence or absence of emacs or environment extensions.
fexp can be a symbol, a number, or a list.
If fexp is a symbol, it is looked up in the ‘features’ variable, and t is returned if it is found,
nil otherwise.

184 XEmacs Lisp Reference Manual

If fexp is a number, the function returns t if this Emacs has an equal or greater number
than fexp, nil otherwise. Note that minor Emacs version is expected to be 2 deci-
mal places wide, so (featurep 20.4) will return nil on XEmacs 20.4—you must write
(featurep 20.04), unless you wish to match for XEmacs 20.40.
If fexp is a list whose car is the symbol and, the function returns t if all the features in
its cdr are present, nil otherwise.
If fexp is a list whose car is the symbol or, the function returns t if any the features in
its cdr are present, nil otherwise.
If fexp is a list whose car is the symbol not, the function returns t if the feature is not
present, nil otherwise.
Examples:

(featurep ’xemacs)
⇒ ; t on XEmacs.

(featurep ’(and xemacs gnus))
⇒ ; t on XEmacs with Gnus loaded.

(featurep ’(or tty-frames (and emacs 19.30)))
⇒ ; t if this Emacs supports TTY frames.

(featurep ’(or (and xemacs 19.15) (and emacs 19.34)))
⇒ ; t on XEmacs 19.15 and later, or on

; FSF Emacs 19.34 and later.
Please note: The advanced arguments of this function (anything other than a symbol)
are not yet supported by FSF Emacs. If you feel they are useful for supporting multiple
Emacs variants, lobby Richard Stallman at ‘<bug-gnu-emacs@prep.ai.mit.edu>’.

Variablefeatures
The value of this variable is a list of symbols that are the features loaded in the current
XEmacs session. Each symbol was put in this list with a call to provide. The order of
the elements in the features list is not significant.

14.5 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for other
Lisp objects. To do this, use the function unload-feature:

Commandunload-feature feature &optional force
This command unloads the library that provided feature feature. It undefines all functions,
macros, and variables defined in that library with defconst, defvar, defun, defmacro,
defsubst, definf-function and defalias. It then restores any autoloads formerly asso-
ciated with those symbols. (Loading saves these in the autoload property of the symbol.)
Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the optional
argument force is non-nil, dependencies are ignored and you can unload any library.

The unload-feature function is written in Lisp; its actions are based on the variable load-
history.

Chapter 14: Loading 185

Variableload-history
This variable’s value is an alist connecting library names with the names of functions and
variables they define, the features they provide, and the features they require.
Each element is a list and describes one library. The car of the list is the name of the
library, as a string. The rest of the list is composed of these kinds of objects:
• Symbols that were defined by this library.
• Lists of the form (require . feature) indicating features that were required.
• Lists of the form (provide . feature) indicating features that were provided.

The value of load-history may have one element whose car is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element.

14.6 Hooks for Loading

Variableafter-load-alist
An alist of expressions to evaluate if and when particular libraries are loaded. Each element
looks like this:

(filename forms...)

When load is run and the file-name argument is filename, the forms in the corresponding
element are executed at the end of loading.
filename must match exactly! Normally filename is the name of a library, with no directory
specified, since that is how load is normally called. An error in forms does not undo the
load, but does prevent execution of the rest of the forms.

186 XEmacs Lisp Reference Manual

Chapter 15: Byte Compilation 187

15 Byte Compilation

XEmacs Lisp has a compiler that translates functions written in Lisp into a special represen-
tation called byte-code that can be executed more efficiently. The compiler replaces Lisp function
definitions with byte-code. When a byte-coded function is called, its definition is evaluated by
the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of being
executed directly by the machine’s hardware (as true compiled code is), byte-code is completely
transportable from machine to machine without recompilation. It is not, however, as fast as
true compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true. In particular, if you compile a program with
XEmacs 20, the compiled code may not run in earlier versions. See Section 15.3 [Docs and
Compilation], page 190.

See Section 16.3 [Compilation Errors], page 205, for how to investigate errors occurring in
byte compilation.

15.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))

0))
(list t1 (current-time-string))))

⇒ silly-loop

(silly-loop 5000000)
⇒ ("Fri Nov 28 20:56:16 1997"

"Fri Nov 28 20:56:39 1997") ; 23 seconds

(byte-compile ’silly-loop)
⇒ #<compiled-function
(from "loadup.el")
(n)
"...(23)"
[current-time-string t1 n 0]
2
"Return time before and after N iterations of a loop.">

(silly-loop 5000000)
⇒ ("Fri Nov 28 20:57:49 1997"

"Fri Nov 28 20:57:55 1997") ; 6 seconds

In this example, the interpreted code required 23 seconds to run, whereas the byte-compiled
code required 6 seconds. These results are representative, but actual results will vary greatly.

188 XEmacs Lisp Reference Manual

15.2 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile
function. You can compile a whole file with byte-compile-file, or several files with byte-
recompile-directory or batch-byte-compile.

When you run the byte compiler, you may get warnings in a buffer called ‘*Compile-Log*’.
These report things in your program that suggest a problem but are not necessarily erroneous.

Be careful when byte-compiling code that uses macros. Macro calls are expanded when they
are compiled, so the macros must already be defined for proper compilation. For more details,
see Section 12.3 [Compiling Macros], page 162.

Normally, compiling a file does not evaluate the file’s contents or load the file. But it does
execute any require calls at top level in the file. One way to ensure that necessary macro defi-
nitions are available during compilation is to require the file that defines them (see Section 14.4
[Named Features], page 182). To avoid loading the macro definition files when someone runs
the compiled program, write eval-when-compile around the require calls (see Section 15.5
[Eval During Compile], page 191).

Functionbyte-compile symbol
This function byte-compiles the function definition of symbol, replacing the previous def-
inition with the compiled one. The function definition of symbol must be the actual
code for the function; i.e., the compiler does not follow indirection to another symbol.
byte-compile returns the new, compiled definition of symbol.
If symbol’s definition is a compiled-function object, byte-compile does nothing and re-
turns nil. Lisp records only one function definition for any symbol, and if that is already
compiled, non-compiled code is not available anywhere. So there is no way to “compile
the same definition again.”

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1

(* integer (factorial (1- integer)))))
⇒ factorial

(byte-compile ’factorial)
⇒ #<compiled-function
(from "loadup.el")
(integer)
"...(21)"
[integer 1 factorial]
3
"Compute factorial of INTEGER.">

The result is a compiled-function object. The string it contains is the actual byte-code;
each character in it is an instruction or an operand of an instruction. The vector contains
all the constants, variable names and function names used by the function, except for
certain primitives that are coded as special instructions.

Commandcompile-defun &optional arg
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install a
compiled version of that function.
If arg is non-nil, the result is inserted in the current buffer after the form; otherwise, it
is printed in the minibuffer.

Chapter 15: Byte Compilation 189

Commandbyte-compile-file filename &optional load
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by appending ‘c’ to the end of filename.
If load is non-nil, the file is loaded after having been compiled.
Compilation works by reading the input file one form at a time. If it is a definition of a
function or macro, the compiled function or macro definition is written out. Other forms
are batched together, then each batch is compiled, and written so that its compiled code
will be executed when the file is read. All comments are discarded when the input file is
read.
This command returns t. When called interactively, it prompts for the file name.

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")
⇒ t

% ls -l push*
-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc

Commandbyte-recompile-directory directory &optional flag
This function recompiles every ‘.el’ file in directory that needs recompilation. A file
needs recompilation if a ‘.elc’ file exists but is older than the ‘.el’ file.
When a ‘.el’ file has no corresponding ‘.elc’ file, then flag says what to do. If it is nil,
these files are ignored. If it is non-nil, the user is asked whether to compile each such file.
The returned value of this command is unpredictable.

Functionbatch-byte-compile
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on completion.
An error in one file does not prevent processing of subsequent files. (The file that gets the
error will not, of course, produce any compiled code.)

% emacs -batch -f batch-byte-compile *.el

Functionbatch-byte-recompile-directory
This function is similar to batch-byte-compile but runs the command byte-recompile-
directory on the files remaining on the command line.

Variablebyte-recompile-directory-ignore-errors-p
If non-nil, this specifies that byte-recompile-directory will continue compiling even
when an error occurs in a file. This is normally nil, but is bound to t by batch-byte-
recompile-directory.

Functionbyte-code code-string data-vector max-stack
This function actually interprets byte-code. A byte-compiled function is actually defined
with a body that calls byte-code. Don’t call this function yourself. Only the byte compiler
knows how to generate valid calls to this function.
In newer Emacs versions (19 and up), byte-code is usually executed as part of a compiled-
function object, and only rarely due to an explicit call to byte-code.

190 XEmacs Lisp Reference Manual

15.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation strings
dynamically from the file whenever needed. This saves space within Emacs, and makes loading
faster because the documentation strings themselves need not be processed while loading the
file. Actual access to the documentation strings becomes slower as a result, but normally not
enough to bother users.

Dynamic access to documentation strings does have drawbacks:
• If you delete or move the compiled file after loading it, Emacs can no longer access the

documentation strings for the functions and variables in the file.
• If you alter the compiled file (such as by compiling a new version), then further access to

documentation strings in this file will give nonsense results.

If your site installs Emacs following the usual procedures, these problems will never normally
occur. Installing a new version uses a new directory with a different name; as long as the old
version remains installed, its files will remain unmodified in the places where they are expected
to be.

However, if you have built Emacs yourself and use it from the directory where you built
it, you will experience this problem occasionally if you edit and recompile Lisp files. When it
happens, you can cure the problem by reloading the file after recompiling it.

Byte-compiled files made with Emacs 19.29 will not load into older versions because the older
versions don’t support this feature. You can turn off this feature by setting byte-compile-
dynamic-docstrings to nil. Once this is done, you can compile files that will load into older
Emacs versions. You can do this globally, or for one source file by specifying a file-local binding
for the variable. Here’s one way to do that:

-*-byte-compile-dynamic-docstrings: nil;-*-

Variablebyte-compile-dynamic-docstrings
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
loading of documentation strings.

The dynamic documentation string feature writes compiled files that use a special Lisp reader
construct, ‘#@count’. This construct skips the next count characters. It also uses the ‘#$’
construct, which stands for “the name of this file, as a string.” It is best not to use these
constructs in Lisp source files.

15.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t fully
read the function definitions in the file. Instead, each function definition contains a place-holder
which refers to the file. The first time each function is called, it reads the full definition from
the file, to replace the place-holder.

The advantage of dynamic function loading is that loading the file becomes much faster. This
is a good thing for a file which contains many separate commands, provided that using one of
them does not imply you will soon (or ever) use the rest. A specialized mode which provides
many keyboard commands often has that usage pattern: a user may invoke the mode, but use
only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:

Chapter 15: Byte Compilation 191

• If you delete or move the compiled file after loading it, Emacs can no longer load the
remaining function definitions not already loaded.

• If you alter the compiled file (such as by compiling a new version), then trying to load any
function not already loaded will get nonsense results.

If you compile a new version of the file, the best thing to do is immediately load the new
compiled file. That will prevent any future problems.

The byte compiler uses the dynamic function loading feature if the variable byte-compile-
dynamic is non-nil at compilation time. Do not set this variable globally, since dynamic loading
is desirable only for certain files. Instead, enable the feature for specific source files with file-local
variable bindings, like this:

-*-byte-compile-dynamic: t;-*-

Variablebyte-compile-dynamic
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
function loading.

Functionfetch-bytecode function
This immediately finishes loading the definition of function from its byte-compiled file, if
it is not fully loaded already. The argument function may be a compiled-function object
or a function name.

15.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

Special Formeval-and-compile body
This form marks body to be evaluated both when you compile the containing code and
when you run it (whether compiled or not).
You can get a similar result by putting body in a separate file and referring to that file
with require. Using require is preferable if there is a substantial amount of code to be
executed in this way.

Special Formeval-when-compile body
This form marks body to be evaluated at compile time and not when the compiled program
is loaded. The result of evaluation by the compiler becomes a constant which appears in
the compiled program. When the program is interpreted, not compiled at all, body is
evaluated normally.
At top level, this is analogous to the Common Lisp idiom (eval-when (compile eval)
...). Elsewhere, the Common Lisp ‘#.’ reader macro (but not when interpreting) is closer
to what eval-when-compile does.

15.6 Compiled-Function Objects

Byte-compiled functions have a special data type: they are compiled-function objects.
A compiled-function object is a bit like a vector; however, the evaluator handles this data type

specially when it appears as a function to be called. The printed representation for a compiled-
function object normally begins with ‘#<compiled-function’ and ends with ‘>’. However, if the
variable print-readably is non-nil, the object is printed beginning with ‘#[’ and ending with

192 XEmacs Lisp Reference Manual

‘]’. This representation can be read directly by the Lisp reader, and is used in byte-compiled
files (those ending in ‘.elc’).

In Emacs version 18, there was no compiled-function object data type; compiled functions
used the function byte-code to run the byte code.

A compiled-function object has a number of different elements. They are:

arglist The list of argument symbols.

instructions
The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols used
as function names and variable names.

stacksize The maximum stack size this function needs.

doc-string The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 27.2 [Accessing
Documentation], page 346).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is nil
for a function that isn’t interactive.

domain The domain (if any). This is only meaningful if I18N3 (message-translation) support
was compiled into XEmacs. This is a string defining which domain to find the
translation for the documentation string and interactive prompt. See Section 54.2.4
[Domain Specification], page 660.

Here’s an example of a compiled-function object, in printed representation. It is the definition
of the command backward-sexp.

#<compiled-function
(from "lisp.elc")
(&optional arg)
"...(15)" [arg 1 forward-sexp] 2 854740 "_p">

The primitive way to create a compiled-function object is with make-byte-code:

Functionmake-byte-code &rest elements
This function constructs and returns a compiled-function object with elements as its ele-
ments.
Please note: Unlike all other Emacs-lisp functions, calling this with five arguments is not
the same as calling it with six arguments, the last of which is nil. If the interactive arg
is specified as nil, then that means that this function was defined with (interactive).
If the arg is not specified, then that means the function is not interactive. This is terrible
behavior which is retained for compatibility with old ‘.elc’ files which expected these
semantics.

You should not try to come up with the elements for a compiled-function object yourself,
because if they are inconsistent, XEmacs may crash when you call the function. Always leave
it to the byte compiler to create these objects; it makes the elements consistent (we hope).

The following primitives are provided for accessing the elements of a compiled-function object.

Functioncompiled-function-arglist function
This function returns the argument list of compiled-function object function.

Chapter 15: Byte Compilation 193

Functioncompiled-function-instructions function
This function returns a string describing the byte-code instructions of compiled-function
object function.

Functioncompiled-function-constants function
This function returns the vector of Lisp objects referenced by compiled-function object
function.

Functioncompiled-function-stack-size function
This function returns the maximum stack size needed by compiled-function object func-
tion.

Functioncompiled-function-doc-string function
This function returns the doc string of compiled-function object function, if available.

Functioncompiled-function-interactive function
This function returns the interactive spec of compiled-function object function, if any.
The return value is nil or a two-element list, the first element of which is the symbol
interactive and the second element is the interactive spec (a string or Lisp form).

Functioncompiled-function-domain function
This function returns the domain of compiled-function object function, if any. The result
will be a string or nil. See Section 54.2.4 [Domain Specification], page 660.

15.7 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide a
disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled code
into humanly readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values onto
a stack of its own, then pops them off to use them in calculations whose results are themselves
pushed back on the stack. When a byte-code function returns, it pops a value off the stack and
returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp variables,
by transferring values between variables and the stack.

Commanddisassemble object &optional stream
This function prints the disassembled code for object. If stream is supplied, then output
goes there. Otherwise, the disassembled code is printed to the stream standard-output.
The argument object can be a function name or a lambda expression.
As a special exception, if this function is used interactively, it outputs to a buffer named
‘*Disassemble*’.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the output
of disassemble. These examples show unoptimized byte-code. Nowadays byte-code is usually
optimized, but we did not want to rewrite these examples, since they still serve their purpose.

194 XEmacs Lisp Reference Manual

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1

(* integer (factorial (1- integer)))))
⇒ factorial

(factorial 4)
⇒ 24

(disassemble ’factorial)
a byte-code for factorial:

doc: Compute factorial of an integer.
args: (integer)

0 constant 1 ; Push 1 onto stack.

1 varref integer ; Get value of integer
; from the environment
; and push the value
; onto the stack.

2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.

3 goto-if-nil 10 ; Pop and test top of stack;
; if nil, go to 10,
; else continue.

6 constant 1 ; Push 1 onto top of stack.

7 goto 17 ; Go to 17 (in this case, 1 will be
; returned by the function).

10 constant * ; Push symbol * onto stack.

11 varref integer ; Push value of integer onto stack.

12 constant factorial ; Push factorial onto stack.

13 varref integer ; Push value of integer onto stack.

14 sub1 ; Pop integer, decrement value,
; push new value onto stack.

; Stack now contains:
; − decremented value of integer
; − factorial
; − value of integer
; − *

15 call 1 ; Call function factorial using
; the first (i.e., the top) element
; of the stack as the argument;
; push returned value onto stack.

Chapter 15: Byte Compilation 195

; Stack now contains:
; − result of recursive
; call to factorial
; − value of integer
; − *

16 call 2 ; Using the first two
; (i.e., the top two)
; elements of the stack
; as arguments,
; call the function *,
; pushing the result onto the stack.

17 return ; Return the top element
; of the stack.

⇒ nil

The silly-loop function is somewhat more complex:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))

(while (> (setq n (1- n))
0))

(list t1 (current-time-string))))
⇒ silly-loop

(disassemble ’silly-loop)
a byte-code for silly-loop:

doc: Return time before and after N iterations of a loop.
args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string
; with no argument,
; pushing result onto stack.

2 varbind t1 ; Pop stack and bind t1
; to popped value.

3 varref n ; Get value of n from
; the environment and push
; the value onto the stack.

4 sub1 ; Subtract 1 from top of stack.

5 dup ; Duplicate the top of the stack;
; i.e., copy the top of
; the stack and push the
; copy onto the stack.

196 XEmacs Lisp Reference Manual

6 varset n ; Pop the top of the stack,
; and bind n to the value.

; In effect, the sequence dup varset
; copies the top of the stack
; into the value of n
; without popping it.

7 constant 0 ; Push 0 onto stack.

8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.

9 goto-if-nil-else-pop 17 ; Goto 17 if n <= 0
; (this exits the while loop).
; else pop top of stack
; and continue

12 constant nil ; Push nil onto stack
; (this is the body of the loop).

13 discard ; Discard result of the body
; of the loop (a while loop
; is always evaluated for
; its side effects).

14 goto 3 ; Jump back to beginning
; of while loop.

17 discard ; Discard result of while loop
; by popping top of stack.
; This result is the value nil that
; was not popped by the goto at 9.

18 varref t1 ; Push value of t1 onto stack.

19 constant current-time-string ; Push
; current-time-string
; onto top of stack.

20 call 0 ; Call current-time-string again.

21 list2 ; Pop top two elements off stack,
; create a list of them,
; and push list onto stack.

22 unbind 1 ; Unbind t1 in local environment.

23 return ; Return value of the top of stack.

⇒ nil

Chapter 16: Debugging Lisp Programs 197

16 Debugging Lisp Programs

There are three ways to investigate a problem in an XEmacs Lisp program, depending on
what you are doing with the program when the problem appears.
• If the problem occurs when you run the program, you can use a Lisp debugger (either the

default debugger or Edebug) to investigate what is happening during execution.
• If the problem is syntactic, so that Lisp cannot even read the program, you can use the

XEmacs facilities for editing Lisp to localize it.
• If the problem occurs when trying to compile the program with the byte compiler, you need

to know how to examine the compiler’s input buffer.

Another useful debugging tool is the dribble file. When a dribble file is open, XEmacs copies
all keyboard input characters to that file. Afterward, you can examine the file to find out what
input was used. See Section 50.8 [Terminal Input], page 636.

For debugging problems in terminal descriptions, the open-termscript function can be
useful. See Section 50.9 [Terminal Output], page 639.

16.1 The Lisp Debugger

The Lisp debugger provides the ability to suspend evaluation of a form. While evaluation
is suspended (a state that is commonly known as a break), you may examine the run time
stack, examine the values of local or global variables, or change those values. Since a break is a
recursive edit, all the usual editing facilities of XEmacs are available; you can even run programs
that will enter the debugger recursively. See Section 19.10 [Recursive Editing], page 281.

16.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This allows
you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently get Lisp errors when invoked in inappropriate contexts (such as C-f at the end of
the buffer) and during ordinary editing it would be very unpleasant to enter the debugger each
time this happens. If you want errors to enter the debugger, set the variable debug-on-error
to non-nil.

User Optiondebug-on-error
This variable determines whether the debugger is called when an error is signaled and not
handled. If debug-on-error is t, all errors call the debugger. If it is nil, none call the
debugger.
The value can also be a list of error conditions that should call the debugger. For example,
if you set it to the list (void-variable), then only errors about a variable that has no
value invoke the debugger.
When this variable is non-nil, Emacs does not catch errors that happen in process fil-
ter functions and sentinels. Therefore, these errors also can invoke the debugger. See
Chapter 49 [Processes], page 607.

198 XEmacs Lisp Reference Manual

User Optiondebug-ignored-errors
This variable specifies certain kinds of errors that should not enter the debugger. Its value
is a list of error condition symbols and/or regular expressions. If the error has any of
those condition symbols, or if the error message matches any of the regular expressions,
then that error does not enter the debugger, regardless of the value of debug-on-error.
The normal value of this variable lists several errors that happen often during editing but
rarely result from bugs in Lisp programs.

To debug an error that happens during loading of the ‘.emacs’ file, use the option
‘-debug-init’, which binds debug-on-error to t while ‘.emacs’ is loaded and inhibits use
of condition-case to catch init file errors.

If your ‘.emacs’ file sets debug-on-error, the effect may not last past the end of loading
‘.emacs’. (This is an undesirable byproduct of the code that implements the ‘-debug-init’
command line option.) The best way to make ‘.emacs’ set debug-on-error permanently is
with after-init-hook, like this:

(add-hook ’after-init-hook
’(lambda () (setq debug-on-error t)))

User Optiondebug-on-signal
This variable is similar to debug-on-error but breaks whenever an error is signalled,
regardless of whether it would be handled.

16.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the loop.
On most operating systems, you can do this with C-g, which causes quit.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not
considered an error, and debug-on-error has no effect on the handling of C-g. Likewise,
debug-on-quit has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed
from the debugger using the stepping commands. If you step through the entire loop, you will
probably get enough information to solve the problem.

User Optiondebug-on-quit
This variable determines whether the debugger is called when quit is signaled and not
handled. If debug-on-quit is non-nil, then the debugger is called whenever you quit
(that is, type C-g). If debug-on-quit is nil, then the debugger is not called when you
quit. See Section 19.8 [Quitting], page 278.

16.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function in
which the problem occurs, and then step through the function, or you can do this to a function
called shortly before the problem, step quickly over the call to that function, and then step
through its caller.

Chapter 16: Debugging Lisp Programs 199

Commanddebug-on-entry function-name
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first form.
Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. If the function is a command, it will enter the
debugger when called from Lisp and when called interactively (after the reading of the
arguments). You can’t debug primitive functions (i.e., those written in C) this way.
When debug-on-entry is called interactively, it prompts for function-name in the mini-
buffer.
If the function is already set up to invoke the debugger on entry, debug-on-entry does
nothing.
Please note: if you redefine a function after using debug-on-entry on it, the code to enter
the debugger is lost.
debug-on-entry returns function-name.

(defun fact (n)
(if (zerop n) 1

(* n (fact (1- n)))))
⇒ fact

(debug-on-entry ’fact)
⇒ fact

(fact 3)

------ Buffer: *Backtrace* ------
Entering:
* fact(3)

eval-region(4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)
eval-insert-last-sexp(nil)

* call-interactively(eval-insert-last-sexp)
------ Buffer: *Backtrace* ------

(symbol-function ’fact)
⇒ (lambda (n)

(debug (quote debug))
(if (zerop n) 1 (* n (fact (1- n)))))

Commandcancel-debug-on-entry function-name
This function undoes the effect of debug-on-entry on function-name. When called inter-
actively, it prompts for function-name in the minibuffer. If function-name is nil or the
empty string, it cancels debugging for all functions.
If cancel-debug-on-entry is called more than once on the same function, the second call
does nothing. cancel-debug-on-entry returns function-name.

16.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’ at
the proper place, and type C-M-x. Be sure to undo this insertion before you save the file!

200 XEmacs Lisp Reference Manual

The place where you insert ‘(debug)’ must be a place where an additional form can be
evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the execution
of the program!) The most common suitable places are inside a progn or an implicit progn (see
Section 9.1 [Sequencing], page 117).

16.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window and a
buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one line for each
level of Lisp function execution currently going on. At the beginning of this buffer is a message
describing the reason that the debugger was invoked (such as the error message and associated
data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in which
letters are defined as debugger commands. The usual XEmacs editing commands are available;
thus, you can switch windows to examine the buffer that was being edited at the time of the
error, switch buffers, visit files, or do any other sort of editing. However, the debugger is a
recursive editing level (see Section 19.10 [Recursive Editing], page 281) and it is wise to go back
to the backtrace buffer and exit the debugger (with the q command) when you are finished with
it. Exiting the debugger gets out of the recursive edit and kills the backtrace buffer.

The backtrace buffer shows you the functions that are executing and their argument values.
It also allows you to specify a stack frame by moving point to the line describing that frame.
(A stack frame is the place where the Lisp interpreter records information about a particular
invocation of a function.) The frame whose line point is on is considered the current frame.
Some of the debugger commands operate on the current frame.

The debugger itself must be run byte-compiled, since it makes assumptions about how many
stack frames are used for the debugger itself. These assumptions are false if the debugger is
running interpreted.

16.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addition
to the usual cursor motion commands. (Keep in mind that all the usual facilities of XEmacs,
such as switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that you can
see how control flows. The debugger can step through the control structures of an interpreted
function, but cannot do so in a byte-compiled function. If you would like to step through a
byte-compiled function, replace it with an interpreted definition of the same function. (To do
this, visit the source file for the function and type C-M-x on its definition.)

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. This resumes execution of the program
as if the debugger had never been entered (aside from the effect of any variables or
data structures you may have changed while inside the debugger).
Continuing when an error or quit was signalled will cause the normal action of the
signalling to take place. If you do not want this to happen, but instead want the
program execution to continue as if the call to signal did not occur, use the r
command.

d Continue execution, but enter the debugger the next time any Lisp function is called.
This allows you to step through the subexpressions of an expression, seeing what
values the subexpressions compute, and what else they do.

Chapter 16: Debugging Lisp Programs 201

The stack frame made for the function call which enters the debugger in this way
will be flagged automatically so that the debugger will be called again when the
frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame is exited.
Frames flagged in this way are marked with stars in the backtrace buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b com-
mand on that frame.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current buffer,
as part of its operation; e temporarily restores their outside-the-debugger values so
you can examine them. This makes the debugger more transparent. By contrast,
M-: does nothing special in the debugger; it shows you the variable values within
the debugger.

q Terminate the program being debugged; return to top-level XEmacs command ex-
ecution.
If the debugger was entered due to a C-g but you really want to quit, and not debug,
use the q command.

r Return a value from the debugger. The value is computed by reading an expression
with the minibuffer and evaluating it.
The r command is useful when the debugger was invoked due to exit from a Lisp
call frame (as requested with b); then the value specified in the r command is used
as the value of that frame. It is also useful if you call debug and use its return value.
If the debugger was entered at the beginning of a function call, r has the same effect
as c, and the specified return value does not matter.
If the debugger was entered through a call to signal (i.e. as a result of an error
or quit), then returning a value will cause the call to signal itself to return, rather
than throwing to top-level or invoking a handler, as is normal. This allows you
to correct an error (e.g. the type of an argument was wrong) or continue from a
debug-on-quit as if it never happened.
Note that some errors (e.g. any error signalled using the error function, and many
errors signalled from a primitive function) are not continuable. If you return a value
from them and continue execution, then the error will immediately be signalled
again. Other errors (e.g. wrong-type-argument errors) will be continually resignalled
until the problem is corrected.

16.1.7 Invoking the Debugger

Here we describe fully the function used to invoke the debugger.

Functiondebug &rest debugger-args
This function enters the debugger. It switches buffers to a buffer named ‘*Backtrace*’
(or ‘*Backtrace*<2>’ if it is the second recursive entry to the debugger, etc.), and fills it
with information about the stack of Lisp function calls. It then enters a recursive edit,
showing the backtrace buffer in Debugger mode.
The Debugger mode c and r commands exit the recursive edit; then debug switches back
to the previous buffer and returns to whatever called debug. This is the only way the
function debug can return to its caller.

202 XEmacs Lisp Reference Manual

If the first of the debugger-args passed to debug is nil (or if it is not one of the special
values in the table below), then debug displays the rest of its arguments at the top of the
‘*Backtrace*’ buffer. This mechanism is used to display a message to the user.

However, if the first argument passed to debug is one of the following special values, then
it has special significance. Normally, these values are passed to debug only by the internals
of XEmacs and the debugger, and not by programmers calling debug.

The special values are:

lambda A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Entering:’ as a line of text at the top of the buffer.

debug debug as first argument indicates a call to debug because of entry to a function
that was set to debug on entry. The debugger displays ‘Entering:’, just as
in the lambda case. It also marks the stack frame for that function so that it
will invoke the debugger when exited.

t When the first argument is t, this indicates a call to debug due to evaluation
of a list form when debug-on-next-call is non-nil. The debugger displays
the following as the top line in the buffer:

Beginning evaluation of function call form:

exit When the first argument is exit, it indicates the exit of a stack frame previ-
ously marked to invoke the debugger on exit. The second argument given to
debug in this case is the value being returned from the frame. The debugger
displays ‘Return value:’ on the top line of the buffer, followed by the value
being returned.

error When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by displaying
‘Signaling:’ followed by the error signaled and any arguments to signal.
For example,

(let ((debug-on-error t))
(/ 1 0))

------ Buffer: *Backtrace* ------
Signaling: (arith-error)

/(1 0)
...
------ Buffer: *Backtrace* ------

If an error was signaled, presumably the variable debug-on-error is non-nil.
If quit was signaled, then presumably the variable debug-on-quit is non-nil.

nil Use nil as the first of the debugger-args when you want to enter the debugger
explicitly. The rest of the debugger-args are printed on the top line of the
buffer. You can use this feature to display messages—for example, to remind
yourself of the conditions under which debug is called.

Chapter 16: Debugging Lisp Programs 203

16.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

Variabledebugger
The value of this variable is the function to call to invoke the debugger. Its value must
be a function of any number of arguments (or, more typically, the name of a function).
Presumably this function will enter some kind of debugger. The default value of the
variable is debug.
The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

Commandbacktrace &optional stream detailed
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must have
access to the stack to determine which function calls are active. The return value is always
nil.
The backtrace is normally printed to standard-output, but this can be changed by speci-
fying a value for stream. If detailed is non-nil, the backtrace also shows places where cur-
rently active variable bindings, catches, condition-cases, and unwind-protects were made
as well as function calls.
In the following example, a Lisp expression calls backtrace explicitly. This prints the
backtrace to the stream standard-output: in this case, to the buffer ‘backtrace-output’.
Each line of the backtrace represents one function call. The line shows the values of the
function’s arguments if they are all known. If they are still being computed, the line says
so. The arguments of special forms are elided.

(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))

(save-excursion
(setq var (eval ’(progn

(1+ var)
(list ’testing (backtrace))))))))

⇒ nil

----------- Buffer: backtrace-output ------------
backtrace()
(list ...computing arguments...)
(progn ...)
eval((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(let ...)
(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)

* call-interactively(eval-print-last-sexp)
----------- Buffer: backtrace-output ------------

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

204 XEmacs Lisp Reference Manual

Variabledebug-on-next-call
If this variable is non-nil, it says to call the debugger before the next eval, apply or
funcall. Entering the debugger sets debug-on-next-call to nil.

The d command in the debugger works by setting this variable.

Functionbacktrace-debug level flag
This function sets the debug-on-exit flag of the stack frame level levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered when
that frame later exits. Even a nonlocal exit through that frame will enter the debugger.

This function is used only by the debugger.

Variablecommand-debug-status
This variable records the debugging status of the current interactive command. Each time
a command is called interactively, this variable is bound to nil. The debugger can set this
variable to leave information for future debugger invocations during the same command.

The advantage, for the debugger, of using this variable rather than another global variable
is that the data will never carry over to a subsequent command invocation.

Functionbacktrace-frame frame-number
The function backtrace-frame is intended for use in Lisp debuggers. It returns infor-
mation about what computation is happening in the stack frame frame-number levels
down.

If that frame has not evaluated the arguments yet (or is a special form), the value is (nil
function arg-forms...).

If that frame has evaluated its arguments and called its function already, the value is (t
function arg-values...).

In the return value, function is whatever was supplied as the car of the evaluated list, or
a lambda expression in the case of a macro call. If the function has a &rest argument,
that is represented as the tail of the list arg-values.

If frame-number is out of range, backtrace-frame returns nil.

16.2 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an excess
of open parentheses (or square brackets). The reader detects this imbalance at the end of the
file, but it cannot figure out where the close parenthesis should have been. Likewise, “Invalid
read syntax: ")"” indicates an excess close parenthesis or missing open parenthesis, but does
not say where the missing parenthesis belongs. How, then, to find what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try C-M-e
at the beginning of each defun, and see if it goes to the place where that defun appears to end.
If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we can
give further advice for those cases.

Chapter 16: Debugging Lisp Programs 205

16.2.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open parenthesis,
the way to do this is to insert a close parenthesis at the end of the file and type C-M-b (backward-
sexp). This will move you to the beginning of the defun that is unbalanced. (Then type C-〈SPC〉
C-_ C-u C-〈SPC〉 to set the mark there, undo the insertion of the close parenthesis, and finally
return to the mark.)

The next step is to determine precisely what is wrong. There is no way to be sure of this
except to study the program, but often the existing indentation is a clue to where the parentheses
should have been. The easiest way to use this clue is to reindent with C-M-q and see what moves.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q will
get an error, or will reindent all the rest of the file until the end. So move to the end of the
defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that too will
fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from a
certain point to the end of the function will shift to the right. There is probably a missing close
parenthesis, or a superfluous open parenthesis, near that point. (However, don’t assume this is
true; study the code to make sure.) Once you have found the discrepancy, undo the C-M-q with
C-_, since the old indentation is probably appropriate to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation actually
fit the intended nesting of parentheses, and you have put back those parentheses, C-M-q should
not change anything.

16.2.2 Excess Close Parentheses

To deal with an excess close parenthesis, first insert an open parenthesis at the beginning of
the file, back up over it, and type C-M-f to find the end of the unbalanced defun. (Then type
C-〈SPC〉 C-_ C-u C-〈SPC〉 to set the mark there, undo the insertion of the open parenthesis, and
finally return to the mark.)

Then find the actual matching close parenthesis by typing C-M-f at the beginning of the
defun. This will leave you somewhere short of the place where the defun ought to end. It is
possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at the beginning
of the defun. A range of lines will probably shift left; if so, the missing open parenthesis or
spurious close parenthesis is probably near the first of those lines. (However, don’t assume this
is true; study the code to make sure.) Once you have found the discrepancy, undo the C-M-q
with C-_, since the old indentation is probably appropriate to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation actually
fit the intended nesting of parentheses, and you have put back those parentheses, C-M-q should
not change anything.

16.3 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax in the
program you are compiling. The compiler prints a suitable error message in the ‘*Compile-Log*’
buffer, and then stops. The message may state a function name in which the error was found,
or it may not. Either way, here is how to find out where in the file the error occurred.

206 XEmacs Lisp Reference Manual

What you should do is switch to the buffer ‘ *Compiler Input*’. (Note that the buffer name
starts with a space, so it does not show up in M-x list-buffers.) This buffer contains the
program being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax was
detected. The cause of the error is not necessarily near by! Use the techniques in the previous
section to find the error.

If the error was detected while compiling a form that had been read successfully, then point
is located at the end of the form. In this case, this technique can’t localize the error precisely,
but can still show you which function to check.

16.4 Edebug

Edebug is a source-level debugger for XEmacs Lisp programs that provides the following
features:
• Step through evaluation, stopping before and after each expression.
• Set conditional or unconditional breakpoints, install embedded breakpoints, or a global

break event.
• Trace slow or fast stopping briefly at each stop point, or each breakpoint.
• Display expression results and evaluate expressions as if outside of Edebug. Interface with

the custom printing package for printing circular structures.
• Automatically reevaluate a list of expressions and display their results each time Edebug

updates the display.
• Output trace info on function enter and exit.
• Errors stop before the source causing the error.
• Display backtrace without Edebug calls.
• Allow specification of argument evaluation for macros and defining forms.
• Provide rudimentary coverage testing and display of frequency counts.

The first three sections should tell you enough about Edebug to enable you to use it.

16.4.1 Using Edebug

To debug an XEmacs Lisp program with Edebug, you must first instrument the Lisp code that
you want to debug. If you want to just try it now, load ‘edebug.el’, move point into a definition
and do C-u C-M-x (eval-defun with a prefix argument). See Section 16.4.2 [Instrumenting],
page 207 for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Activating
Edebug may stop execution and let you step through the function, or it may update the display
and continue execution while checking for debugging commands, depending on the selected
Edebug execution mode. The initial execution mode is step, by default, which does stop
execution. See Section 16.4.3 [Edebug Execution Modes], page 208.

Within Edebug, you normally view an XEmacs buffer showing the source of the Lisp function
you are debugging. This is referred to as the source code buffer—but note that it is not always
the same buffer depending on which function is currently being executed.

An arrow at the left margin indicates the line where the function is executing. Point initially
shows where within the line the function is executing, but you can move point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is what
you normally see. Point is at the open-parenthesis before if.

Chapter 16: Debugging Lisp Programs 207

(defun fac (n)
=>?(if (< 0 n)

(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points. These
occur both before and after each subexpression that is a list, and also after each variable refer-
ence. Here we show with periods the stop points found in the function fac:

(defun fac (n)
.(if .(< 0 n.).

.(* n. .(fac (1- n.).).).
1).)

While the source code buffer is selected, the special commands of Edebug are available in it,
in addition to the commands of XEmacs Lisp mode. (The buffer is temporarily made read-only,
however.) For example, you can type the Edebug command 〈SPC〉 to execute until the next stop
point. If you type 〈SPC〉 once after entry to fac, here is the display you will see:

(defun fac (n)
=>(if ?(< 0 n)

(* n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in the
echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute until
a breakpoint is reached, and q to exit to the top-level command loop. Type ? to display a list
of all Edebug commands.

16.4.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instrumenting
a form inserts additional code into it which invokes Edebug at the proper places. Furthermore,
if Edebug detects a syntax error while instrumenting, point is left at the erroneous code and an
invalid-read-syntax error is signaled.

Once you have loaded Edebug, the command C-M-x (eval-defun) is redefined so that when
invoked with a prefix argument on a definition, it instruments the definition before evaluating it.
(The source code itself is not modified.) If the variable edebug-all-defs is non-nil, that inverts
the meaning of the prefix argument: then C-M-x instruments the definition unless it has a prefix
argument. The default value of edebug-all-defs is nil. The command M-x edebug-all-defs
toggles the value of the variable edebug-all-defs.

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-buffer,
and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-all-forms
controls whether eval-region should instrument any form, even non-defining forms. This
doesn’t apply to loading or evaluations in the minibuffer. The command M-x edebug-all-forms
toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument any top-
level form regardless of the value of edebug-all-defs or edebug-all-forms.

Just before Edebug instruments any code, it calls any functions in the variable edebug-
setup-hook and resets its value to nil. You could use this to load up Edebug specifications
associated with a package you are using but only when you also use Edebug. For example,
‘my-specs.el’ may be loaded automatically when you use my-package with Edebug by including
the following code in ‘my-package.el’.

208 XEmacs Lisp Reference Manual

(add-hook ’edebug-setup-hook
(function (lambda () (require ’my-specs))))

While Edebug is active, the command I (edebug-instrument-callee) instruments the defi-
nition of the function or macro called by the list form after point, if is not already instrumented.
If the location of the definition is not known to Edebug, this command cannot be used. After
loading Edebug, eval-region records the position of every definition it evaluates, even if not
instrumenting it. Also see the command i (Section 16.4.4 [Jumping], page 209) which steps into
the callee.

Edebug knows how to instrument all the standard special forms, an interactive form with an
expression argument, anonymous lambda expressions, and other defining forms. (Specifications
for macros defined by ‘cl.el’ (version 2.03) are provided in ‘cl-specs.el’.) Edebug cannot
know what a user-defined macro will do with the arguments of a macro call so you must tell it.
See Section 16.4.16 [Instrumenting Macro Calls], page 217 for the details.

Note that a couple ways remain to evaluate expressions without instrumenting them. Loading
a file via the load subroutine does not instrument expressions for Edebug. Evaluations in the
minibuffer via eval-expression (M-ESC) are not instrumented.

To remove instrumentation from a definition, simply reevaluate it with one of the non-
instrumenting commands, or reload the file.

See Section 16.4.9 [Edebug Eval], page 212 for other evaluation functions available inside of
Edebug.

16.4.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging. We
call these alternatives Edebug execution modes; do not confuse them with major or minor
modes. The current Edebug execution mode determines how Edebug displays the progress of
the evaluation, whether it stops at each stop point, or continues to the next breakpoint, for
example.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands. All except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program for now, just wait for more Edebug
commands (edebug-stop).

〈SPC〉 Step: stop at the next stop point encountered (edebug-step-mode).

n Next: stop at the next stop point encountered after an expression (edebug-next-
mode). Also see edebug-forward-sexp in Section 16.4.5 [Edebug Misc], page 210.

t Trace: pause one second at each Edebug stop point (edebug-trace-mode).

T Rapid trace: update at each stop point, but don’t actually pause (edebug-Trace-
fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 16.4.6 [Break-
points], page 210.

c Continue: pause for one second at each breakpoint, but don’t stop (edebug-
continue-mode).

C Rapid continue: update at each breakpoint, but don’t actually pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still stop
the program by hitting any key.

Chapter 16: Debugging Lisp Programs 209

In general, the execution modes earlier in the above list run the program more slowly or stop
sooner.

When you enter a new Edebug level, the initial execution mode comes from the value of
the variable edebug-initial-mode. By default, this specifies step mode. Note that you may
reenter the same Edebug level several times if, for example, an instrumented function is called
several times from one command.

While executing or tracing, you can interrupt the execution by typing any Edebug command.
Edebug stops the program at the next stop point and then executes the command that you typed.
For example, typing t during execution switches to trace mode at the next stop point. You can
use S to stop execution without doing anything else.

If your function happens to read input, a character you hit intending to interrupt execution
may be read by the function instead. You can avoid such unintended results by paying attention
to when your program wants input.

Keyboard macros containing Edebug commands do not work; when you exit from Edebug,
to resume the program, whether you are defining or executing a keyboard macro is forgotten.
Also, defining or executing a keyboard macro outside of Edebug does not affect the command
loop inside Edebug. This is usually an advantage. But see edebug-continue-kbd-macro.

16.4.4 Jumping

Commands described here let you jump to a specified location. All, except i, use temporary
breakpoints to establish the stop point and then switch to go mode. Any other breakpoint
reached before the intended stop point will also stop execution. See Section 16.4.6 [Breakpoints],
page 210 for the details on breakpoints.

f Run the program forward over one expression (edebug-forward-sexp). More pre-
cisely, set a temporary breakpoint at the position that C-M-f would reach, then
execute in go mode so that the program will stop at breakpoints.
With a prefix argument n, the temporary breakpoint is placed n sexps beyond point.
If the containing list ends before n more elements, then the place to stop is after
the containing expression.
Be careful that the position C-M-f finds is a place that the program will really get
to; this may not be true in a cond, for example.
This command does forward-sexp starting at point rather than the stop point. If
you want to execute one expression from the current stop point, type w first, to
move point there.

o Continue “out of” an expression (edebug-step-out). It places a temporary break-
point at the end of the sexp containing point.
If the containing sexp is a function definition itself, it continues until just before the
last sexp in the definition. If that is where you are now, it returns from the function
and then stops. In other words, this command does not exit the currently executing
function unless you are positioned after the last sexp.

I Step into the function or macro after point after first ensuring that it is instrumented.
It does this by calling edebug-on-entry and then switching to go mode.
Although the automatic instrumentation is convenient, it is not later automatically
uninstrumented.

h Proceed to the stop point near where point is using a temporary breakpoint (edebug-
goto-here).

All the commands in this section may fail to work as expected in case of nonlocal exit, because
a nonlocal exit can bypass the temporary breakpoint where you expected the program to stop.

210 XEmacs Lisp Reference Manual

16.4.5 Miscellaneous

Some miscellaneous commands are described here.

? Display the help message for Edebug (edebug-help).

C-] Abort one level back to the previous command level (abort-recursive-edit).

q Return to the top level editor command loop (top-level). This exits all recursive
editing levels, including all levels of Edebug activity. However, instrumented code
protected with unwind-protect or condition-case forms may resume debugging.

Q Like q but don’t stop even for protected code (top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).
You cannot use debugger commands in the backtrace buffer in Edebug as you would
in the standard debugger.
The backtrace buffer is killed automatically when you continue execution.

From the Edebug recursive edit, you may invoke commands that activate Edebug again
recursively. Any time Edebug is active, you can quit to the top level with q or abort one
recursive edit level with C-]. You can display a backtrace of all the pending evaluations with d.

16.4.6 Breakpoints

There are three more ways to stop execution once it has started: breakpoints, the global
break condition, and embedded breakpoints.

While using Edebug, you can specify breakpoints in the program you are testing: points where
execution should stop. You can set a breakpoint at any stop point, as defined in Section 16.4.1
[Using Edebug], page 206. For setting and unsetting breakpoints, the stop point that is affected
is the first one at or after point in the source code buffer. Here are the Edebug commands for
breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint). If
you use a prefix argument, the breakpoint is temporary (it turns off the first time
it stops the program).

u Unset the breakpoint (if any) at the stop point at or after the current point (edebug-
unset-breakpoint).

x condition 〈RET〉
Set a conditional breakpoint which stops the program only if condition evaluates to
a non-nil value (edebug-set-conditional-breakpoint). If you use a prefix argu-
ment, the breakpoint is temporary (it turns off the first time it stops the program).

B Move point to the next breakpoint in the definition (edebug-next-breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First you must
move point to a position at or before the desired Edebug stop point, then hit the key to change
the breakpoint. Unsetting a breakpoint that has not been set does nothing.

Reevaluating or reinstrumenting a definition clears all its breakpoints.
A conditional breakpoint tests a condition each time the program gets there. To set a

conditional breakpoint, use x, and specify the condition expression in the minibuffer. Setting a

Chapter 16: Debugging Lisp Programs 211

conditional breakpoint at a stop point that already has a conditional breakpoint puts the current
condition expression in the minibuffer so you can edit it.

You can make both conditional and unconditional breakpoints temporary by using a prefix
arg to the command to set the breakpoint. After breaking at a temporary breakpoint, it is
automatically cleared.

Edebug always stops or pauses at a breakpoint except when the Edebug mode is Go-nonstop.
In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use B, which moves point to the next breakpoint in
the definition following point, or to the first breakpoint if there are no following breakpoints.
This command does not continue execution—it just moves point in the buffer.

16.4.6.1 Global Break Condition

In contrast to breaking when execution reaches specified locations, you can also cause a
break when a certain event occurs. The global break condition is a condition that is repeatedly
evaluated at every stop point. If it evaluates to a non-nil value, then execution is stopped or
paused depending on the execution mode, just like a breakpoint. Any errors that might occur
as a result of evaluating the condition are ignored, as if the result were nil.

You can set or edit the condition expression, stored in edebug-global-break-condition,
using X (edebug-set-global-break-condition).

Using the global break condition is perhaps the fastest way to find where in your code some
event occurs, but since it is rather expensive you should reset the condition to nil when not in
use.

16.4.6.2 Embedded Breakpoints

Since all breakpoints in a definition are cleared each time you reinstrument it, you might
rather create an embedded breakpoint which is simply a call to the function edebug. You can,
of course, make such a call conditional. For example, in the fac function, insert the first line as
shown below to stop when the argument reaches zero:

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)

(* n (fac (1- n)))
1))

When the fac definition is instrumented and the function is called, Edebug will stop before
the call to edebug. Depending on the execution mode, Edebug will stop or pause.

However, if no instrumented code is being executed, calling edebug will instead invoke debug.
Calling debug will always invoke the standard backtrace debugger.

16.4.7 Trapping Errors

An error may be signaled by subroutines or XEmacs Lisp code. If a signal is not handled by a
condition-case, this indicates an unrecognized situation has occurred. If Edebug is not active
when an unhandled error is signaled, debug is run normally (if debug-on-error is non-nil). But
while Edebug is active, debug-on-error and debug-on-quit are bound to edebug-on-error
and edebug-on-quit, which are both t by default. Actually, if debug-on-error already has a
non-nil value, that value is still used.

212 XEmacs Lisp Reference Manual

It is best to change the values of edebug-on-error or edebug-on-quit when Edebug is
not active since their values won’t be used until the next time Edebug is invoked at a deeper
command level. If you only change debug-on-error or debug-on-quit while Edebug is active,
these changes will be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s
recursive edit, these variables are bound to the values they had outside of Edebug.

Edebug shows you the last stop point that it knew about before the error was signaled. This
may be the location of a call to a function which was not instrumented, within which the error
actually occurred. For an unbound variable error, the last known stop point might be quite
distant from the offending variable. If the cause of the error is not obvious at first, note that
you can also get a full backtrace inside of Edebug (see Section 16.4.5 [Edebug Misc], page 210).

Edebug can also trap signals even if they are handled. If debug-on-error is a list of signal
names, Edebug will stop when any of these errors are signaled. Edebug shows you the last known
stop point just as for unhandled errors. After you continue execution, the error is signaled again
(but without being caught by Edebug). Edebug can only trap errors that are handled if they
are signaled in Lisp code (not subroutines) since it does so by temporarily replacing the signal
function.

16.4.8 Edebug Views

The following Edebug commands let you view aspects of the buffer and window status that
obtained before entry to Edebug.

v View the outside window configuration (edebug-view-outside).

p Temporarily display the outside current buffer with point at its outside position
(edebug-bounce-point). If prefix arg is supplied, sit for that many seconds instead.

w Move point back to the current stop point (edebug-where) in the source code buffer.
Also, if you use this command in another window displaying the same buffer, this
window will be used instead to display the buffer in the future.

W Toggle the edebug-save-windows variable which indicates whether the outside win-
dow configuration is saved and restored (edebug-toggle-save-windows). Also,
each time it is toggled on, make the outside window configuration the same as the
current window configuration.
With a prefix argument, edebug-toggle-save-windows only toggles saving and
restoring of the selected window. To specify a window that is not displaying the
source code buffer, you must use C-xXW from the global keymap.

You can view the outside window configuration with v or just bounce to the current point
in the current buffer with p, even if it is not normally displayed. After moving point, you may
wish to pop back to the stop point with w from a source code buffer.

By using W twice, Edebug again saves and restores the outside window configuration, but
to the current configuration. This is a convenient way to, for example, add another buffer to
be displayed whenever Edebug is active. However, the automatic redisplay of ‘*edebug*’ and
‘*edebug-trace*’ may conflict with the buffers you wish to see unless you have enough windows
open.

16.4.9 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running. Edebug
tries to be invisible to the expression’s evaluation and printing. Evaluation of expressions that
cause side effects will work as expected except for things that Edebug explicitly saves and

Chapter 16: Debugging Lisp Programs 213

restores. See Section 16.4.15 [The Outside Context], page 216 for details on this process. Also
see Section 16.4.11 [Reading in Edebug], page 214 and Section 16.4.12 [Printing in Edebug],
page 214 for topics related to evaluation.

e exp 〈RET〉
Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). In other words, Edebug tries to avoid altering the effect of
exp.

M-〈ESC〉 exp 〈RET〉
Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound symbols
created by the following constructs in ‘cl.el’ (version 2.03 or later): lexical-let, macrolet,
and symbol-macrolet.

16.4.10 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interactively.
You can also set up the evaluation list of expressions to be evaluated automatically each time
Edebug updates the display.

E Switch to the evaluation list buffer ‘*edebug*’ (edebug-visit-eval-list).

In the ‘*edebug*’ buffer you can use the commands of Lisp Interaction as well as these special
commands:

LFD Evaluate the expression before point, in the outside context, and insert the value in
the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the first expression of each group, reevaluate and
redisplay (edebug-update-eval-list). Groups are separated by comment lines.

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).

C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with LFD or C-x C-e, just as you
would in ‘*scratch*’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue execu-
tion unless you add them to the evaluation list with C-c C-u. This command builds a new list
from the first expression of each evaluation list group. Groups are separated by comment lines.
Be careful not to add expressions that execute instrumented code otherwise an infinite loop will
result.

When the evaluation list is redisplayed, each expression is displayed followed by the result
of evaluating it, and a comment line. If an error occurs during an evaluation, the error message
is displayed in a string as if it were the result. Therefore expressions that, for example, use
variables not currently valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

214 XEmacs Lisp Reference Manual

(current-buffer)
#<buffer *scratch*>
;---
(selected-window)
#<window 16 on *scratch*>
;---
(point)
196
;---
bad-var
"Symbol’s value as variable is void: bad-var"
;---
(recursion-depth)
0
;---
this-command
eval-last-sexp
;---

To delete a group, move point into it and type C-c C-d, or simply delete the text for the
group and update the evaluation list with C-c C-u. When you add a new group, be sure it is
separated from its neighbors by a comment line.

After selecting ‘*edebug*’, you can return to the source code buffer with C-c C-w. The
‘*edebug*’ buffer is killed when you continue execution, and recreated next time it is needed.

16.4.11 Reading in Edebug

To instrument a form, Edebug first reads the whole form. Edebug replaces the standard Lisp
Reader with its own reader that remembers the positions of expressions. This reader is used
by the Edebug replacements for eval-region, eval-defun, eval-buffer, and eval-current-
buffer.

Another package, ‘cl-read.el’, replaces the standard reader with one that understands
Common Lisp reader macros. If you use that package, Edebug will automatically load
‘edebug-cl-read.el’ to provide corresponding reader macros that remember positions of ex-
pressions. If you define new reader macros, you will have to define similar reader macros for
Edebug.

16.4.12 Printing in Edebug

If the result of an expression in your program contains a circular reference, you may get an
error when Edebug attempts to print it. You can set print-length to a non-zero value to limit
the print length of lists (the number of cdrs), and in Emacs 19, set print-level to a non-zero
value to limit the print depth of lists. But you can print such circular structures and structures
that share elements more informatively by using the ‘cust-print’ package.

To load ‘cust-print’ and activate custom printing only for Edebug, simply use the command
M-x edebug-install-custom-print. To restore the standard print functions, use M-x edebug-
uninstall-custom-print. You can also activate custom printing for printing in any Lisp code;
see the package for details.

Here is an example of code that creates a circular structure:

Chapter 16: Debugging Lisp Programs 215

(progn
(edebug-install-custom-print)
(setq a ’(x y))
(setcar a a))

Edebug will print the result of the setcar as ‘Result: #1=(#1# y)’. The ‘#1=’ notation
names the structure that follows it, and the ‘#1#’ notation references the previously named
structure. This notation is used for any shared elements of lists or vectors.

Independent of whether ‘cust-print’ is active, while printing results Edebug binds print-
length, print-level, and print-circle to edebug-print-length (50), edebug-print-level
(50), and edebug-print-circle (t) respectively, if these values are non-nil. Also, print-
readably is bound to nil since some objects simply cannot be printed readably.

16.4.13 Tracing

In addition to automatic stepping through source code, which is also called tracing (see
Section 16.4.3 [Edebug Execution Modes], page 208), Edebug can produce a traditional trace
listing of execution in a separate buffer, ‘*edebug-trace*’.

If the variable edebug-trace is non-nil, each function entry and exit adds lines to the trace
buffer. On function entry, Edebug prints ‘::::{’ followed by the function name and argument
values. On function exit, Edebug prints ‘::::}’ followed by the function name and result
of the function. The number of ‘:’s is computed from the recursion depth. The balanced
braces in the trace buffer can be used to find the matching beginning or end of function calls.
These displays may be customized by replacing the functions edebug-print-trace-before and
edebug-print-trace-after, which take an arbitrary message string to print.

The macro edebug-tracing provides tracing similar to function enter and exit tracing, but
for arbitrary expressions. This macro should be explicitly inserted by you around expressions
you wish to trace the execution of. The first argument is a message string (evaluated), and the
rest are expressions to evaluate. The result of the last expression is returned.

Finally, you can insert arbitrary strings into the trace buffer with explicit calls to edebug-
trace. The arguments of this function are the same as for message, but a newline is always
inserted after each string printed in this way.

edebug-tracing and edebug-trace insert lines in the trace buffer even if Edebug is not
active. Every time the trace buffer is added to, the window is scrolled to show the last lines
inserted. (There may be some display problems if you use tracing along with the evaluation
list.)

16.4.14 Coverage Testing

Edebug provides a rudimentary coverage tester and display of execution frequency. Frequency
counts are always accumulated, both before and after evaluation of each instrumented expression,
even if the execution mode is Go-nonstop. Coverage testing is only done if the option edebug-
test-coverage is non-nil because this is relatively expensive. Both data sets are displayed by
M-x edebug-display-freq-count.

Commandedebug-display-freq-count
Display the frequency count data for each line of the current definition. The frequency
counts are inserted as comment lines after each line, and you can undo all insertions with
one undo command. The counts are inserted starting under the (before an expression or
the) after an expression, or on the last char of a symbol. The counts are only displayed
when they differ from previous counts on the same line.

216 XEmacs Lisp Reference Manual

If coverage is being tested, whenever all known results of an expression are eq, the char =
will be appended after the count for that expression. Note that this is always the case for
an expression only evaluated once.
To clear the frequency count and coverage data for a definition, reinstrument it.

For example, after evaluating (fac 5) with an embedded breakpoint, and setting edebug-
test-coverage to t, when the breakpoint is reached, the frequency data is looks like this:

(defun fac (n)
(if (= n 0) (edebug))

;#6 1 0 =5
(if (< 0 n)

;#5 =
(* n (fac (1- n)))

;# 5 0
1))

;# 0

The comment lines show that fac has been called 6 times. The first if statement has returned
5 times with the same result each time, and the same is true for the condition on the second if.
The recursive call of fac has not returned at all.

16.4.15 The Outside Context

Edebug tries to be transparent to the program you are debugging. In addition, most eval-
uations you do within Edebug (see Section 16.4.9 [Edebug Eval], page 212) occur in the same
outside context which is temporarily restored for the evaluation. But Edebug is not completely
successful and this section explains precisely how it fails. Edebug operation unavoidably alters
some data in XEmacs, and this can interfere with debugging certain programs. Also notice that
Edebug’s protection against change of outside data means that any side effects intended by the
user in the course of debugging will be defeated.

16.4.15.1 Checking Whether to Stop

Whenever Edebug is entered just to think about whether to take some action, it needs to
save and restore certain data.
• max-lisp-eval-depth and max-specpdl-size are both incremented one time to reduce

Edebug’s impact on the stack. You could, however, still run out of stack space when using
Edebug.

• The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-macro is bound to edebug-continue-kbd-macro.

16.4.15.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current window
configuration from “outside” Edebug. When you exit Edebug (by continuing the program), it
restores the previous window configuration.

XEmacs redisplays only when it pauses. Usually, when you continue execution, the program
comes back into Edebug at a breakpoint or after stepping without pausing or reading input in
between. In such cases, XEmacs never gets a chance to redisplay the “outside” configuration.

Chapter 16: Debugging Lisp Programs 217

What you see is the same window configuration as the last time Edebug was active, with no
interruption.

Entry to Edebug for displaying something also saves and restores the following data, but
some of these are deliberately not restored if an error or quit signal occurs.
• Which buffer is current, and where point and mark are in the current buffer are saved and

restored.
• The Edebug Display Update, is saved and restored if edebug-save-windows is non-nil. It

is not restored on error or quit, but the outside selected window is reselected even on error
or quit in case a save-excursion is active. If the value of edebug-save-windows is a list,
only the listed windows are saved and restored.
The window start and horizontal scrolling of the source code buffer are not restored, how-
ever, so that the display remains coherent.

• The value of point in each displayed buffer is saved and restored if edebug-save-displayed-
buffer-points is non-nil.

• The variables overlay-arrow-position and overlay-arrow-string are saved and re-
stored. So you can safely invoke Edebug from the recursive edit elsewhere in the same
buffer.

• cursor-in-echo-area is locally bound to nil so that the cursor shows up in the window.

16.4.15.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:
• The current match data, for whichever buffer was current.
• last-command, this-command, last-command-char, last-input-char, last-

input-event, last-command-event, last-event-frame, last-nonmenu-event, and
track-mouse . Commands used within Edebug do not affect these variables outside of
Edebug.
The key sequence returned by this-command-keys is changed by executing commands
within Edebug and there is no way to reset the key sequence from Lisp.
For Emacs 18, Edebug cannot save and restore the value of unread-command-char. Entering
Edebug while this variable has a nontrivial value can interfere with execution of the program
you are debugging.

• Complex commands executed while in Edebug are added to the variable command-history.
In rare cases this can alter execution.

• Within Edebug, the recursion depth appears one deeper than the recursion depth outside
Edebug. This is not true of the automatically updated evaluation list window.

• standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

• The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

16.4.16 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional advice
to do the job properly. This is because there is no way to tell which subexpressions of the
macro call may be evaluated. (Evaluation may occur explicitly in the macro body, or when the
resulting expansion is evaluated, or any time later.) You must explain the format of macro call
arguments by using def-edebug-spec to define an Edebug specification for each macro.

218 XEmacs Lisp Reference Manual

Macrodef-edebug-spec macro specification
Specify which expressions of a call to macro macro are forms to be evaluated. For simple
macros, the specification often looks very similar to the formal argument list of the macro
definition, but specifications are much more general than macro arguments.
The macro argument may actually be any symbol, not just a macro name.
Unless you are using Emacs 19 or XEmacs, this macro is only defined in Edebug, so
you may want to use the following which is equivalent: (put ’macro ’edebug-form-spec
’specification)

Here is a simple example that defines the specification for the for macro described in the
XEmacs Lisp Reference Manual, followed by an alternative, equivalent specification.

(def-edebug-spec for
(symbolp "from" form "to" form "do" &rest form))

(def-edebug-spec for
(symbolp [’from form] [’to form] [’do body]))

Here is a table of the possibilities for specification and how each directs processing of argu-
ments.

•t All arguments are instrumented for evaluation.

•0 None of the arguments is instrumented.

•a symbol The symbol must have an Edebug specification which is used instead. This indi-
rection is repeated until another kind of specification is found. This allows you to
inherit the specification for another macro.

•a list The elements of the list describe the types of the arguments of a calling form. The
possible elements of a specification list are described in the following sections.

16.4.16.1 Specification List

A specification list is required for an Edebug specification if some arguments of a macro
call are evaluated while others are not. Some elements in a specification list match one or more
arguments, but others modify the processing of all following elements. The latter, called keyword
specifications, are symbols beginning with ‘&’ (e.g. &optional).

A specification list may contain sublists which match arguments that are themselves lists, or
it may contain vectors used for grouping. Sublists and groups thus subdivide the specification
list into a hierarchy of levels. Keyword specifications only apply to the remainder of the sublist
or group they are contained in and there is an implicit grouping around a keyword specification
and all following elements in the sublist or group.

If a specification list fails at some level, then backtracking may be invoked to find some
alternative at a higher level, or if no alternatives remain, an error will be signaled. See Sec-
tion 16.4.16.2 [Backtracking], page 221 for more details.

Edebug specifications provide at least the power of regular expression matching. Some
context-free constructs are also supported: the matching of sublists with balanced parenthe-
ses, recursive processing of forms, and recursion via indirect specifications.

Each element of a specification list may be one of the following, with the corresponding type
of argument:

sexp A single unevaluated expression.

form A single evaluated expression, which is instrumented.

Chapter 16: Debugging Lisp Programs 219

place A place as in the Common Lisp setf place argument. It will be instrumented just
like a form, but the macro is expected to strip the instrumentation. Two functions,
edebug-unwrap and edebug-unwrap*, are provided to strip the instrumentation one
level or recursively at all levels.

body Short for &rest form. See &rest below.

function-form
A function form: either a quoted function symbol, a quoted lambda expression, or
a form (that should evaluate to a function symbol or lambda expression). This is
useful when function arguments might be quoted with quote rather than function
since the body of a lambda expression will be instrumented either way.

lambda-expr
An unquoted anonymous lambda expression.

&optional
All following elements in the specification list are optional; as soon as one does not
match, Edebug stops matching at this level.
To make just a few elements optional followed by non-optional elements, use
[&optional specs...]. To specify that several elements should all succeed together,
use &optional [specs...]. See the defun example below.

&rest All following elements in the specification list are repeated zero or more times. All
the elements need not match in the last repetition, however.
To repeat only a few elements, use [&rest specs...]. To specify all elements must
match on every repetition, use &rest [specs...].

&or Each of the following elements in the specification list is an alternative, processed
left to right until one matches. One of the alternatives must match otherwise the
&or specification fails.
Each list element following &or is a single alternative even if it is a keyword specifi-
cation. (This breaks the implicit grouping rule.) To group two or more list elements
as a single alternative, enclose them in [...].

¬ Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

&define Indicates that the specification is for a defining form. The defining form itself is not
instrumented (i.e. Edebug does not stop before and after the defining form), but
forms inside it typically will be instrumented. The &define keyword should be the
first element in a list specification.
Additional specifications that may only appear after &define are described here.
See the defun example below.

name The argument, a symbol, is the name of the defining form. But a
defining form need not be named at all, in which case a unique name
will be created for it.
The name specification may be used more than once in the specifica-
tion and each subsequent use will append the corresponding symbol
argument to the previous name with ‘@’ between them. This is use-
ful for generating unique but meaningful names for definitions such as
defadvice and defmethod.

:name The element following :name should be a symbol; it is used as an ad-
ditional name component for the definition. This is useful to add a
unique, static component to the name of the definition. It may be used
more than once. No argument is matched.

220 XEmacs Lisp Reference Manual

arg The argument, a symbol, is the name of an argument of the defining
form. However, lambda list keywords (symbols starting with ‘&’) are
not allowed. See lambda-list and the example below.

lambda-list
This matches the whole argument list of an XEmacs Lisp lambda ex-
pression, which is a list of symbols and the keywords &optional and
&rest

def-body The argument is the body of code in a definition. This is like body,
described above, but a definition body must be instrumented with a
different Edebug call that looks up information associated with the def-
inition. Use def-body for the highest level list of forms within the
definition.

def-form The argument is a single, highest-level form in a definition. This is like
def-body, except use this to match a single form rather than a list of
forms. As a special case, def-form also means that tracing information
is not output when the form is executed. See the interactive example
below.

nil This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example below.

gate No argument is matched but backtracking through the gate is disabled while match-
ing the remainder of the specifications at this level. This is primarily used to generate
more specific syntax error messages. See Section 16.4.16.2 [Backtracking], page 221
for more details. Also see the let example below.

other-symbol
Any other symbol in a specification list may be a predicate or an indirect specifica-
tion.
If the symbol has an Edebug specification, this indirect specification should be either
a list specification that is used in place of the symbol, or a function that is called
to process the arguments. The specification may be defined with def-edebug-spec
just as for macros. See the defun example below.
Otherwise, the symbol should be a predicate. The predicate is called with the
argument and the specification fails if the predicate fails. The argument is not
instrumented.
Predicates that may be used include: symbolp, integerp, stringp, vectorp, atom
(which matches a number, string, symbol, or vector), keywordp, and lambda-list-
keywordp. The last two, defined in ‘edebug.el’, test whether the argument is a
symbol starting with ‘:’ and ‘&’ respectively.

[elements...]
Rather than matching a vector argument, a vector treats the elements as a single
group specification.

"string" The argument should be a symbol named string. This specification is equivalent to
the quoted symbol, ’symbol, where the name of symbol is the string, but the string
form is preferred.

’symbol or (quote symbol)
The argument should be the symbol symbol. But use a string specification instead.

(vector elements...)
The argument should be a vector whose elements must match the elements in the
specification. See the backquote example below.

Chapter 16: Debugging Lisp Programs 221

(elements...)
Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.
A sublist specification may be a dotted list and the corresponding list argument may
then be a dotted list. Alternatively, the last cdr of a dotted list specification may be
another sublist specification (via a grouping or an indirect specification, e.g. (spec
. [(more specs...)])) whose elements match the non-dotted list arguments. This
is useful in recursive specifications such as in the backquote example below. Also
see the description of a nil specification above for terminating such recursion.
Note that a sublist specification of the form (specs . nil) means the same
as (specs), and (specs . (sublist-elements...)) means the same as (specs
sublist-elements...).

16.4.16.2 Backtracking

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been
exhausted. Eventually every element of the argument list must be matched by some element in
the specification, and every required element in the specification must match some argument.

Backtracking is disabled for the remainder of a sublist or group when certain conditions occur,
described below. Backtracking is reenabled when a new alternative is established by &optional,
&rest, or &or. It is also reenabled initially when processing a sublist or group specification or
an indirect specification.

You might want to disable backtracking to commit to some alternative so that Edebug can
provide a more specific syntax error message. Normally, if no alternative matches, Edebug
reports that none matched, but if one alternative is committed to, Edebug can report how it
failed to match.

First, backtracking is disabled while matching any of the form specifications (i.e. form, body,
def-form, and def-body). These specifications will match any form so any error must be in the
form itself rather than at a higher level.

Second, backtracking is disabled after successfully matching a quoted symbol or string spec-
ification, since this usually indicates a recognized construct. If you have a set of alternative
constructs that all begin with the same symbol, you can usually work around this constraint
by factoring the symbol out of the alternatives, e.g., ["foo" &or [first case] [second case]
...].

Third, backtracking may be explicitly disabled by using the gate specification. This is useful
when you know that no higher alternatives may apply.

16.4.16.3 Debugging Backquote

Backquote (‘) is a macro that results in an expression that may or may not be evaluated. It
is often used to simplify the definition of a macro to return an expression that is evaluated, but
Edebug does not know when this is the case. However, the forms inside unquotes (, and ,@)
are evaluated and Edebug instruments them.

Nested backquotes are supported by Edebug, but there is a limit on the support of quotes
inside of backquotes. Quoted forms (with ’) are not normally evaluated, but if the quoted form
appears immediately within , and ,@ forms, Edebug treats this as a backquoted form at the
next higher level (even if there is not a next higher level - this is difficult to fix).

222 XEmacs Lisp Reference Manual

If the backquoted forms happen to be code intended to be evaluated, you can have Edebug
instrument them by using edebug-‘ instead of the regular ‘. Unquoted forms can always appear
inside edebug-‘ anywhere a form is normally allowed. But (, form) may be used in two other
places specially recognized by Edebug: wherever a predicate specification would match, and at
the head of a list form in place of a function name or lambda expression. The form inside a
spliced unquote, (,@ form), will be wrapped, but the unquote form itself will not be wrapped
since this would interfere with the splicing.

There is one other complication with using edebug-‘. If the edebug-‘ call is in a macro and
the macro may be called from code that is also instrumented, and if unquoted forms contain
any macro arguments bound to instrumented forms, then you should modify the specification
for the macro as follows: the specifications for those arguments must use def-form instead of
form. (This is to reestablish the Edebugging context for those external forms.)

For example, the for macro (see section “Problems with Macros” in XEmacs Lisp Reference
Manual) is shown here but with edebug-‘ substituted for regular ‘.

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

(defmacro for (var from init to final do &rest body)
(let ((tempvar (make-symbol "max")))

(edebug-‘ (let (((, var) (, init))
((, tempvar) (, final)))

(while (<= (, var) (, tempvar))
(, body)
(inc (, var)))))))

Here is the corresponding modified Edebug specification and some code that calls the macro:
(def-edebug-spec for
(symbolp "from" def-form "to" def-form "do" &rest def-form))

(let ((n 5))
(for i from n to (* n (+ n 1)) do

(message "%s" i)))

After instrumenting the for macro and the macro call, Edebug first steps to the beginning of
the macro call, then into the macro body, then through each of the unquoted expressions in the
backquote showing the expressions that will be embedded in the backquote form. Then when
the macro expansion is evaluated, Edebug will step through the let form and each time it gets
to an unquoted form, it will jump back to an argument of the macro call to step through that
expression. Finally stepping will continue after the macro call. Even more convoluted execution
paths may result when using anonymous functions.

When the result of an expression is an instrumented expression, it is difficult to see the
expression inside the instrumentation. So you may want to set the option edebug-unwrap-
results to a non-nil value while debugging such expressions, but it would slow Edebug down
to always do this.

16.4.16.4 Specification Examples

Here we provide several examples of Edebug specifications to show many of its capabilities.
A let special form has a sequence of bindings and a body. Each of the bindings is either

a symbol or a sublist with a symbol and optional value. In the specification below, notice the
gate inside of the sublist to prevent backtracking.

Chapter 16: Debugging Lisp Programs 223

(def-edebug-spec let
((&rest

&or symbolp (gate symbolp &optional form))
body))

Edebug uses the following specifications for defun and defmacro and the associated argument
list and interactive specifications. It is necessary to handle the expression argument of an
interactive form specially since it is actually evaluated outside of the function body.

(def-edebug-spec defmacro defun) ; Indirect ref to defun spec
(def-edebug-spec defun

(&define name lambda-list
[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]
def-body))

(def-edebug-spec lambda-list
(([&rest arg]
[&optional ["&optional" arg &rest arg]]
&optional ["&rest" arg]
)))

(def-edebug-spec interactive
(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil to
terminate recursion. It also illustrates how components of a vector may be matched. (The
actual specification provided by Edebug does not support dotted lists because doing so causes
very deep recursion that could fail.)

(def-edebug-spec ‘ (backquote-form)) ;; alias just for clarity

(def-edebug-spec backquote-form
(&or ([&or "," ",@"] &or ("quote" backquote-form) form)

(backquote-form . [&or nil backquote-form])
(vector &rest backquote-form)
sexp))

16.4.17 Edebug Options

These options affect the behavior of Edebug:

User Optionedebug-setup-hook
Functions to call before Edebug is used. Each time it is set to a new value, Edebug will
call those functions once and then edebug-setup-hook is reset to nil. You could use this
to load up Edebug specifications associated with a package you are using but only when
you also use Edebug. See Section 16.4.2 [Instrumenting], page 207.

User Optionedebug-all-defs
If non-nil, normal evaluation of any defining forms (e.g. defun and defmacro) will
instrument them for Edebug. This applies to eval-defun, eval-region, and eval-
current-buffer.
Use the command M-x edebug-all-defs to toggle the value of this variable. You
may want to make this variable local to each buffer by calling (make-local-variable

224 XEmacs Lisp Reference Manual

’edebug-all-defs) in your emacs-lisp-mode-hook. See Section 16.4.2 [Instrumenting],
page 207.

User Optionedebug-all-forms
If non-nil, normal evaluation of any forms by eval-defun, eval-region, and eval-
current-buffer will instrument them for Edebug.
Use the command M-x edebug-all-forms to toggle the value of this option. See Sec-
tion 16.4.2 [Instrumenting], page 207.

User Optionedebug-save-windows
If non-nil, save and restore window configuration on Edebug calls. It takes some time to
do this, so if your program does not care what happens to data about windows, you may
want to set this variable to nil.
If the value is a list, only the listed windows are saved and restored.
M-x edebug-toggle-save-windows may be used to change this variable. This command
is bound to W in source code buffers. See Section 16.4.15.2 [Edebug Display Update],
page 216.

User Optionedebug-save-displayed-buffer-points
If non-nil, save and restore point in all displayed buffers. This is necessary if you are
debugging code that changes the point of a buffer which is displayed in a non-selected
window. If Edebug or the user then selects the window, the buffer’s point will be changed
to the window’s point.
This is an expensive operation since it visits each window and therefore each displayed
buffer twice for each Edebug activation, so it is best to avoid it if you can. See Sec-
tion 16.4.15.2 [Edebug Display Update], page 216.

User Optionedebug-initial-mode
If this variable is non-nil, it specifies the initial execution mode for Edebug when it
is first activated. Possible values are step, next, go, Go-nonstop, trace, Trace-fast,
continue, and Continue-fast.
The default value is step. See Section 16.4.3 [Edebug Execution Modes], page 208.

User Optionedebug-trace
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘*edebug-trace*’, one function entry or exit per line, indented by the
recursion level.
The default value is nil.
Also see edebug-tracing. See Section 16.4.13 [Tracing], page 215.

User Optionedebug-test-coverage
If non-nil, Edebug tests coverage of all expressions debugged. This is done by comparing
the result of each expression with the previous result. Coverage is considered OK if two
different results are found. So to sufficiently test the coverage of your code, try to execute
it under conditions that evaluate all expressions more than once, and produce different
results for each expression.
Use M-x edebug-display-freq-count to display the frequency count and coverage infor-
mation for a definition. See Section 16.4.14 [Coverage Testing], page 215.

Chapter 16: Debugging Lisp Programs 225

User Optionedebug-continue-kbd-macro
If non-nil, continue defining or executing any keyboard macro that is executing outside
of Edebug. Use this with caution since it is not debugged. See Section 16.4.3 [Edebug
Execution Modes], page 208.

User Optionedebug-print-length
If non-nil, bind print-length to this while printing results in Edebug. The default value
is 50. See Section 16.4.12 [Printing in Edebug], page 214.

User Optionedebug-print-level
If non-nil, bind print-level to this while printing results in Edebug. The default value
is 50.

User Optionedebug-print-circle
If non-nil, bind print-circle to this while printing results in Edebug. The default value
is nil.

User Optionedebug-on-error
debug-on-error is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors], page 211.

User Optionedebug-on-quit
debug-on-quit is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors], page 211.

User Optionedebug-unwrap-results
Non-nil if Edebug should unwrap results of expressions. This is useful when debug-
ging macros where the results of expressions are instrumented expressions. But don’t do
this when results might be circular or an infinite loop will result. See Section 16.4.16.3
[Debugging Backquote], page 221.

User Optionedebug-global-break-condition
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 16.4.6.1 [Global Break Condition], page 211.

226 XEmacs Lisp Reference Manual

Chapter 17: Reading and Printing Lisp Objects 227

17 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and vice
versa. They use the printed representations and read syntax described in Chapter 2 [Lisp Data
Types], page 13.

This chapter describes the Lisp functions for reading and printing. It also describes streams,
which specify where to get the text (if reading) or where to put it (if printing).

17.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code. We
call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read syntax
for a cons cell whose car is a and whose cdr is the number 5.

Printing a Lisp object means producing text that represents that object—converting the
object to its printed representation. Printing the cons cell described above produces the text
‘(a . 5)’.

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that results
from printing an object usually produces a similar-looking object. For example, printing the
symbol foo produces the text ‘foo’, and reading that text returns the symbol foo. Printing a
list whose elements are a and b produces the text ‘(a b)’, and reading that text produces a list
(but not the same list) with elements a and b.

However, these two operations are not precisely inverses. There are three kinds of exceptions:
• Printing can produce text that cannot be read. For example, buffers, windows, frames,

subprocesses and markers print into text that starts with ‘#’; if you try to read this text,
you get an error. There is no way to read those data types.

• One object can have multiple textual representations. For example, ‘1’ and ‘01’ represent
the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading will accept
any of the alternatives, but printing must choose one of them.

• Comments can appear at certain points in the middle of an object’s read sequence without
affecting the result of reading it.

17.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The input
stream specifies where or how to get the characters of the text to be read. Here are the possible
types of input stream:

buffer The input characters are read from buffer, starting with the character directly after
point. Point advances as characters are read.

marker The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters are
read. The value of point in the buffer has no effect when the stream is a marker.

string The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

228 XEmacs Lisp Reference Manual

function The input characters are generated by function, one character per call. Normally
function is called with no arguments, and should return a character.
Occasionally function is called with one argument (always a character). When that
happens, function should save the argument and arrange to return it on the next
call. This is called unreading the character; it happens when the Lisp reader reads
one character too many and wants to “put it back where it came from”.

t t used as a stream means that the input is read from the minibuffer. In fact, the
minibuffer is invoked once and the text given by the user is made into a string that
is then used as the input stream.

nil nil supplied as an input stream means to use the value of standard-input instead;
that value is the default input stream, and must be a non-nil input stream.

symbol A symbol as input stream is equivalent to the symbol’s function definition (if any).

Here is an example of reading from a stream that is a buffer, showing where point is located
before and after:

---------- Buffer: foo ----------
This? is the contents of foo.
---------- Buffer: foo ----------

(read (get-buffer "foo"))
⇒ is

(read (get-buffer "foo"))
⇒ the

---------- Buffer: foo ----------
This is the? contents of foo.
---------- Buffer: foo ----------

Note that the first read skips a space. Reading skips any amount of whitespace preceding the
significant text.

In Emacs 18, reading a symbol discarded the delimiter terminating the symbol. Thus, point
would end up at the beginning of ‘contents’ rather than after ‘the’. The Emacs 19 behavior is
superior because it correctly handles input such as ‘bar(foo)’, where the open-parenthesis that
ends one object is needed as the beginning of another object.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
⇒ #<marker at 1 in foo>

(read m)
⇒ This

m
⇒ #<marker at 5 in foo> ;; Before the first space.

Here we read from the contents of a string:
(read "(When in) the course")

⇒ (When in)

The following example reads from the minibuffer. The prompt is: ‘Lisp expression: ’.
(That is always the prompt used when you read from the stream t.) The user’s input is shown
following the prompt.

Chapter 17: Reading and Printing Lisp Objects 229

(read t)
⇒ 23

---------- Buffer: Minibuffer ----------
Lisp expression: 23 〈RET〉
---------- Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream. Before
we use the stream, we initialize the variable useless-list to a list of characters. Then each call
to the function useless-stream obtains the next character in the list or unreads a character by
adding it to the front of the list.

(setq useless-list (append "XY()" nil))
⇒ (88 89 40 41)

(defun useless-stream (&optional unread)
(if unread

(setq useless-list (cons unread useless-list))
(prog1 (car useless-list)

(setq useless-list (cdr useless-list)))))
⇒ useless-stream

Now we read using the stream thus constructed:
(read ’useless-stream)

⇒ XY

useless-list
⇒ (40 41)

Note that the open and close parentheses remains in the list. The Lisp reader encountered the
open parenthesis, decided that it ended the input, and unread it. Another attempt to read from
the stream at this point would read ‘()’ and return nil.

17.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.
In the functions below, stream stands for an input stream (see the previous section). If

stream is nil or omitted, it defaults to the value of standard-input.
An end-of-file error is signaled if reading encounters an unterminated list, vector, or string.

Functionread &optional stream
This function reads one textual Lisp expression from stream, returning it as a Lisp object.
This is the basic Lisp input function.

Functionread-from-string string &optional start end
This function reads the first textual Lisp expression from the text in string. It returns a
cons cell whose car is that expression, and whose cdr is an integer giving the position of
the next remaining character in the string (i.e., the first one not read).
If start is supplied, then reading begins at index start in the string (where the first char-
acter is at index 0). If end is also supplied, then reading stops just before that index, as
if the rest of the string were not there.
For example:

(read-from-string "(setq x 55) (setq y 5)")
⇒ ((setq x 55) . 11)

230 XEmacs Lisp Reference Manual

(read-from-string "\"A short string\"")
⇒ ("A short string" . 16)

;; Read starting at the first character.
(read-from-string "(list 112)" 0)

⇒ ((list 112) . 10)
;; Read starting at the second character.
(read-from-string "(list 112)" 1)

⇒ (list . 5)
;; Read starting at the seventh character,
;; and stopping at the ninth.
(read-from-string "(list 112)" 6 8)

⇒ (11 . 8)

Variablestandard-input
This variable holds the default input stream—the stream that read uses when the stream
argument is nil.

17.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most print
functions accept an output stream as an optional argument. Here are the possible types of
output stream:

buffer The output characters are inserted into buffer at point. Point advances as characters
are inserted.

marker The output characters are inserted into the buffer that marker points into, at the
marker position. The marker position advances as characters are inserted. The
value of point in the buffer has no effect on printing when the stream is a marker.

function The output characters are passed to function, which is responsible for storing them
away. It is called with a single character as argument, as many times as there are
characters to be output, and is free to do anything at all with the characters it
receives.

t The output characters are displayed in the echo area.

nil nil specified as an output stream means to the value of standard-output instead;
that value is the default output stream, and must be a non-nil output stream.

symbol A symbol as output stream is equivalent to the symbol’s function definition (if any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore mostly one of how you use a Lisp object, not a distinction
of types of object.

Here is an example of a buffer used as an output stream. Point is initially located as shown
immediately before the ‘h’ in ‘the’. At the end, point is located directly before that same ‘h’.

---------- Buffer: foo ----------
This is t?he contents of foo.
---------- Buffer: foo ----------

(print "This is the output" (get-buffer "foo"))
⇒ "This is the output"

Chapter 17: Reading and Printing Lisp Objects 231

---------- Buffer: foo ----------
This is t
"This is the output"
?he contents of foo.
---------- Buffer: foo ----------

Now we show a use of a marker as an output stream. Initially, the marker is in buffer foo,
between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has advanced over the
inserted text so that it remains positioned before the same ‘h’. Note that the location of point,
shown in the usual fashion, has no effect.

---------- Buffer: foo ----------
"This is the ?output"
---------- Buffer: foo ----------

m
⇒ #<marker at 11 in foo>

(print "More output for foo." m)
⇒ "More output for foo."

---------- Buffer: foo ----------
"This is t
"More output for foo."
he ?output"
---------- Buffer: foo ----------

m
⇒ #<marker at 35 in foo>

The following example shows output to the echo area:
(print "Echo Area output" t)

⇒ "Echo Area output"
---------- Echo Area ----------
"Echo Area output"
---------- Echo Area ----------

Finally, we show the use of a function as an output stream. The function eat-output takes
each character that it is given and conses it onto the front of the list last-output (see Section 5.5
[Building Lists], page 76). At the end, the list contains all the characters output, but in reverse
order.

(setq last-output nil)
⇒ nil

(defun eat-output (c)
(setq last-output (cons c last-output)))
⇒ eat-output

(print "This is the output" ’eat-output)
⇒ "This is the output"

last-output
⇒ (?\n ?\" ?t ?u ?p ?t ?u ?o ?\ ?e ?h ?t

?\ ?s ?i ?\ ?s ?i ?h ?T ?\" ?\n)

Now we can put the output in the proper order by reversing the list:
(concat (nreverse last-output))

⇒ "
\"This is the output\"
"

232 XEmacs Lisp Reference Manual

Calling concat converts the list to a string so you can see its contents more clearly.

17.5 Output Functions

This section describes the Lisp functions for printing Lisp objects.

Some of the XEmacs printing functions add quoting characters to the output when necessary
so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they distinguish
strings from symbols, and prevent punctuation characters in strings and symbols from being
taken as delimiters when reading. See Section 2.1 [Printed Representation], page 13, for full
details. You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then it is best to print with quoting characters to avoid
ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp programmer.
However, if the purpose of the output is to look nice for humans, then it is better to print
without quoting.

Printing a self-referent Lisp object requires an infinite amount of text. In certain cases, trying
to produce this text leads to a stack overflow. XEmacs detects such recursion and prints ‘#level’
instead of recursively printing an object already being printed. For example, here ‘#0’ indicates
a recursive reference to the object at level 0 of the current print operation:

(setq foo (list nil))
⇒ (nil)

(setcar foo foo)
⇒ (#0)

In the functions below, stream stands for an output stream. (See the previous section for a
description of output streams.) If stream is nil or omitted, it defaults to the value of standard-
output.

Functionprint object &optional stream
The print function is a convenient way of printing. It outputs the printed representation
of object to stream, printing in addition one newline before object and another after it.
Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)
(print "the hat")
(print " came back"))
a
a The\ cat\ in
a
a "the hat"
a
a " came back"
a
⇒ " came back"

Functionprin1 object &optional stream
This function outputs the printed representation of object to stream. It does not print
newlines to separate output as print does, but it does use quoting characters just like
print. It returns object.

Chapter 17: Reading and Printing Lisp Objects 233

(progn (prin1 ’The\ cat\ in)
(prin1 "the hat")
(prin1 " came back"))
a The\ cat\ in"the hat"" came back"
⇒ " came back"

Functionprinc object &optional stream
This function outputs the printed representation of object to stream. It returns object.

This function is intended to produce output that is readable by people, not by read, so
it doesn’t insert quoting characters and doesn’t put double-quotes around the contents of
strings. It does not add any spacing between calls.

(progn
(princ ’The\ cat)
(princ " in the \"hat\""))
a The cat in the "hat"
⇒ " in the \"hat\""

Functionterpri &optional stream
This function outputs a newline to stream. The name stands for “terminate print”.

Functionwrite-char character &optional stream
This function outputs character to stream. It returns character.

Functionprin1-to-string object &optional noescape
This function returns a string containing the text that prin1 would have printed for the
same argument.

(prin1-to-string ’foo)
⇒ "foo"

(prin1-to-string (mark-marker))
⇒ "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This argu-
ment is supported in Emacs versions 19 and later.)

(prin1-to-string "foo")
⇒ "\"foo\""

(prin1-to-string "foo" t)
⇒ "foo"

See format, in Section 4.7 [String Conversion], page 60, for other ways to obtain the
printed representation of a Lisp object as a string.

17.6 Variables Affecting Output

Variablestandard-output
The value of this variable is the default output stream—the stream that print functions
use when the stream argument is nil.

234 XEmacs Lisp Reference Manual

Variableprint-escape-newlines
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.
This variable affects the print functions prin1 and print, as well as everything that uses
them. It does not affect princ. Here is an example using prin1:

(prin1 "a\nb")
a "a
a b"
⇒ "a

b"

(let ((print-escape-newlines t))
(prin1 "a\nb"))
a "a\nb"
⇒ "a

b"

In the second expression, the local binding of print-escape-newlines is in effect during
the call to prin1, but not during the printing of the result.

Variableprint-readably
If non-nil, then all objects will be printed in a readable form. If an object has no read-
able representation, then an error is signalled. When print-readably is true, compiled-
function objects will be written in ‘#[...]’ form instead of in ‘#<compiled-function
[...]>’ form, and two-element lists of the form ‘(quote object)’ will be written as the
equivalent ‘’object’. Do not set this variable; bind it instead.

Variableprint-length
The value of this variable is the maximum number of elements of a list that will be printed.
If a list being printed has more than this many elements, it is abbreviated with an ellipsis.
If the value is nil (the default), then there is no limit.

(setq print-length 2)
⇒ 2

(print ’(1 2 3 4 5))
a (1 2 ...)
⇒ (1 2 ...)

Variableprint-level
The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with an
ellipsis. A value of nil (which is the default) means no limit.
This variable exists in version 19 and later versions.

Variableprint-string-length
The value of this variable is the maximum number of characters of a string that will be
printed. If a string being printed has more than this many characters, it is abbreviated
with an ellipsis.

Variableprint-gensym
If non-nil, then uninterned symbols will be printed specially. Uninterned symbols are
those which are not present in obarray, that is, those which were made with make-symbol
or by calling intern with a second argument.

Chapter 17: Reading and Printing Lisp Objects 235

When print-gensym is true, such symbols will be preceded by ‘#:’, which causes the
reader to create a new symbol instead of interning and returning an existing one. Beware:
The ‘#:’ syntax creates a new symbol each time it is seen, so if you print an object
which contains two pointers to the same uninterned symbol, read will not duplicate that
structure.
Also, since XEmacs has no real notion of packages, there is no way for the printer to
distinguish between symbols interned in no obarray, and symbols interned in an alternate
obarray.

Variablefloat-output-format
This variable holds the format descriptor string that Lisp uses to print floats. This is a
‘%’-spec like those accepted by printf in C, but with some restrictions. It must start with
the two characters ‘%.’. After that comes an integer precision specification, and then a
letter which controls the format. The letters allowed are ‘e’, ‘f’ and ‘g’.
• Use ‘e’ for exponential notation ‘dig.digitseexpt’.
• Use ‘f’ for decimal point notation ‘DIGITS.DIGITS’.
• Use ‘g’ to choose the shorter of those two formats for the number at hand.

The precision in any of these cases is the number of digits following the decimal point.
With ‘f’, a precision of 0 means to omit the decimal point. 0 is not allowed with ‘f’ or
‘g’.
A value of nil means to use ‘%.16g’.
Regardless of the value of float-output-format, a floating point number will never be
printed in such a way that it is ambiguous with an integer; that is, a floating-point number
will always be printed with a decimal point and/or an exponent, even if the digits following
the decimal point are all zero. This is to preserve read-equivalence.

236 XEmacs Lisp Reference Manual

Chapter 18: Minibuffers 237

18 Minibuffers

A minibuffer is a special buffer that XEmacs commands use to read arguments more com-
plicated than the single numeric prefix argument. These arguments include file names, buffer
names, and command names (as in M-x). The minibuffer is displayed on the bottom line of the
frame, in the same place as the echo area, but only while it is in use for reading an argument.

18.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal XEmacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for man-
aging buffers do not apply to minibuffers. The name of a minibuffer always has the form
‘ *Minibuf-number’, and it cannot be changed. Minibuffers are displayed only in special win-
dows used only for minibuffers; these windows always appear at the bottom of a frame. (Some-
time frames have no minibuffer window, and sometimes a special kind of frame contains nothing
but a minibuffer window; see Section 32.7 [Minibuffers and Frames], page 432.)

The minibuffer’s window is normally a single line. You can resize it temporarily with the
window sizing commands; it reverts to its normal size when the minibuffer is exited. You
can resize it permanently by using the window sizing commands in the frame’s other window,
when the minibuffer is not active. If the frame contains just a minibuffer, you can change the
minibuffer’s size by changing the frame’s size.

If a command uses a minibuffer while there is an active minibuffer, this is called a recursive
minibuffer. The first minibuffer is named ‘ *Minibuf-0*’. Recursive minibuffers are named by
incrementing the number at the end of the name. (The names begin with a space so that they
won’t show up in normal buffer lists.) Of several recursive minibuffers, the innermost (or most
recently entered) is the active minibuffer. We usually call this “the” minibuffer. You can permit
or forbid recursive minibuffers by setting the variable enable-recursive-minibuffers.

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 20
[Keymaps], page 285); these contain various exit commands and in some cases completion com-
mands (see Section 18.5 [Completion], page 241).
• minibuffer-local-map is for ordinary input (no completion).
• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like 〈RET〉. This is used

mainly for Mocklisp compatibility.
• minibuffer-local-completion-map is for permissive completion.
• minibuffer-local-must-match-map is for strict completion and for cautious completion.

18.2 Reading Text Strings with the Minibuffer

Most often, the minibuffer is used to read text as a string. It can also be used to read a Lisp
object in textual form. The most basic primitive for minibuffer input is read-from-minibuffer;
it can do either one.

In most cases, you should not call minibuffer input functions in the middle of a Lisp func-
tion. Instead, do all minibuffer input as part of reading the arguments for a command, in the
interactive spec. See Section 19.2 [Defining Commands], page 256.

238 XEmacs Lisp Reference Manual

Functionread-from-minibuffer prompt-string &optional initial-contents keymap
read hist

This function is the most general way to get input through the minibuffer. By default, it
accepts arbitrary text and returns it as a string; however, if read is non-nil, then it uses
read to convert the text into a Lisp object (see Section 17.3 [Input Functions], page 229).

The first thing this function does is to activate a minibuffer and display it with prompt-
string as the prompt. This value must be a string.

Then, if initial-contents is a string, read-from-minibuffer inserts it into the minibuffer,
leaving point at the end. The minibuffer appears with this text as its contents.

The value of initial-contents may also be a cons cell of the form (string . position).
This means to insert string in the minibuffer but put point position characters from the
beginning, rather than at the end.

If keymap is non-nil, that keymap is the local keymap to use in the minibuffer. If keymap
is omitted or nil, the value of minibuffer-local-map is used as the keymap. Specifying
a keymap is the most important way to customize the minibuffer for various applications
such as completion.

The argument hist specifies which history list variable to use for saving the input and
for history commands used in the minibuffer. It defaults to minibuffer-history. See
Section 18.4 [Minibuffer History], page 240.

When the user types a command to exit the minibuffer, read-from-minibuffer uses the
text in the minibuffer to produce its return value. Normally it simply makes a string
containing that text. However, if read is non-nil, read-from-minibuffer reads the text
and returns the resulting Lisp object, unevaluated. (See Section 17.3 [Input Functions],
page 229, for information about reading.)

Functionread-string prompt &optional initial
This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer. The keymap used is minibuffer-
local-map.

This is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial)
≡
(read-from-minibuffer prompt initial nil nil nil)

Variableminibuffer-local-map
This is the default local keymap for reading from the minibuffer. By default, it makes the
following bindings:

〈LFD〉 exit-minibuffer

〈RET〉 exit-minibuffer

C-g abort-recursive-edit

M-n next-history-element

M-p previous-history-element

M-r next-matching-history-element

M-s previous-matching-history-element

Chapter 18: Minibuffers 239

Functionread-no-blanks-input prompt &optional initial
This function reads a string from the minibuffer, but does not allow whitespace characters
as part of the input: instead, those characters terminate the input. The arguments prompt
and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function, and passes the value
of the minibuffer-local-ns-map keymap as the keymap argument for that function.
Since the keymap minibuffer-local-ns-map does not rebind C-q, it is possible to put a
space into the string, by quoting it.

(read-no-blanks-input prompt initial)
≡
(read-from-minibuffer prompt initial minibuffer-local-ns-map)

Variableminibuffer-local-ns-map
This built-in variable is the keymap used as the minibuffer local keymap in the function
read-no-blanks-input. By default, it makes the following bindings, in addition to those
of minibuffer-local-map:

〈SPC〉 exit-minibuffer

〈TAB〉 exit-minibuffer

? self-insert-and-exit

18.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

Functionread-minibuffer prompt &optional initial
This function reads a Lisp object in the minibuffer and returns it, without evaluating it.
The arguments prompt and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)
≡
(read-from-minibuffer prompt initial nil t)

Here is an example in which we supply the string "(testing)" as initial input:
(read-minibuffer
"Enter an expression: " (format "%s" ’(testing)))

;; Here is how the minibuffer is displayed:

---------- Buffer: Minibuffer ----------
Enter an expression: (testing)?
---------- Buffer: Minibuffer ----------

The user can type 〈RET〉 immediately to use the initial input as a default, or can edit the
input.

Functioneval-minibuffer prompt &optional initial
This function reads a Lisp expression in the minibuffer, evaluates it, then returns the
result. The arguments prompt and initial are used as in read-from-minibuffer.
This function simply evaluates the result of a call to read-minibuffer:

240 XEmacs Lisp Reference Manual

(eval-minibuffer prompt initial)
≡
(eval (read-minibuffer prompt initial))

Functionedit-and-eval-command prompt form
This function reads a Lisp expression in the minibuffer, and then evaluates it. The dif-
ference between this command and eval-minibuffer is that here the initial form is not
optional and it is treated as a Lisp object to be converted to printed representation rather
than as a string of text. It is printed with prin1, so if it is a string, double-quote characters
(‘"’) appear in the initial text. See Section 17.5 [Output Functions], page 232.
The first thing edit-and-eval-command does is to activate the minibuffer with prompt
as the prompt. Then it inserts the printed representation of form in the minibuffer, and
lets the user edit. When the user exits the minibuffer, the edited text is read with read
and then evaluated. The resulting value becomes the value of edit-and-eval-command.
In the following example, we offer the user an expression with initial text which is a valid
form already:

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Please edit: (forward-word 1)?
---------- Buffer: Minibuffer ----------

Typing 〈RET〉 right away would exit the minibuffer and evaluate the expression, thus mov-
ing point forward one word. edit-and-eval-command returns t in this example.

18.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them con-
veniently. A history list is actually a symbol, not a list; it is a variable whose value is a list of
strings (previous inputs), most recent first.

There are many separate history lists, used for different kinds of inputs. It’s the Lisp pro-
grammer’s job to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read both
accept an optional argument named hist which is how you specify the history list. Here are the
possible values:

variable Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (an integer, counting from zero which specifies the most recent
element of the history).
If you specify startpos, then you should also specify that element of the history as
the initial minibuffer contents, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For
other standard history lists, see below. You can also create your own history list variable; just
initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history list
automatically, and provide commands to allow the user to reuse items on the list. The only

Chapter 18: Minibuffers 241

thing your program needs to do to use a history list is to initialize it and to pass its name to the
input functions when you wish. But it is safe to modify the list by hand when the minibuffer
input functions are not using it.

Variableminibuffer-history
The default history list for minibuffer history input.

Variablequery-replace-history
A history list for arguments to query-replace (and similar arguments to other com-
mands).

Variablefile-name-history
A history list for file name arguments.

Variableregexp-history
A history list for regular expression arguments.

Variableextended-command-history
A history list for arguments that are names of extended commands.

Variableshell-command-history
A history list for arguments that are shell commands.

Variableread-expression-history
A history list for arguments that are Lisp expressions to evaluate.

VariableInfo-minibuffer-history
A history list for Info mode’s minibuffer.

VariableManual-page-minibuffer-history
A history list for manual-entry.

There are many other minibuffer history lists, defined by various libraries. An M-x apropos
search for ‘history’ should prove fruitful in discovering them.

18.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation for it.
Completion works by comparing the user’s input against a list of valid names and determining
how much of the name is determined uniquely by what the user has typed. For example, when
you type C-x b (switch-to-buffer) and then type the first few letters of the name of the buffer
to which you wish to switch, and then type 〈TAB〉 (minibuffer-complete), Emacs extends the
name as far as it can.

Standard XEmacs commands offer completion for names of symbols, files, buffers, and pro-
cesses; with the functions in this section, you can implement completion for other kinds of
names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call to
completing-read specifies how to determine the list of valid names. The function then activates
the minibuffer with a local keymap that binds a few keys to commands useful for completion.
Other functions provide convenient simple interfaces for reading certain kinds of names with
completion.

242 XEmacs Lisp Reference Manual

18.5.1 Basic Completion Functions

The two functions try-completion and all-completions have nothing in themselves to do
with minibuffers. We describe them in this chapter so as to keep them near the higher-level
completion features that do use the minibuffer.

Functiontry-completion string collection &optional predicate
This function returns the longest common substring of all possible completions of string
in collection. The value of collection must be an alist, an obarray, or a function that
implements a virtual set of strings (see below).
Completion compares string against each of the permissible completions specified by col-
lection; if the beginning of the permissible completion equals string, it matches. If no
permissible completions match, try-completion returns nil. If only one permissible
completion matches, and the match is exact, then try-completion returns t. Otherwise,
the value is the longest initial sequence common to all the permissible completions that
match.
If collection is an alist (see Section 5.8 [Association Lists], page 85), the cars of the alist
elements form the set of permissible completions.
If collection is an obarray (see Section 7.3 [Creating Symbols], page 103), the names of
all symbols in the obarray form the set of permissible completions. The global variable
obarray holds an obarray containing the names of all interned Lisp symbols.
Note that the only valid way to make a new obarray is to create it empty and then add
symbols to it one by one using intern. Also, you cannot intern a given symbol in more
than one obarray.
If the argument predicate is non-nil, then it must be a function of one argument. It
is used to test each possible match, and the match is accepted only if predicate returns
non-nil. The argument given to predicate is either a cons cell from the alist (the car of
which is a string) or else it is a symbol (not a symbol name) from the obarray.
You can also use a symbol that is a function as collection. Then the function is solely
responsible for performing completion; try-completion returns whatever this function
returns. The function is called with three arguments: string, predicate and nil. (The
reason for the third argument is so that the same function can be used in all-completions
and do the appropriate thing in either case.) See Section 18.5.6 [Programmed Completion],
page 248.
In the first of the following examples, the string ‘foo’ is matched by three of the alist
cars. All of the matches begin with the characters ‘fooba’, so that is the result. In the
second example, there is only one possible match, and it is exact, so the value is t.

(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))

⇒ "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
⇒ t

In the following example, numerous symbols begin with the characters ‘forw’, and all of
them begin with the word ‘forward’. In most of the symbols, this is followed with a ‘-’,
but not in all, so no more than ‘forward’ can be completed.

(try-completion "forw" obarray)
⇒ "forward"

Finally, in the following example, only two of the three possible matches pass the predicate
test (the string ‘foobaz’ is too short). Both of those begin with the string ‘foobar’.

Chapter 18: Minibuffers 243

(defun test (s)
(> (length (car s)) 6))
⇒ test

(try-completion
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ "foobar"

Functionall-completions string collection &optional predicate nospace
This function returns a list of all possible completions of string. The parameters to this
function are the same as to try-completion.
If collection is a function, it is called with three arguments: string, predicate and t; then
all-completions returns whatever the function returns. See Section 18.5.6 [Programmed
Completion], page 248.
If nospace is non-nil, completions that start with a space are ignored unless string also
starts with a space.
Here is an example, using the function test shown in the example for try-completion:

(defun test (s)
(> (length (car s)) 6))
⇒ test

(all-completions
"foo"
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

⇒ ("foobar1" "foobar2")

Variablecompletion-ignore-case
If the value of this variable is non-nil, XEmacs does not consider case significant in
completion.

18.5.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

Functioncompleting-read prompt collection &optional predicate require-match
initial hist

This function reads a string in the minibuffer, assisting the user by providing completion.
It activates the minibuffer with prompt prompt, which must be a string. If initial is non-
nil, completing-read inserts it into the minibuffer as part of the input. Then it allows
the user to edit the input, providing several commands to attempt completion.
The actual completion is done by passing collection and predicate to the function try-
completion. This happens in certain commands bound in the local keymaps used for
completion.
If require-match is t, the usual minibuffer exit commands won’t exit unless the input
completes to an element of collection. If require-match is neither nil nor t, then the
exit commands won’t exit unless the input typed is itself an element of collection. If
require-match is nil, the exit commands work regardless of the input in the minibuffer.

244 XEmacs Lisp Reference Manual

The user can exit with null input by typing 〈RET〉 with an empty minibuffer. Then
completing-read returns nil. This is how the user requests whatever default the com-
mand uses for the value being read. The user can return using 〈RET〉 in this way regardless
of the value of require-match.
The function completing-read works by calling read-minibuffer. It uses minibuffer-
local-completion-map as the keymap if require-match is nil, and uses minibuffer-
local-must-match-map if require-match is non-nil. See Section 18.5.3 [Completion Com-
mands], page 244.
The argument hist specifies which history list variable to use for saving the input and
for minibuffer history commands. It defaults to minibuffer-history. See Section 18.4
[Minibuffer History], page 240.
Completion ignores case when comparing the input against the possible matches, if the
built-in variable completion-ignore-case is non-nil. See Section 18.5.1 [Basic Comple-
tion], page 242.
Here’s an example of using completing-read:

(completing-read
"Complete a foo: "
’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
Complete a foo: fo?
---------- Buffer: Minibuffer ----------

If the user then types 〈DEL〉 〈DEL〉 b 〈RET〉, completing-read returns barfoo.
The completing-read function binds three variables to pass information to the com-
mands that actually do completion. These variables are minibuffer-completion-table,
minibuffer-completion-predicate and minibuffer-completion-confirm. For more
information about them, see Section 18.5.3 [Completion Commands], page 244.

18.5.3 Minibuffer Commands That Do Completion

This section describes the keymaps, commands and user options used in the minibuffer to do
completion.

Variableminibuffer-local-completion-map
completing-read uses this value as the local keymap when an exact match of one of the
completions is not required. By default, this keymap makes the following bindings:

? minibuffer-completion-help

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

with other characters bound as in minibuffer-local-map (see Section 18.2 [Text from
Minibuffer], page 237).

Variableminibuffer-local-must-match-map
completing-read uses this value as the local keymap when an exact match of one of the
completions is required. Therefore, no keys are bound to exit-minibuffer, the command

Chapter 18: Minibuffers 245

that exits the minibuffer unconditionally. By default, this keymap makes the following
bindings:

? minibuffer-completion-help

〈SPC〉 minibuffer-complete-word

〈TAB〉 minibuffer-complete

〈LFD〉 minibuffer-complete-and-exit

〈RET〉 minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

Variableminibuffer-completion-table
The value of this variable is the alist or obarray used for completion in the minibuffer. This
is the global variable that contains what completing-read passes to try-completion. It
is used by minibuffer completion commands such as minibuffer-complete-word.

Variableminibuffer-completion-predicate
This variable’s value is the predicate that completing-read passes to try-completion.
The variable is also used by the other minibuffer completion functions.

Commandminibuffer-complete-word
This function completes the minibuffer contents by at most a single word. Even if the
minibuffer contents have only one completion, minibuffer-complete-word does not add
any characters beyond the first character that is not a word constituent. See Chapter 38
[Syntax Tables], page 513.

Commandminibuffer-complete
This function completes the minibuffer contents as far as possible.

Commandminibuffer-complete-and-exit
This function completes the minibuffer contents, and exits if confirmation is not required,
i.e., if minibuffer-completion-confirm is non-nil. If confirmation is required, it is
given by repeating this command immediately—the command is programmed to work
without confirmation when run twice in succession.

Variableminibuffer-completion-confirm
When the value of this variable is non-nil, XEmacs asks for confirmation of a completion
before exiting the minibuffer. The function minibuffer-complete-and-exit checks the
value of this variable before it exits.

Commandminibuffer-completion-help
This function creates a list of the possible completions of the current minibuffer con-
tents. It works by calling all-completions using the value of the variable minibuffer-
completion-table as the collection argument, and the value of minibuffer-completion-
predicate as the predicate argument. The list of completions is displayed as text in a
buffer named ‘*Completions*’.

Functiondisplay-completion-list completions
This function displays completions to the stream in standard-output, usually a buffer.
(See Chapter 17 [Read and Print], page 227, for more information about streams.) The
argument completions is normally a list of completions just returned by all-completions,

246 XEmacs Lisp Reference Manual

but it does not have to be. Each element may be a symbol or a string, either of which is
simply printed, or a list of two strings, which is printed as if the strings were concatenated.
This function is called by minibuffer-completion-help. The most common way to use
it is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer "*Completions*"
(display-completion-list

(all-completions (buffer-string) my-alist)))

User Optioncompletion-auto-help
If this variable is non-nil, the completion commands automatically display a list of pos-
sible completions whenever nothing can be completed because the next character is not
uniquely determined.

18.5.4 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of names
with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive spec. See Section 19.2 [Defining Commands], page 256.

Functionread-buffer prompt &optional default existing
This function reads the name of a buffer and returns it as a string. The argument default
is the default name to use, the value to return if the user exits with an empty minibuffer.
If non-nil, it should be a string or a buffer. It is mentioned in the prompt, but is not
inserted in the minibuffer as initial input.
If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and 〈RET〉 does
completion to attempt to find a valid name. (However, default is not checked for validity;
it is returned, whatever it is, if the user exits with the minibuffer empty.)
In the following example, the user enters ‘minibuffer.t’, and then types 〈RET〉. The
argument existing is t, and the only buffer name starting with the given input is
‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)
;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Buffer name? (default foo) ?
---------- Buffer: Minibuffer ----------

;; The user types minibuffer.t 〈RET〉.
⇒ "minibuffer.texi"

Functionread-command prompt
This function reads the name of a command and returns it as a Lisp symbol. The argument
prompt is used as in read-from-minibuffer. Recall that a command is anything for which
commandp returns t, and a command name is a symbol for which commandp returns t. See
Section 19.3 [Interactive Call], page 260.

Chapter 18: Minibuffers 247

(read-command "Command name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Command name?
---------- Buffer: Minibuffer ----------

If the user types forward-c 〈RET〉, then this function returns forward-char.
The read-command function is a simplified interface to the function completing-read. It
uses the variable obarray so as to complete in the set of extant Lisp symbols, and it uses
the commandp predicate so as to accept only command names:

(read-command prompt)
≡
(intern (completing-read prompt obarray

’commandp t nil))

Functionread-variable prompt
This function reads the name of a user variable and returns it as a symbol.

(read-variable "Variable name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------
Variable name? ?
---------- Buffer: Minibuffer ----------

If the user then types fill-p 〈RET〉, read-variable returns fill-prefix.
This function is similar to read-command, but uses the predicate user-variable-p instead
of commandp:

(read-variable prompt)
≡
(intern
(completing-read prompt obarray

’user-variable-p t nil))

18.5.5 Reading File Names

Here is another high-level completion function, designed for reading a file name. It provides
special features including automatic insertion of the default directory.

Functionread-file-name prompt &optional directory default existing initial
This function reads a file name in the minibuffer, prompting with prompt and providing
completion. If default is non-nil, then the function returns default if the user just types
〈RET〉. default is not checked for validity; it is returned, whatever it is, if the user exits
with the minibuffer empty.
If existing is non-nil, then the user must specify the name of an existing file; 〈RET〉
performs completion to make the name valid if possible, and then refuses to exit if it is
not valid. If the value of existing is neither nil nor t, then 〈RET〉 also requires confirmation
after completion. If existing is nil, then the name of a nonexistent file is acceptable.

248 XEmacs Lisp Reference Manual

The argument directory specifies the directory to use for completion of relative file names.
If insert-default-directory is non-nil, directory is also inserted in the minibuffer as
initial input. It defaults to the current buffer’s value of default-directory.
If you specify initial, that is an initial file name to insert in the buffer (after with directory,
if that is inserted). In this case, point goes at the beginning of initial. The default for
initial is nil—don’t insert any file name. To see what initial does, try the command C-x
C-v.
Here is an example:

(read-file-name "The file is ")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/?
---------- Buffer: Minibuffer ----------

Typing manual 〈TAB〉 results in the following:
---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/manual.texi?
---------- Buffer: Minibuffer ----------

If the user types 〈RET〉, read-file-name returns the file name as the string
"/gp/gnu/elisp/manual.texi".

User Optioninsert-default-directory
This variable is used by read-file-name. Its value controls whether read-file-name
starts by placing the name of the default directory in the minibuffer, plus the initial file
name if any. If the value of this variable is nil, then read-file-name does not place any
initial input in the minibuffer (unless you specify initial input with the initial argument).
In that case, the default directory is still used for completion of relative file names, but is
not displayed.
For example:

;; Here the minibuffer starts out with the default directory.
(let ((insert-default-directory t))

(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ~lewis/manual/?
---------- Buffer: Minibuffer ----------

;; Here the minibuffer is empty and only the prompt
;; appears on its line.
(let ((insert-default-directory nil))

(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------
The file is ?
---------- Buffer: Minibuffer ----------

18.5.6 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended pos-
sible completions. In such a case, you can supply your own function to compute the completion
of a given string. This is called programmed completion.

Chapter 18: Minibuffers 249

To use this feature, pass a symbol with a function definition as the collection argument to
completing-read. The function completing-read arranges to pass your completion function
along to try-completion and all-completions, which will then let your function do all the
work.

The completion function should accept three arguments:
• The string to be completed.
• The predicate function to filter possible matches, or nil if none. Your function should call

the predicate for each possible match, and ignore the possible match if the predicate returns
nil.

• A flag specifying the type of operation.

There are three flag values for three operations:
• nil specifies try-completion. The completion function should return the completion of

the specified string, or t if the string is an exact match already, or nil if the string matches
no possibility.

• t specifies all-completions. The completion function should return a list of all possible
completions of the specified string.

• lambda specifies a test for an exact match. The completion function should return t if the
specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions (lists
that are functions) as well as function symbols as collection, but this is impossible. Lists as
completion tables are already assigned another meaning—as alists. It would be unreliable to
fail to handle an alist normally because it is also a possible function. So you must arrange for
any function you wish to use for completion to be encapsulated in a symbol.

Emacs uses programmed completion when completing file names. See Section 28.8.6 [File
Name Completion], page 373.

18.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function y-
or-n-p can be answered with a single character; it is useful for questions where an inadvertent
wrong answer will not have serious consequences. yes-or-no-p is suitable for more momentous
questions, since it requires three or four characters to answer. Variations of these functions can
be used to ask a yes-or-no question using a dialog box, or optionally using one.

If either of these functions is called in a command that was invoked using the mouse, then it
uses a dialog box or pop-up menu to ask the question. Otherwise, it uses keyboard input.

Strictly speaking, yes-or-no-p uses the minibuffer and y-or-n-p does not; but it seems best
to describe them together.

Functiony-or-n-p prompt
This function asks the user a question, expecting input in the echo area. It returns t if
the user types y, nil if the user types n. This function also accepts 〈SPC〉 to mean yes and
〈DEL〉 to mean no. It accepts C-] to mean “quit”, like C-g, because the question might
look like a minibuffer and for that reason the user might try to use C-] to get out. The
answer is a single character, with no 〈RET〉 needed to terminate it. Upper and lower case
are equivalent.
“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, 〈SPC〉, 〈DEL〉, or something
that quits), the function responds ‘Please answer y or n.’, and repeats the request.

250 XEmacs Lisp Reference Manual

This function does not actually use the minibuffer, since it does not allow editing of the
answer. It actually uses the echo area (see Section 45.3 [The Echo Area], page 586), which
uses the same screen space as the minibuffer. The cursor moves to the echo area while
the question is being asked.
The answers and their meanings, even ‘y’ and ‘n’, are not hardwired. The keymap query-
replace-map specifies them. See Section 37.5 [Search and Replace], page 505.
In the following example, the user first types q, which is invalid. At the next prompt the
user types y.

(y-or-n-p "Do you need a lift? ")

;; After evaluation of the preceding expression,
;; the following prompt appears in the echo area:

---------- Echo area ----------
Do you need a lift? (y or n)
---------- Echo area ----------

;; If the user then types q, the following appears:

---------- Echo area ----------
Please answer y or n. Do you need a lift? (y or n)
---------- Echo area ----------

;; When the user types a valid answer,
;; it is displayed after the question:

---------- Echo area ----------
Do you need a lift? (y or n) y
---------- Echo area ----------

We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

Functionyes-or-no-p prompt
This function asks the user a question, expecting input in the minibuffer. It returns t if
the user enters ‘yes’, nil if the user types ‘no’. The user must type 〈RET〉 to finalize the
response. Upper and lower case are equivalent.
yes-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) ’. The
user must type one of the expected responses; otherwise, the function responds ‘Please
answer yes or no.’, waits about two seconds and repeats the request.
yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for more
crucial decisions.
Here is an example:

(yes-or-no-p "Do you really want to remove everything? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: minibuffer ----------
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

If the user first types y 〈RET〉, which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

Chapter 18: Minibuffers 251

---------- Buffer: minibuffer ----------
Please answer yes or no.
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------

Functionyes-or-no-p-dialog-box prompt
This function asks the user a “y or n” question with a popup dialog box. It returns t if
the answer is “yes”. prompt is the string to display to ask the question.

The following functions ask a question either in the minibuffer or a dialog box, depending on
whether the last user event (which presumably invoked this command) was a keyboard or mouse
event. When XEmacs is running on a window system, the functions y-or-n-p and yes-or-no-p
are replaced with the following functions, so that menu items bring up dialog boxes instead of
minibuffer questions.

Functiony-or-n-p-maybe-dialog-box prompt
This function asks user a “y or n” question, using either a dialog box or the minibuffer,
as appropriate.

Functionyes-or-no-p-maybe-dialog-box prompt
This function asks user a “yes or no” question, using either a dialog box or the minibuffer,
as appropriate.

18.7 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save this buffer”
for each buffer in turn, you should use map-y-or-n-p to ask the collection of questions, rather
than asking each question individually. This gives the user certain convenient facilities such as
the ability to answer the whole series at once.

Functionmap-y-or-n-p prompter actor list &optional help action-alist
This function, new in Emacs 19, asks the user a series of questions, reading a single-
character answer in the echo area for each one.
The value of list specifies the objects to ask questions about. It should be either a list of
objects or a generator function. If it is a function, it should expect no arguments, and
should return either the next object to ask about, or nil meaning stop asking questions.
The argument prompter specifies how to ask each question. If prompter is a string, the
question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).
If not a string, prompter should be a function of one argument (the next object to ask
about) and should return the question text. If the value is a string, that is the question
to ask the user. The function can also return t meaning do act on this object (and don’t
ask the user), or nil meaning ignore this object (and don’t ask the user).
The argument actor says how to act on the answers that the user gives. It should be a
function of one argument, and it is called with each object that the user says yes for. Its
argument is always an object obtained from list.
If the argument help is given, it should be a list of this form:

252 XEmacs Lisp Reference Manual

(singular plural action)

where singular is a string containing a singular noun that describes the objects concep-
tually being acted on, plural is the corresponding plural noun, and action is a transitive
verb describing what actor does.
If you don’t specify help, the default is ("object" "objects" "act on").
Each time a question is asked, the user may enter y, Y, or 〈SPC〉 to act on that object; n,
N, or 〈DEL〉 to skip that object; ! to act on all following objects; 〈ESC〉 or q to exit (skip
all following objects); . (period) to act on the current object and then exit; or C-h to
get help. These are the same answers that query-replace accepts. The keymap query-
replace-map defines their meaning for map-y-or-n-p as well as for query-replace; see
Section 37.5 [Search and Replace], page 505.
You can use action-alist to specify additional possible answers and what they mean. It is
an alist of elements of the form (char function help), each of which defines one additional
answer. In this element, char is a character (the answer); function is a function of one
argument (an object from list); help is a string.
When the user responds with char, map-y-or-n-p calls function. If it returns non-nil,
the object is considered “acted upon”, and map-y-or-n-p advances to the next object in
list. If it returns nil, the prompt is repeated for the same object.
If map-y-or-n-p is called in a command that was invoked using the mouse—more precisely,
if last-nonmenu-event (see Section 19.4 [Command Loop Info], page 261) is either nil
or a list—then it uses a dialog box or pop-up menu to ask the question. In this case, it
does not use keyboard input or the echo area. You can force use of the mouse or use of
keyboard input by binding last-nonmenu-event to a suitable value around the call.
The return value of map-y-or-n-p is the number of objects acted on.

18.8 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

Commandexit-minibuffer
This command exits the active minibuffer. It is normally bound to keys in minibuffer local
keymaps.

Commandself-insert-and-exit
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 19.4 [Command Loop Info],
page 261).

Commandprevious-history-element n
This command replaces the minibuffer contents with the value of the nth previous (older)
history element.

Commandnext-history-element n
This command replaces the minibuffer contents with the value of the nth more recent
history element.

Commandprevious-matching-history-element pattern
This command replaces the minibuffer contents with the value of the previous (older)
history element that matches pattern (a regular expression).

Chapter 18: Minibuffers 253

Commandnext-matching-history-element pattern
This command replaces the minibuffer contents with the value of the next (newer) history
element that matches pattern (a regular expression).

Functionminibuffer-prompt
This function returns the prompt string of the currently active minibuffer. If no minibuffer
is active, it returns nil.

Functionminibuffer-prompt-width
This function returns the display width of the prompt string of the currently active mini-
buffer. If no minibuffer is active, it returns 0.

Variableminibuffer-setup-hook
This is a normal hook that is run whenever the minibuffer is entered. See Section 26.4
[Hooks], page 342.

Variableminibuffer-exit-hook
This is a normal hook that is run whenever the minibuffer is exited. See Section 26.4
[Hooks], page 342.

Variableminibuffer-help-form
The current value of this variable is used to rebind help-form locally inside the minibuffer
(see Section 27.5 [Help Functions], page 350).

Functionactive-minibuffer-window
This function returns the currently active minibuffer window, or nil if none is currently
active.

Functionminibuffer-window &optional frame
This function returns the minibuffer window used for frame frame. If frame is nil, that
stands for the current frame. Note that the minibuffer window used by a frame need not
be part of that frame—a frame that has no minibuffer of its own necessarily uses some
other frame’s minibuffer window.

Functionwindow-minibuffer-p window
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it with
the result of (minibuffer-window), because there can be more than one minibuffer window if
there is more than one frame.

Functionminibuffer-window-active-p window
This function returns non-nil if window, assumed to be a minibuffer window, is currently
active.

Variableminibuffer-scroll-window
If the value of this variable is non-nil, it should be a window object. When the function
scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 19.10 [Re-
cursive Editing], page 281):

254 XEmacs Lisp Reference Manual

Functionminibuffer-depth
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

User Optionenable-recursive-minibuffers
If this variable is non-nil, you can invoke commands (such as find-file) that use mini-
buffers even while in the minibuffer window. Such invocation produces a recursive editing
level for a new minibuffer. The outer-level minibuffer is invisible while you are editing the
inner one.
This variable only affects invoking the minibuffer while the minibuffer window is selected.
If you switch windows while in the minibuffer, you can always invoke minibuffer commands
while some other window is selected.

In FSF Emacs 19, if a command name has a property enable-recursive-minibuffers that
is non-nil, then the command can use the minibuffer to read arguments even if it is invoked
from the minibuffer. The minibuffer command next-matching-history-element (normally
M-s in the minibuffer) uses this feature.

This is not implemented in XEmacs because it is a kludge. If you want to explicitly set the
value of enable-recursive-minibuffers in this fashion, just use an evaluated interactive spec
and bind enable-recursive-minibuffers while reading from the minibuffer. See the definition
of next-matching-history-element in ‘lisp/prim/minibuf.el’.

Chapter 19: Command Loop 255

19 Command Loop

When you run XEmacs, it enters the editor command loop almost immediately. This loop
reads events, executes their definitions, and displays the results. In this chapter, we describe
how these things are done, and the subroutines that allow Lisp programs to do them.

19.1 Command Loop Overview

The command loop in XEmacs is a standard event loop, reading events one at a time with
next-event and handling them with dispatch-event. An event is typically a single user action,
such as a keypress, mouse movement, or menu selection; but they can also be notifications from
the window system, informing XEmacs that (for example) part of its window was just uncovered
and needs to be redrawn. See Section 19.5 [Events], page 263. Pending events are held in a
first-in, first-out list called the event queue: events are read from the head of the list, and newly
arriving events are added to the tail. In this way, events are always processed in the order in
which they arrive.

dispatch-event does most of the work of handling user actions. The first thing it must
do is put the events together into a key sequence, which is a sequence of events that translates
into a command. It does this by consulting the active keymaps, which specify what the valid
key sequences are and how to translate them into commands. See Section 20.8 [Key Lookup],
page 293, for information on how this is done. The result of the translation should be a keyboard
macro or an interactively callable function. If the key is M-x, then it reads the name of another
command, which it then calls. This is done by the command execute-extended-command (see
Section 19.3 [Interactive Call], page 260).

To execute a command requires first reading the arguments for it. This is done by calling
command-execute (see Section 19.3 [Interactive Call], page 260). For commands written in
Lisp, the interactive specification says how to read the arguments. This may use the prefix
argument (see Section 19.9 [Prefix Command Arguments], page 279) or may read with prompting
in the minibuffer (see Chapter 18 [Minibuffers], page 237). For example, the command find-
file has an interactive specification which says to read a file name using the minibuffer. The
command’s function body does not use the minibuffer; if you call this command from Lisp code
as a function, you must supply the file name string as an ordinary Lisp function argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is
used to execute it. You can call this function yourself (see Section 19.13 [Keyboard Macros],
page 283).

To terminate the execution of a running command, type C-g. This character causes quitting
(see Section 19.8 [Quitting], page 278).

Variablepre-command-hook
The editor command loop runs this normal hook before each command. At that time,
this-command contains the command that is about to run, and last-command describes
the previous command. See Section 26.4 [Hooks], page 342.

Variablepost-command-hook
The editor command loop runs this normal hook after each command. (In FSF Emacs, it
is also run when the command loop is entered, or reentered after an error or quit.) At that
time, this-command describes the command that just ran, and last-command describes
the command before that. See Section 26.4 [Hooks], page 342.

256 XEmacs Lisp Reference Manual

Quitting is suppressed while running pre-command-hook and post-command-hook. If an
error happens while executing one of these hooks, it terminates execution of the hook, but that
is all it does.

19.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form that calls
the special form interactive. This form does nothing when actually executed, but its presence
serves as a flag to indicate that interactive calling is permitted. Its argument controls the reading
of arguments for an interactive call.

19.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function an
interactively-callable command.

Special Forminteractive arg-descriptor
This special form declares that the function in which it appears is a command, and that it
may therefore be called interactively (via M-x or by entering a key sequence bound to it).
The argument arg-descriptor declares how to compute the arguments to the command
when the command is called interactively.
A command may be called from Lisp programs like any other function, but then the caller
supplies the arguments and arg-descriptor has no effect.
The interactive form has its effect because the command loop (actually, its subroutine
call-interactively) scans through the function definition looking for it, before calling
the function. Once the function is called, all its body forms including the interactive
form are executed, but at this time interactive simply returns nil without even evalu-
ating its argument.

There are three possibilities for the argument arg-descriptor:
• It may be omitted or nil; then the command is called with no arguments. This leads

quickly to an error if the command requires one or more arguments.
• It may be a Lisp expression that is not a string; then it should be a form that is evaluated

to get a list of arguments to pass to the command.
If this expression reads keyboard input (this includes using the minibuffer), keep in mind
that the integer value of point or the mark before reading input may be incorrect after
reading input. This is because the current buffer may be receiving subprocess output; if
subprocess output arrives while the command is waiting for input, it could relocate point
and the mark.
Here’s an example of what not to do:

(interactive
(list (region-beginning) (region-end)

(read-string "Foo: " nil ’my-history)))

Here’s how to avoid the problem, by examining point and the mark only after reading the
keyboard input:

(interactive
(let ((string (read-string "Foo: " nil ’my-history)))

(list (region-beginning) (region-end) string)))

Chapter 19: Command Loop 257

• It may be a string; then its contents should consist of a code character followed by a prompt
(which some code characters use and some ignore). The prompt ends either with the end
of the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The buffer
name is the sole argument passed to the command. The rest of the string is a prompt.
If there is a newline character in the string, it terminates the prompt. If the string does not
end there, then the rest of the string should contain another code character and prompt,
specifying another argument. You can specify any number of arguments in this way.
The prompt string can use ‘%’ to include previous argument values (starting with the first
argument) in the prompt. This is done using format (see Section 4.10 [Formatting Strings],
page 62). For example, here is how you could read the name of an existing buffer followed
by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")

If the first character in the string is ‘*’, then an error is signaled if the buffer is read-only.
If the first character in the string is ‘@’, and if the key sequence used to invoke the command
includes any mouse events, then the window associated with the first of those events is
selected before the command is run.
If the first character in the string is ‘_’, then this command will not cause the region to
be deactivated when it completes; that is, zmacs-region-stays will be set to t when the
command exits successfully.
You can use ‘*’, ‘@’, and ‘_’ together; the order does not matter. Actual reading of arguments
is controlled by the rest of the prompt string (starting with the first character that is not
‘*’, ‘@’, or ‘_’).

Functionfunction-interactive function
This function retrieves the interactive specification of function, which may be any fun-
callable object. The specification will be returned as the list of the symbol interactive
and the specs. If function is not interactive, nil will be returned.

19.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as follows:

Completion
Provide completion. 〈TAB〉, 〈SPC〉, and 〈RET〉 perform name completion because the
argument is read using completing-read (see Section 18.5 [Completion], page 241).
? displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

Default A default value of some sort is used if the user enters no text in the minibuffer. The
default depends on the code character.

No I/O This code letter computes an argument without reading any input. Therefore, it
does not use a prompt string, and any prompt string you supply is ignored.
Even though the code letter doesn’t use a prompt string, you must follow it with a
newline if it is not the last code character in the string.

Prompt A prompt immediately follows the code character. The prompt ends either with the
end of the string or with a newline.

258 XEmacs Lisp Reference Manual

Special This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

‘*’ Signal an error if the current buffer is read-only. Special.

‘@’ Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

‘_’ Do not cause the region to be deactivated when this command completes. Special.

‘a’ A function name (i.e., a symbol satisfying fboundp). Existing, Completion, Prompt.

‘b’ The name of an existing buffer. By default, uses the name of the current buffer (see
Chapter 30 [Buffers], page 391). Existing, Completion, Default, Prompt.

‘B’ A buffer name. The buffer need not exist. By default, uses the name of a recently
used buffer other than the current buffer. Completion, Default, Prompt.

‘c’ A character. The cursor does not move into the echo area. Prompt.

‘C’ A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

‘d’ The position of point, as an integer (see Section 34.1 [Point], page 441). No I/O.

‘D’ A directory name. The default is the current default directory of the current buffer,
default-directory (see Section 50.3 [System Environment], page 629). Existing,
Completion, Default, Prompt.

‘e’ The last mouse-button or misc-user event in the key sequence that invoked the
command. No I/O.
You can use ‘e’ more than once in a single command’s interactive specification. If
the key sequence that invoked the command has n mouse-button or misc-user events,
the nth ‘e’ provides the nth such event.

‘f’ A file name of an existing file (see Section 28.8 [File Names], page 368). The default
directory is default-directory. Existing, Completion, Default, Prompt.

‘F’ A file name. The file need not exist. Completion, Default, Prompt.

‘k’ A key sequence (see Section 20.1 [Keymap Terminology], page 285). This keeps
reading events until a command (or undefined command) is found in the current
key maps. The key sequence argument is represented as a vector of events. The
cursor does not move into the echo area. Prompt.
This kind of input is used by commands such as describe-key and global-set-
key.

‘K’ A key sequence, whose definition you intend to change. This works like ‘k’, except
that it suppresses, for the last input event in the key sequence, the conversions that
are normally used (when necessary) to convert an undefined key into a defined one.

‘m’ The position of the mark, as an integer. No I/O.

‘n’ A number read with the minibuffer. If the input is not a number, the user is asked
to try again. The prefix argument, if any, is not used. Prompt.

‘N’ The raw prefix argument. If the prefix argument is nil, then read a number as with
n. Requires a number. See Section 19.9 [Prefix Command Arguments], page 279.
Prompt.

‘p’ The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

Chapter 19: Command Loop 259

‘P’ The raw prefix argument. (Note that this ‘P’ is upper case.) No I/O.

‘r’ Point and the mark, as two numeric arguments, smallest first. This is the only code
letter that specifies two successive arguments rather than one. No I/O.

‘s’ Arbitrary text, read in the minibuffer and returned as a string (see Section 18.2
[Text from Minibuffer], page 237). Terminate the input with either 〈LFD〉 or 〈RET〉.
(C-q may be used to include either of these characters in the input.) Prompt.

‘S’ An interned symbol whose name is read in the minibuffer. Any whitespace char-
acter terminates the input. (Use C-q to include whitespace in the string.) Other
characters that normally terminate a symbol (e.g., parentheses and brackets) do not
do so here. Prompt.

‘v’ A variable declared to be a user option (i.e., satisfying the predicate user-variable-
p). See Section 18.5.4 [High-Level Completion], page 246. Existing, Completion,
Prompt.

‘x’ A Lisp object, specified with its read syntax, terminated with a 〈LFD〉 or 〈RET〉.
The object is not evaluated. See Section 18.3 [Object from Minibuffer], page 239.
Prompt.

‘X’ A Lisp form is read as with x, but then evaluated so that its value becomes the
argument for the command. Prompt.

19.2.3 Examples of Using interactive

Here are some examples of interactive:
(defun foo1 () ; foo1 takes no arguments,

(interactive) ; just moves forward two words.
(forward-word 2))
⇒ foo1

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))
⇒ foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))
⇒ foo3

(defun three-b (b1 b2 b3)
"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBuffer1:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)
(split-window (selected-window) 8)
(switch-to-buffer b1)
(other-window 1)
(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)
(switch-to-buffer b3))
⇒ three-b

260 XEmacs Lisp Reference Manual

(three-b "*scratch*" "declarations.texi" "*mail*")
⇒ nil

19.3 Interactive Call

After the command loop has translated a key sequence into a definition, it invokes that
definition using the function command-execute. If the definition is a function that is a com-
mand, command-execute calls call-interactively, which reads the arguments and calls the
command. You can also call these functions yourself.

Functioncommandp object
Returns t if object is suitable for calling interactively; that is, if object is a command.
Otherwise, returns nil.
The interactively callable objects include strings and vectors (treated as keyboard macros),
lambda expressions that contain a top-level call to interactive, compiled-function objects
made from such lambda expressions, autoload objects that are declared as interactive
(non-nil fourth argument to autoload), and some of the primitive functions.
A symbol is commandp if its function definition is commandp.
Keys and keymaps are not commands. Rather, they are used to look up commands (see
Chapter 20 [Keymaps], page 285).
See documentation in Section 27.2 [Accessing Documentation], page 346, for a realistic
example of using commandp.

Functioncall-interactively command &optional record-flag
This function calls the interactively callable function command, reading arguments ac-
cording to its interactive calling specifications. An error is signaled if command is not a
function or if it cannot be called interactively (i.e., is not a command). Note that key-
board macros (strings and vectors) are not accepted, even though they are considered
commands, because they are not functions.
If record-flag is the symbol lambda, the interactive calling arguments for command are read
and returned as a list, but the function is not called on them.
If record-flag is t, then this command and its arguments are unconditionally added to the
list command-history. Otherwise, the command is added only if it uses the minibuffer to
read an argument. See Section 19.12 [Command History], page 283.

Functioncommand-execute command &optional record-flag
This function executes command as an editing command. The argument command must
satisfy the commandp predicate; i.e., it must be an interactively callable function or a
keyboard macro.
A string or vector as command is executed with execute-kbd-macro. A function is passed
to call-interactively, along with the optional record-flag.
A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interactively
callable function. Such a definition is handled by loading the specified library and then
rechecking the definition of the symbol.

Commandexecute-extended-command prefix-argument
This function reads a command name from the minibuffer using completing-read (see
Section 18.5 [Completion], page 241). Then it uses command-execute to call the specified

Chapter 19: Command Loop 261

command. Whatever that command returns becomes the value of execute-extended-
command.

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument is
used for prefix-argument, and thus passed on to whatever command is run.

execute-extended-command is the normal definition of M-x, so it uses the string ‘M-x ’ as
a prompt. (It would be better to take the prompt from the events used to invoke execute-
extended-command, but that is painful to implement.) A description of the value of the
prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)
---------- Buffer: Minibuffer ----------
1 M-x forward-word RET
---------- Buffer: Minibuffer ----------

⇒ t

Functioninteractive-p
This function returns t if the containing function (the one that called interactive-p)
was called interactively, with the function call-interactively. (It makes no difference
whether call-interactively was called from Lisp or directly from the editor command
loop.) If the containing function was called by Lisp evaluation (or with apply or funcall),
then it was not called interactively.

The most common use of interactive-p is for deciding whether to print an informative
message. As a special exception, interactive-p returns nil whenever a keyboard macro
is being run. This is to suppress the informative messages and speed execution of the
macro.

For example:

(defun foo ()
(interactive)
(and (interactive-p)

(message "foo")))
⇒ foo

(defun bar ()
(interactive)
(setq foobar (list (foo) (interactive-p))))
⇒ bar

;; Type M-x foo.
a foo

;; Type M-x bar.
;; This does not print anything.

foobar
⇒ (nil t)

19.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and for
commands that are run.

262 XEmacs Lisp Reference Manual

Variablelast-command
This variable records the name of the previous command executed by the command loop
(the one before the current command). Normally the value is a symbol with a function
definition, but this is not guaranteed.
The value is copied from this-command when a command returns to the command loop,
except when the command specifies a prefix argument for the following command.

Variablethis-command
This variable records the name of the command now being executed by the editor command
loop. Like last-command, it is normally a symbol with a function definition.
The command loop sets this variable just before running a command, and copies its value
into last-command when the command finishes (unless the command specifies a prefix
argument for the following command).
Some commands set this variable during their execution, as a flag for whatever command
runs next. In particular, the functions for killing text set this-command to kill-region
so that any kill commands immediately following will know to append the killed text to
the previous kill.

If you do not want a particular command to be recognized as the previous command in the
case where it got an error, you must code that command to prevent this. One way is to set
this-command to t at the beginning of the command, and set this-command back to its proper
value at the end, like this:

(defun foo (args...)
(interactive ...)
(let ((old-this-command this-command))

(setq this-command t)
. . .do the work. . .
(setq this-command old-this-command)))

Functionthis-command-keys
This function returns a vector containing the key and mouse events that invoked the
present command, plus any previous commands that generated the prefix argument for
this command. (Note: this is not the same as in FSF Emacs, which can return a string.)
See Section 19.5 [Events], page 263.
This function copies the vector and the events; it is safe to keep and modify them.

(this-command-keys)
;; Now use C-u C-x C-e to evaluate that.

⇒ [#<keypress-event control-U> #<keypress-event control-X> #<keypress-event control-E>]

Variablelast-command-event
This variable is set to the last input event that was read by the command loop as part of
a command. The principal use of this variable is in self-insert-command, which uses it
to decide which character to insert.
This variable is off limits: you may not set its value or modify the event that is its value,
as it is destructively modified by read-key-sequence. If you want to keep a pointer to
this value, you must use copy-event.
Note that this variable is an alias for last-command-char in FSF Emacs.

last-command-event
;; Now type C-u C-x C-e.

⇒ #<keypress-event control-E>

Chapter 19: Command Loop 263

Variablelast-command-char
If the value of last-command-event is a keyboard event, then this is the nearest character
equivalent to it (or nil if there is no character equivalent). last-command-char is the
character that self-insert-command will insert in the buffer. Remember that there is not
a one-to-one mapping between keyboard events and XEmacs characters: many keyboard
events have no corresponding character, and when the Mule feature is available, most
characters can not be input on standard keyboards, except possibly with help from an
input method. So writing code that examines this variable to determine what key has
been typed is bad practice, unless you are certain that it will be one of a small set of
characters.
This variable exists for compatibility with Emacs version 18.

last-command-char
;; Now use C-u C-x C-e to evaluate that.

⇒ ?\^E

Variablecurrent-mouse-event
This variable holds the mouse-button event which invoked this command, or nil. This is
what (interactive "e") returns.

Variableecho-keystrokes
This variable determines how much time should elapse before command characters echo.
Its value must be an integer, which specifies the number of seconds to wait before echoing.
If the user types a prefix key (say C-x) and then delays this many seconds before continuing,
the key C-x is echoed in the echo area. Any subsequent characters in the same command
will be echoed as well.
If the value is zero, then command input is not echoed.

19.5 Events

The XEmacs command loop reads a sequence of events that represent keyboard or mouse
activity. Unlike in Emacs 18 and in FSF Emacs, events are a primitive Lisp type that must be
manipulated using their own accessor and settor primitives. This section describes the repre-
sentation and meaning of input events in detail.

A key sequence that starts with a mouse event is read using the keymaps of the buffer in
the window that the mouse was in, not the current buffer. This does not imply that clicking in
a window selects that window or its buffer—that is entirely under the control of the command
binding of the key sequence.

For information about how exactly the XEmacs command loop works, See Section 19.6
[Reading Input], page 273.

Functioneventp object
This function returns non-nil if event is an input event.

19.5.1 Event Types

Events represent keyboard or mouse activity or status changes of various sorts, such as process
input being available or a timeout being triggered. The different event types are as follows:

264 XEmacs Lisp Reference Manual

key-press event
A key was pressed. Note that modifier keys such as “control”, “shift”, and “alt”
do not generate events; instead, they are tracked internally by XEmacs, and non-
modifier key presses generate events that specify both the key pressed and the
modifiers that were held down at the time.

button-press event
button-release event

A button was pressed or released. Along with the button that was pressed or
released, button events specify the modifier keys that were held down at the time
and the position of the pointer at the time.

motion event
The pointer was moved. Along with the position of the pointer, these events also
specify the modifier keys that were held down at the time.

misc-user event
A menu item was selected, the scrollbar was used, or a drag or a drop occurred.

process event
Input is available on a process.

timeout event
A timeout has triggered.

magic event
Some window-system-specific action (such as a frame being resized or a portion of
a frame needing to be redrawn) has occurred. The contents of this event are not
accessible at the E-Lisp level, but dispatch-event knows what to do with an event
of this type.

eval event This is a special kind of event specifying that a particular function needs to be called
when this event is dispatched. An event of this type is sometimes placed in the event
queue when a magic event is processed. This kind of event should generally just be
passed off to dispatch-event. See Section 19.6.3 [Dispatching an Event], page 275.

19.5.2 Contents of the Different Types of Events

Every event, no matter what type it is, contains a timestamp (which is typically an offset
in milliseconds from when the X server was started) indicating when the event occurred. In
addition, many events contain a channel, which specifies which frame the event occurred on,
and/or a value indicating which modifier keys (shift, control, etc.) were held down at the time
of the event.

The contents of each event are as follows:

key-press event
channel

timestamp

key Which key was pressed. This is an integer (in the printing ASCII

range: >32 and <127) or a symbol such as left or right. Note that
many physical keys are actually treated as two separate keys, depending
on whether the shift key is pressed; for example, the “a” key is treated
as either “a” or “A” depending on the state of the shift key, and the
“1” key is similarly treated as either “1” or “!” on most keyboards. In
such cases, the shift key does not show up in the modifier list. For other
keys, such as backspace, the shift key shows up as a regular modifier.

Chapter 19: Command Loop 265

modifiers Which modifier keys were pressed. As mentioned above, the shift key
is not treated as a modifier for many keys and will not show up in this
list in such cases.

button-press event
button-release event

channel

timestamp

button What button went down or up. Buttons are numbered starting at 1.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

x
y The position of the pointer (in pixels) at the time of the event.

pointer-motion event
channel

timestamp

x
y The position of the pointer (in pixels) after it moved.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

misc-user event
timestamp

function The E-Lisp function to call for this event. This is normally either eval
or call-interactively.

object The object to pass to the function. This is normally the callback that
was specified in the menu description.

button What button went down or up. Buttons are numbered starting at 1.

modifiers Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

x
y The position of the pointer (in pixels) at the time of the event.

process event
timestamp

process The Emacs “process” object in question.

timeout event
timestamp

function The E-Lisp function to call for this timeout. It is called with one argu-
ment, the event.

object Some Lisp object associated with this timeout, to make it easier to tell
them apart. The function and object for this event were specified when
the timeout was set.

magic event
timestamp

266 XEmacs Lisp Reference Manual

(The rest of the information in this event is not user-accessible.)

eval event

timestamp

function An E-Lisp function to call when this event is dispatched.

object The object to pass to the function. The function and object are set
when the event is created.

Functionevent-type event
Return the type of event.
This will be a symbol; one of

key-press
A key was pressed.

button-press
A mouse button was pressed.

button-release
A mouse button was released.

motion The mouse moved.

misc-user
Some other user action happened; typically, this is a menu selection, scrollbar
action, or drag and drop action.

process Input is available from a subprocess.

timeout A timeout has expired.

eval This causes a specified action to occur when dispatched.

magic Some window-system-specific event has occurred.

19.5.3 Event Predicates

The following predicates return whether an object is an event of a particular type.

Functionkey-press-event-p object
This is true if object is a key-press event.

Functionbutton-event-p object object
This is true if object is a mouse button-press or button-release event.

Functionbutton-press-event-p object
This is true if object is a mouse button-press event.

Functionbutton-release-event-p object
This is true if object is a mouse button-release event.

Functionmotion-event-p object
This is true if object is a mouse motion event.

Functionmouse-event-p object
This is true if object is a mouse button-press, button-release or motion event.

Chapter 19: Command Loop 267

Functioneval-event-p object
This is true if object is an eval event.

Functionmisc-user-event-p object
This is true if object is a misc-user event.

Functionprocess-event-p object
This is true if object is a process event.

Functiontimeout-event-p object
This is true if object is a timeout event.

Functionevent-live-p object
This is true if object is any event that has not been deallocated.

19.5.4 Accessing the Position of a Mouse Event

Unlike other events, mouse events (i.e. motion, button-press, button-release, and drag or
drop type misc-user events) occur in a particular location on the screen. Many primitives are
provided for determining exactly where the event occurred and what is under that location.

19.5.4.1 Frame-Level Event Position Info

The following functions return frame-level information about where a mouse event occurred.

Functionevent-frame event
This function returns the “channel” or frame that the given mouse motion, button press,
button release, or misc-user event occurred in. This will be nil for non-mouse events.

Functionevent-x-pixel event
This function returns the X position in pixels of the given mouse event. The value returned
is relative to the frame the event occurred in. This will signal an error if the event is not
a mouse event.

Functionevent-y-pixel event
This function returns the Y position in pixels of the given mouse event. The value returned
is relative to the frame the event occurred in. This will signal an error if the event is not
a mouse event.

19.5.4.2 Window-Level Event Position Info

The following functions return window-level information about where a mouse event occurred.

Functionevent-window event
Given a mouse motion, button press, button release, or misc-user event, compute and
return the window on which that event occurred. This may be nil if the event occurred
in the border or over a toolbar. The modeline is considered to be within the window it
describes.

268 XEmacs Lisp Reference Manual

Functionevent-buffer event
Given a mouse motion, button press, button release, or misc-user event, compute and
return the buffer of the window on which that event occurred. This may be nil if the
event occurred in the border or over a toolbar. The modeline is considered to be within
the window it describes. This is equivalent to calling event-window and then calling
window-buffer on the result if it is a window.

Functionevent-window-x-pixel event
This function returns the X position in pixels of the given mouse event. The value returned
is relative to the window the event occurred in. This will signal an error if the event is
not a mouse-motion, button-press, button-release, or misc-user event.

Functionevent-window-y-pixel event
This function returns the Y position in pixels of the given mouse event. The value returned
is relative to the window the event occurred in. This will signal an error if the event is
not a mouse-motion, button-press, button-release, or misc-user event.

19.5.4.3 Event Text Position Info

The following functions return information about the text (including the modeline) that a
mouse event occurred over or near.

Functionevent-over-text-area-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the text area of a window. Otherwise, nil is returned. The
modeline is not considered to be part of the text area.

Functionevent-over-modeline-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the modeline of a window. Otherwise, nil is returned.

Functionevent-x event
This function returns the X position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event occurred
over.

Functionevent-y event
This function returns the Y position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event occurred
over.

Functionevent-point event
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window, or did not
occur over text, then this returns nil. Otherwise, it returns an index into the buffer
visible in the event’s window.

Functionevent-closest-point event
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window or over text,
it returns the closest point to the location of the event. If the Y pixel position overlaps

Chapter 19: Command Loop 269

a window and the X pixel position is to the left of that window, the closest point is the
beginning of the line containing the Y position. If the Y pixel position overlaps a window
and the X pixel position is to the right of that window, the closest point is the end of the
line containing the Y position. If the Y pixel position is above a window, 0 is returned. If
it is below a window, the value of (window-end) is returned.

19.5.4.4 Event Glyph Position Info

The following functions return information about the glyph (if any) that a mouse event
occurred over.

Functionevent-over-glyph-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a glyph. Otherwise, nil is returned.

Functionevent-glyph-extent event
If the given mouse-motion, button-press, button-release, or misc-user event happened on
top of a glyph, this returns its extent; else nil is returned.

Functionevent-glyph-x-pixel event
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph, this
function returns the X position of the pointer relative to the upper left of the glyph. If
the event is not over a glyph, it returns nil.

Functionevent-glyph-y-pixel event
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph, this
function returns the Y position of the pointer relative to the upper left of the glyph. If
the event is not over a glyph, it returns nil.

19.5.4.5 Event Toolbar Position Info

Functionevent-over-toolbar-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a toolbar. Otherwise, nil is returned.

Functionevent-toolbar-button event
If the given mouse-motion, button-press, button-release, or misc-user event happened on
top of a toolbar button, this function returns the button. Otherwise, nil is returned.

19.5.4.6 Other Event Position Info

Functionevent-over-border-p event
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over an internal toolbar. Otherwise, nil is returned.

270 XEmacs Lisp Reference Manual

19.5.5 Accessing the Other Contents of Events

The following functions allow access to the contents of events other than the position info
described in the previous section.

Functionevent-timestamp event
This function returns the timestamp of the given event object.

Functionevent-device event
This function returns the device that the given event occurred on.

Functionevent-key event
This function returns the Keysym of the given key-press event. This will be the ASCII

code of a printing character, or a symbol.

Functionevent-button event
This function returns the button-number of the given button-press or button-release event.

Functionevent-modifiers event
This function returns a list of symbols, the names of the modifier keys which were down
when the given mouse or keyboard event was produced.

Functionevent-modifier-bits event
This function returns a number representing the modifier keys which were down when the
given mouse or keyboard event was produced.

Functionevent-function event
This function returns the callback function of the given timeout, misc-user, or eval event.

Functionevent-object event
This function returns the callback function argument of the given timeout, misc-user, or
eval event.

Functionevent-process event
This function returns the process of the given process event.

19.5.6 Working With Events

XEmacs provides primitives for creating, copying, and destroying event objects. Many func-
tions that return events take an event object as an argument and fill in the fields of this event;
or they make accept either an event object or nil, creating the event object first in the latter
case.

Functionmake-event &optional type plist
This function creates a new event structure. If no arguments are specified, the created
event will be empty. To specify the event type, use the type argument. The allowed types
are empty, key-press, button-press, button-release, motion, or misc-user.
plist is a property list, the properties being compatible to those returned by event-
properties. For events other than empty, it is mandatory to specify certain properties.

Chapter 19: Command Loop 271

For empty events, plist must be nil. The list is canonicalized, which means that if a
property keyword is present more than once, only the first instance is taken into account.
Specifying an unknown or illegal property signals an error.
The following properties are allowed:

channel The event channel. This is a frame or a console. For mouse events (of type
button-press, button-release and motion), this must be a frame. For key-
press events, it must be a console. If channel is unspecified by plist, it will be
set to the selected frame or selected console, as appropriate.

key The event key. This is either a symbol or a character. It is allowed (and
required) only for key-press events.

button The event button. This an integer, either 1, 2 or 3. It is allowed only for
button-press and button-release events.

modifiers
The event modifiers. This is a list of modifier symbols. It is allowed for
key-press, button-press, button-release and motion events.

x The event X coordinate. This is an integer. It is relative to the channel’s root
window, and is allowed for button-press, button-release and motion events.

y The event Y coordinate. This is an integer. It is relative to the channel’s root
window, and is allowed for button-press, button-release and motion events.
This means that, for instance, to access the toolbar, the y property will have
to be negative.

timestamp
The event timestamp, a non-negative integer. Allowed for all types of events.

WARNING : the event object returned by this function may be a reused one; see the
function deallocate-event.
The events created by make-event can be used as non-interactive arguments to the func-
tions with an (interactive "e") specification.
Here are some basic examples of usage:

;; Create an empty event.
(make-event)

⇒ #<empty-event>

;; Try creating a key-press event.
(make-event ’key-press)

error Undefined key for keypress event

;; Creating a key-press event, try 2
(make-event ’key-press ’(key home))

⇒ #<keypress-event home>

;; Create a key-press event of dubious fame.
(make-event ’key-press ’(key escape modifiers (meta alt control shift)))

⇒ #<keypress-event control-meta-alt-shift-escape>

;; Create a M-button1 event at coordinates defined by variables
;; x and y.
(make-event ’button-press ‘(button 1 modifiers (meta) x ,x y ,y))

⇒ #<buttondown-event meta-button1>

;; Create a similar button-release event.
(make-event ’button-release ‘(button 1 modifiers (meta) x ,x y ,x))

⇒ #<buttonup-event meta-button1up>

272 XEmacs Lisp Reference Manual

;; Create a mouse-motion event.
(make-event ’motion ’(x 20 y 30))

⇒ #<motion-event 20, 30>

(event-properties (make-event ’motion ’(x 20 y 30)))
⇒ (channel #<x-frame "emacs" 0x8e2> x 20 y 30

modifiers nil timestamp 0)

In conjunction with event-properties, you can use make-event to create modified copies
of existing events. For instance, the following code will return an equal copy of event:

(make-event (event-type event)
(event-properties event))

Note, however, that you cannot use make-event as the generic replacement for copy-
event, because it does not allow creating all of the event types.
To create a modified copy of an event, you can use the canonicalization feature of plist.
The following example creates a copy of event, but with modifiers reset to nil.

(make-event (event-type event)
(append ’(modifiers nil)

(event-properties event)))

Functioncopy-event event1 &optional event2
This function makes a copy of the given event object. If a second argument is given, the
first event is copied into the second and the second is returned. If the second argument is
not supplied (or is nil) then a new event will be made.

Functiondeallocate-event event
This function allows the given event structure to be reused. You MUST NOT use this
event object after calling this function with it. You will lose. It is not necessary to call
this function, as event objects are garbage-collected like all other objects; however, it may
be more efficient to explicitly deallocate events when you are sure that that is safe.

19.5.7 Converting Events

XEmacs provides some auxiliary functions for converting between events and other ways of
representing keys. These are useful when working with ASCII strings and with keymaps.

Functioncharacter-to-event ch &optional event device
This function converts a numeric ASCII value to an event structure, replete with modifier
bits. ch is the character to convert, and event is the event object to fill in. This function
contains knowledge about what the codes “mean” – for example, the number 9 is converted
to the character 〈Tab〉, not the distinct character 〈Control-I〉.
Note that ch does not have to be a numeric value, but can be a symbol such as clear or
a list such as (control backspace).
If event is not nil, it is modified; otherwise, a new event object is created. In both cases,
the event is returned.
Optional third arg device is the device to store in the event; this also affects whether the
high bit is interpreted as a meta key. A value of nil means use the selected device but
always treat the high bit as meta.
Beware that character-to-event and event-to-character are not strictly inverse func-
tions, since events contain much more information than the ASCII character set can
encode.

Chapter 19: Command Loop 273

Functionevent-to-character event &optional allow-extra-modifiers allow-meta
allow-non-ascii

This function returns the closest ASCII approximation to event. If the event isn’t a
keypress, this returns nil.
If allow-extra-modifiers is non-nil, then this is lenient in its translation; it will ignore
modifier keys other than 〈control〉 and 〈meta〉, and will ignore the 〈shift〉 modifier on those
characters which have no shifted ASCII equivalent (〈Control-Shift-A〉 for example, will be
mapped to the same ASCII code as 〈Control-A〉).
If allow-meta is non-nil, then the 〈Meta〉 modifier will be represented by turning on the
high bit of the byte returned; otherwise, nil will be returned for events containing the
〈Meta〉 modifier.
If allow-non-ascii is non-nil, then characters which are present in the prevailing character
set (see Chapter 20 [Keymaps], page 285) will be returned as their code in that character
set, instead of the return value being restricted to ASCII.
Note that specifying both allow-meta and allow-non-ascii is ambiguous, as both use the
high bit; 〈M-x〉 and 〈oslash〉 will be indistinguishable.

Functionevents-to-keys events &optional no-mice
Given a vector of event objects, this function returns a vector of key descriptors, or a
string (if they all fit in the ASCII range). Optional arg no-mice means that button events
are not allowed.

19.6 Reading Input

The editor command loop reads keyboard input using the function next-event and con-
structs key sequences out of the events using dispatch-event. Lisp programs can also use the
function read-key-sequence, which reads input a key sequence at a time. See also momentary-
string-display in Section 45.8 [Temporary Displays], page 593, and sit-for in Section 19.7
[Waiting], page 277. See Section 50.8 [Terminal Input], page 636, for functions and variables for
controlling terminal input modes and debugging terminal input.

For higher-level input facilities, see Chapter 18 [Minibuffers], page 237.

19.6.1 Key Sequence Input

Lisp programs can read input a key sequence at a time by calling read-key-sequence; for
example, describe-key uses it to read the key to describe.

Functionread-key-sequence prompt
This function reads a sequence of keystrokes or mouse clicks and returns it as a vector
of events. It keeps reading events until it has accumulated a full key sequence; that is,
enough to specify a non-prefix command using the currently active keymaps.
The vector and the event objects it contains are freshly created, and will not be side-
effected by subsequent calls to this function.
The function read-key-sequence suppresses quitting: C-g typed while reading with this
function works like any other character, and does not set quit-flag. See Section 19.8
[Quitting], page 278.
The argument prompt is either a string to be displayed in the echo area as a prompt, or
nil, meaning not to display a prompt.

274 XEmacs Lisp Reference Manual

If the user selects a menu item while we are prompting for a key sequence, the returned
value will be a vector of a single menu-selection event (a misc-user event). An error will
be signalled if you pass this value to lookup-key or a related function.
In the example below, the prompt ‘?’ is displayed in the echo area, and the user types C-x
C-f.

(read-key-sequence "?")

---------- Echo Area ----------
?C-x C-f
---------- Echo Area ----------

⇒ [#<keypress-event control-X> #<keypress-event control-F>]

If an input character is an upper-case letter and has no key binding, but its lower-case
equivalent has one, then read-key-sequence converts the character to lower case. Note that
lookup-key does not perform case conversion in this way.

19.6.2 Reading One Event

The lowest level functions for command input are those which read a single event. These
functions often make a distinction between command events, which are user actions (keystrokes
and mouse actions), and other events, which serve as communication between XEmacs and the
window system.

Functionnext-event &optional event prompt
This function reads and returns the next available event from the window system or termi-
nal driver, waiting if necessary until an event is available. Pass this object to dispatch-
event to handle it. If an event object is supplied, it is filled in and returned; otherwise a
new event object will be created.
Events can come directly from the user, from a keyboard macro, or from unread-command-
events.
In most cases, the function next-command-event is more appropriate.

Functionnext-command-event &optional event
This function returns the next available “user” event from the window system or terminal
driver. Pass this object to dispatch-event to handle it. If an event object is supplied, it
is filled in and returned, otherwise a new event object will be created.
The event returned will be a keyboard, mouse press, or mouse release event. If there
are non-command events available (mouse motion, sub-process output, etc) then these
will be executed (with dispatch-event) and discarded. This function is provided as a
convenience; it is equivalent to the Lisp code

(while (progn
(next-event event)

(not (or (key-press-event-p event)
(button-press-event-p event)
(button-release-event-p event)
(menu-event-p event))))

(dispatch-event event))

Here is what happens if you call next-command-event and then press the right-arrow
function key:

Chapter 19: Command Loop 275

(next-command-event)
⇒ #<keypress-event right>

Functionread-char
This function reads and returns a character of command input. If a mouse click is detected,
an error is signalled. The character typed is returned as an ASCII value. This function
is retained for compatibility with Emacs 18, and is most likely the wrong thing for you to
be using: consider using next-command-event instead.

Functionenqueue-eval-event function object
This function adds an eval event to the back of the queue. The eval event will be the next
event read after all pending events.

19.6.3 Dispatching an Event

Functiondispatch-event event
Given an event object returned by next-event, this function executes it. This is the basic
function that makes XEmacs respond to user input; it also deals with notifications from
the window system (such as Expose events).

19.6.4 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an octal
character code. The command quoted-insert uses this function.

Functionread-quoted-char &optional prompt
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads up to two more octal digits (but stopping if a non-octal digit is found) and
returns the character represented by those digits in octal.

Quitting is suppressed when the first character is read, so that the user can enter a C-g.
See Section 19.8 [Quitting], page 278.

If prompt is supplied, it specifies a string for prompting the user. The prompt string is
always displayed in the echo area, followed by a single ‘-’.

In the following example, the user types in the octal number 177 (which is 127 in decimal).

(read-quoted-char "What character")

---------- Echo Area ----------
What character-177
---------- Echo Area ----------

⇒ 127

276 XEmacs Lisp Reference Manual

19.6.5 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to check
for pending input, and how to discard pending input.

See also the variables last-command-event and last-command-char (Section 19.4 [Com-
mand Loop Info], page 261).

Variableunread-command-events
This variable holds a list of events waiting to be read as command input. The events are
used in the order they appear in the list, and removed one by one as they are used.
The variable is needed because in some cases a function reads a event and then decides
not to use it. Storing the event in this variable causes it to be processed normally, by the
command loop or by the functions to read command input.
For example, the function that implements numeric prefix arguments reads any number
of digits. When it finds a non-digit event, it must unread the event so that it can be read
normally by the command loop. Likewise, incremental search uses this feature to unread
events with no special meaning in a search, because these events should exit the search
and then execute normally.

Variableunread-command-event
This variable holds a single event to be read as command input.
This variable is mostly obsolete now that you can use unread-command-events instead;
it exists only to support programs written for versions of XEmacs prior to 19.12.

Functioninput-pending-p
This function determines whether any command input is currently available to be read.
It returns immediately, with value t if there is available input, nil otherwise. On rare
occasions it may return t when no input is available.

Variablelast-input-event
This variable is set to the last keyboard or mouse button event received.
This variable is off limits: you may not set its value or modify the event that is its value,
as it is destructively modified by read-key-sequence. If you want to keep a pointer to
this value, you must use copy-event.
Note that this variable is an alias for last-input-char in FSF Emacs.
In the example below, a character is read (the character 1). It becomes the value of last-
input-event, while C-e (from the C-x C-e command used to evaluate this expression)
remains the value of last-command-event.

(progn (print (next-command-event))
(print last-command-event)
last-input-event)
a #<keypress-event 1>
a #<keypress-event control-E>
⇒ #<keypress-event 1>

Chapter 19: Command Loop 277

Variablelast-input-char
If the value of last-input-event is a keyboard event, then this is the nearest ASCII

equivalent to it. Remember that there is not a 1:1 mapping between keyboard events
and ASCII characters: the set of keyboard events is much larger, so writing code that
examines this variable to determine what key has been typed is bad practice, unless you
are certain that it will be one of a small set of characters.
This function exists for compatibility with Emacs version 18.

Functiondiscard-input
This function discards the contents of the terminal input buffer and cancels any keyboard
macro that might be in the process of definition. It returns nil.
In the following example, the user may type a number of characters right after starting the
evaluation of the form. After the sleep-for finishes sleeping, discard-input discards
any characters typed during the sleep.

(progn (sleep-for 2)
(discard-input))

⇒ nil

19.7 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until there
is input. For example, you may wish to pause in the middle of a computation to allow the user
time to view the display. sit-for pauses and updates the screen, and returns immediately if
input comes in, while sleep-for pauses without updating the screen.

Note that in FSF Emacs, the commands sit-for and sleep-for take two arguments to
specify the time (one integer and one float value), instead of a single argument that can be
either an integer or a float.

Functionsit-for seconds &optional nodisp
This function performs redisplay (provided there is no pending input from the user), then
waits seconds seconds, or until input is available. The result is t if sit-for waited the
full time with no input arriving (see input-pending-p in Section 19.6.5 [Peeking and
Discarding], page 276). Otherwise, the value is nil.
The argument seconds need not be an integer. If it is a floating point number, sit-for
waits for a fractional number of seconds.
Redisplay is normally preempted if input arrives, and does not happen at all if input is
available before it starts. (You can force screen updating in such a case by using force-
redisplay. See Section 45.1 [Refresh Screen], page 585.) If there is no input pending,
you can force an update with no delay by using (sit-for 0).
If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as input
is available (or when the timeout elapses).
The usual purpose of sit-for is to give the user time to read text that you display.

Functionsleep-for seconds
This function simply pauses for seconds seconds without updating the display. This func-
tion pays no attention to available input. It returns nil.
The argument seconds need not be an integer. If it is a floating point number, sleep-for
waits for a fractional number of seconds.
Use sleep-for when you wish to guarantee a delay.

See Section 50.5 [Time of Day], page 633, for functions to get the current time.

278 XEmacs Lisp Reference Manual

19.8 Quitting

Typing C-g while a Lisp function is running causes XEmacs to quit whatever it is doing.
This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit; it
acts as an ordinary input character. In the simplest case, you cannot tell the difference, because
C-g normally runs the command keyboard-quit, whose effect is to quit. However, when C-g
follows a prefix key, the result is an undefined key. The effect is to cancel the prefix key as well
as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This means,
in effect, that it exits the minibuffer and then quits. (Simply quitting would return to the
command loop within the minibuffer.) The reason why C-g does not quit directly when the
command reader is reading input is so that its meaning can be redefined in the minibuffer in
this way. C-g following a prefix key is not redefined in the minibuffer, and it has its normal
effect of canceling the prefix key and prefix argument. This too would not be possible if C-g
always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. XEmacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag non-nil
in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave an
inconsistency in XEmacs’s internal state. Because quitting is delayed until a safe place, quitting
cannot make XEmacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting en-
tirely even though they wait for input. Instead of quitting, C-g serves as the requested input.
In the case of read-key-sequence, this serves to bring about the special behavior of C-g in the
command loop. In the case of read-quoted-char, this is so that C-q can be used to quote a
C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable inhibit-
quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual, the usual result
of this—a quit—is prevented. Eventually, inhibit-quit will become nil again, such as when
its binding is unwound at the end of a let form. At that time, if quit-flag is still non-nil, the
requested quit happens immediately. This behavior is ideal when you wish to make sure that
quitting does not happen within a “critical section” of the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that does not
involve quitting. This is done by reading the input with inhibit-quit bound to t, and setting
quit-flag to nil before inhibit-quit becomes nil again. This excerpt from the definition
of read-quoted-char shows how this is done; it also shows that normal quitting is permitted
after the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation..."
(let ((count 0) (code 0) char)

(while (< count 3)
(let ((inhibit-quit (zerop count))

(help-form nil))
(and prompt (message "%s-" prompt))
(setq char (read-char))
(if inhibit-quit (setq quit-flag nil)))

...)
(logand 255 code)))

Chapter 19: Command Loop 279

Variablequit-flag
If this variable is non-nil, then XEmacs quits immediately, unless inhibit-quit is non-
nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

Variableinhibit-quit
This variable determines whether XEmacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

Commandkeyboard-quit
This function signals the quit condition with (signal ’quit nil). This is the same thing
that quitting does. (See signal in Section 9.5.3 [Errors], page 124.)

You can specify a character other than C-g to use for quitting. See the function set-input-
mode in Section 50.8 [Terminal Input], page 636.

19.9 Prefix Command Arguments

Most XEmacs commands can use a prefix argument, a number specified before the command
itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is at all times
represented by a value, which may be nil, meaning there is currently no prefix argument. Each
command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor com-
mand loop uses the raw representation internally, and so do the Lisp variables that store the
information, but commands can request either representation.

Here are the possible values of a raw prefix argument:
• nil, meaning there is no prefix argument. Its numeric value is 1, but numerous commands

make a distinction between nil and the integer 1.
• An integer, which stands for itself.
• A list of one element, which is an integer. This form of prefix argument results from one or

a succession of C-u’s with no digits. The numeric value is the integer in the list, but some
commands make a distinction between such a list and an integer alone.

• The symbol -. This indicates that M-- or C-u - was typed, without following digits. The
equivalent numeric value is −1, but some commands make a distinction between the integer
−1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:
(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:
M-x display-prefix a nil

C-u M-x display-prefix a (4)

C-u C-u M-x display-prefix a (16)

C-u 3 M-x display-prefix a 3

M-3 M-x display-prefix a 3 ; (Same as C-u 3.)

280 XEmacs Lisp Reference Manual

C-3 M-x display-prefix a 3 ; (Same as C-u 3.)

C-u - M-x display-prefix a -

M-- M-x display-prefix a - ; (Same as C-u -.)

C-- M-x display-prefix a - ; (Same as C-u -.)

C-u - 7 M-x display-prefix a -7

M-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)

C-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)
XEmacs uses two variables to store the prefix argument: prefix-arg and current-prefix-

arg. Commands such as universal-argument that set up prefix arguments for other commands
store them in prefix-arg. In contrast, current-prefix-arg conveys the prefix argument to
the current command, so setting it has no effect on the prefix arguments for future commands.

Normally, commands specify which representation to use for the prefix argument, either nu-
meric or raw, in the interactive declaration. (See Section 19.2.1 [Using Interactive], page 256.)
Alternatively, functions may look at the value of the prefix argument directly in the variable
current-prefix-arg, but this is less clean.

Functionprefix-numeric-value arg
This function returns the numeric meaning of a valid raw prefix argument value, arg. The
argument may be a symbol, a number, or a list. If it is nil, the value 1 is returned; if it
is -, the value −1 is returned; if it is a number, that number is returned; if it is a list, the
car of that list (which should be a number) is returned.

Variablecurrent-prefix-arg
This variable holds the raw prefix argument for the current command. Commands may
examine it directly, but the usual way to access it is with (interactive "P").

Variableprefix-arg
The value of this variable is the raw prefix argument for the next editing command.
Commands that specify prefix arguments for the following command work by setting this
variable.

Do not call the functions universal-argument, digit-argument, or negative-argument
unless you intend to let the user enter the prefix argument for the next command.

Commanduniversal-argument
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

Commanddigit-argument arg
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute the
updated prefix argument. Don’t call this command yourself unless you know what you
are doing.

Chapter 19: Command Loop 281

Commandnegative-argument arg
This command adds to the numeric argument for the next command. The argument arg
is the raw prefix argument as it was before this command; its value is negated to form
the new prefix argument. Don’t call this command yourself unless you know what you are
doing.

19.10 Recursive Editing

The XEmacs command loop is entered automatically when XEmacs starts up. This top-level
invocation of the command loop never exits; it keeps running as long as XEmacs does. Lisp
programs can also invoke the command loop. Since this makes more than one activation of the
command loop, we call it recursive editing. A recursive editing level has the effect of suspending
whatever command invoked it and permitting the user to do arbitrary editing before resuming
that command.

The commands available during recursive editing are the same ones available in the top-level
editing loop and defined in the keymaps. Only a few special commands exit the recursive editing
level; the others return to the recursive editing level when they finish. (The special commands
for exiting are always available, but they do nothing when recursive editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that an
error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such as
enabling display of the minibuffer and the minibuffer window, but fewer than you might suppose.
Certain keys behave differently in the minibuffer, but that is only because of the minibuffer’s
local map; if you switch windows, you get the usual XEmacs commands.

To invoke a recursive editing level, call the function recursive-edit. This function contains
the command loop; it also contains a call to catch with tag exit, which makes it possible to exit
the recursive editing level by throwing to exit (see Section 9.5.1 [Catch and Throw], page 121).
If you throw a value other than t, then recursive-edit returns normally to the function that
called it. The command C-M-c (exit-recursive-edit) does this. Throwing a t value causes
recursive-edit to quit, so that control returns to the command loop one level up. This is
called aborting, and is done by C-] (abort-recursive-edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current buffer
temporarily to a special major mode, which should have a command to go back to the previous
mode. (The e command in Rmail uses this technique.) Or, if you wish to give the user different
text to edit “recursively”, create and select a new buffer in a special mode. In this mode, define
a command to complete the processing and go back to the previous buffer. (The m command in
Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x q
(kbd-macro-query).

Functionrecursive-edit
This function invokes the editor command loop. It is called automatically by the initial-
ization of XEmacs, to let the user begin editing. When called from a Lisp program, it
enters a recursive editing level.
In the following example, the function simple-rec first advances point one word, then
enters a recursive edit, printing out a message in the echo area. The user can then do any
editing desired, and then type C-M-c to exit and continue executing simple-rec.

282 XEmacs Lisp Reference Manual

(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress")
(recursive-edit)
(forward-word 1))
⇒ simple-rec

(simple-rec)
⇒ nil

Commandexit-recursive-edit
This function exits from the innermost recursive edit (including minibuffer input). Its
definition is effectively (throw ’exit nil).

Commandabort-recursive-edit
This function aborts the command that requested the innermost recursive edit (including
minibuffer input), by signaling quit after exiting the recursive edit. Its definition is
effectively (throw ’exit t). See Section 19.8 [Quitting], page 278.

Commandtop-level
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

Functionrecursion-depth
This function returns the current depth of recursive edits. When no recursive edit is active,
it returns 0.

19.11 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can be
executed. Disabling is used for commands which might be confusing to beginning users, to
prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property on
the Lisp symbol for the command. These properties are normally set up by the user’s ‘.emacs’
file with Lisp expressions such as this:

(put ’upcase-region ’disabled t)

For a few commands, these properties are present by default and may be removed by the ‘.emacs’
file.

If the value of the disabled property is a string, the message saying the command is disabled
includes that string. For example:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

See section “Disabling” in The XEmacs User’s Manual, for the details on what happens when
a disabled command is invoked interactively. Disabling a command has no effect on calling it
as a function from Lisp programs.

Commandenable-command command
Allow command to be executed without special confirmation from now on, and (if the
user confirms) alter the user’s ‘.emacs’ file so that this will apply to future sessions.

Chapter 19: Command Loop 283

Commanddisable-command command
Require special confirmation to execute command from now on, and (if the user confirms)
alter the user’s ‘.emacs’ file so that this will apply to future sessions.

Variabledisabled-command-hook
This normal hook is run instead of a disabled command, when the user invokes the dis-
abled command interactively. The hook functions can use this-command-keys to deter-
mine what the user typed to run the command, and thus find the command itself. See
Section 26.4 [Hooks], page 342.
By default, disabled-command-hook contains a function that asks the user whether to
proceed.

19.12 Command History

The command loop keeps a history of the complex commands that have been executed,
to make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:
command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does not
cause the command to be considered complex.

Variablecommand-history
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of the
editing session, but all but the first (most recent) thirty elements are deleted when a
garbage collection takes place (see Section B.3 [Garbage Collection], page 695).

command-history
⇒ ((switch-to-buffer "chistory.texi")

(describe-key "^X^[")
(visit-tags-table "~/emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 18.4 [Minibuffer
History], page 240), with one special twist: the elements are expressions rather than strings.

There are a number of commands devoted to the editing and recall of previous commands.
The commands repeat-complex-command, and list-command-history are described in the
user manual (see section “Repetition” in The XEmacs User’s Manual). Within the minibuffer,
the history commands used are the same ones available in any minibuffer.

19.13 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a command
and made the definition of a key. The Lisp representation of a keyboard macro is a string or
vector containing the events. Don’t confuse keyboard macros with Lisp macros (see Chapter 12
[Macros], page 161).

Functionexecute-kbd-macro macro &optional count
This function executes macro as a sequence of events. If macro is a string or vector, then
the events in it are executed exactly as if they had been input by the user. The sequence

284 XEmacs Lisp Reference Manual

is not expected to be a single key sequence; normally a keyboard macro definition consists
of several key sequences concatenated.
If macro is a symbol, then its function definition is used in place of macro. If that is
another symbol, this process repeats. Eventually the result should be a string or vector.
If the result is not a symbol, string, or vector, an error is signaled.
The argument count is a repeat count; macro is executed that many times. If count is
omitted or nil, macro is executed once. If it is 0, macro is executed over and over until
it encounters an error or a failing search.

Variableexecuting-macro
This variable contains the string or vector that defines the keyboard macro that is currently
executing. It is nil if no macro is currently executing. A command can test this variable
to behave differently when run from an executing macro. Do not set this variable yourself.

Variabledefining-kbd-macro
This variable indicates whether a keyboard macro is being defined. A command can
test this variable to behave differently while a macro is being defined. The commands
start-kbd-macro and end-kbd-macro set this variable—do not set it yourself.

Variablelast-kbd-macro
This variable is the definition of the most recently defined keyboard macro. Its value is a
string or vector, or nil.

The commands are described in the user’s manual (see section “Keyboard Macros” in The
XEmacs User’s Manual).

Chapter 20: Keymaps 285

20 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either with
another keymap or with a command. When an event is bound to a keymap, that keymap is used
to look up the next input event; this continues until a command is found. The whole process is
called key lookup.

20.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects, though
only certain types are meaningful for execution by the command loop). Given an event (or an
event type) and a keymap, XEmacs can get the event’s definition. Events mapped in keymaps
include keypresses, button presses, and button releases (see Section 19.5 [Events], page 263).

A sequence of input events that form a unit is called a key sequence, or key for short. A
sequence of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence is
a single event, its binding is the definition of the event in the keymap. The binding of a key
sequence of more than one event is found by an iterative process: the binding of the first event
is found, and must be a keymap; then the second event’s binding is found in that keymap, and
so on until all the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key. Otherwise,
we call it a complete key (because no more events can be added to it). If the binding is nil, we
call the key undefined. Examples of prefix keys are C-c, C-x, and C-x 4. Examples of defined
complete keys are X, 〈RET〉, and C-x 4 C-f. Examples of undefined complete keys are C-x C-g,
and C-c 3. See Section 20.6 [Prefix Keys], page 289, for more details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really a key sequence. In other words, removing one or more
events from the end of any valid key must always yield a prefix key. For example, C-f C-n is
not a key; C-f is not a prefix key, so a longer sequence starting with C-f cannot be a key.

Note that the set of possible multi-event key sequences depends on the bindings for prefix
keys; therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not depend
on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor mode
keymaps shadow both local and global keymaps. See Section 20.7 [Active Keymaps], page 290,
for details.

20.2 Format of Keymaps

A keymap is a primitive type that associates events with their bindings. Note that this is
different from Emacs 18 and FSF Emacs, where keymaps are lists.

286 XEmacs Lisp Reference Manual

Functionkeymapp object
This function returns t if object is a keymap, nil otherwise.

20.3 Creating Keymaps

Here we describe the functions for creating keymaps.

Functionmake-keymap &optional name
This function constructs and returns a new keymap object. All entries in it are nil,
meaning “command undefined”.
Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing the
keymap.

Functionmake-sparse-keymap &optional name
This function constructs and returns a new keymap object. All entries in it are nil,
meaning “command undefined”. The only difference between this function and make-
keymap is that this function returns a “smaller” keymap (one that is expected to contain
fewer entries). As keymaps dynamically resize, the distinction is not great.
Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing the
keymap.

Functionset-keymap-name keymap new-name
This function assigns a “name” to a keymap. The name is only a debugging convenience;
it is not used except when printing the keymap.

Functionkeymap-name keymap
This function returns the “name” of a keymap, as assigned using set-keymap-name.

Functioncopy-keymap keymap
This function returns a copy of keymap. Any keymaps that appear directly as bindings in
keymap are also copied recursively, and so on to any number of levels. However, recursive
copying does not take place when the definition of a character is a symbol whose function
definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))
⇒ #<keymap 3 entries 0x21f80>

(eq map (current-local-map))
⇒ nil

20.4 Inheritance and Keymaps

A keymap can inherit the bindings of other keymaps. The other keymaps are called the
keymap’s parents, and are set with set-keymap-parents. When searching for a binding for a
key sequence in a particular keymap, that keymap itself will first be searched; then, if no binding
was found in the map and it has parents, the first parent keymap will be searched; then that
keymap’s parent will be searched, and so on, until either a binding for the key sequence is found,
or a keymap without a parent is encountered. At this point, the search will continue with the

Chapter 20: Keymaps 287

next parent of the most recently encountered keymap that has another parent, etc. Essentially,
a depth-first search of all the ancestors of the keymap is conducted.

(current-global-map) is the default parent of all keymaps.

Functionset-keymap-parents keymap parents
This function sets the parent keymaps of keymap to the list parents.
If you change the bindings in one of the keymaps in parents using define-key or other
key-binding functions, these changes are visible in keymap unless shadowed by bindings in
that map or in earlier-searched ancestors. The converse is not true: if you use define-key
to change keymap, that affects the bindings in that map, but has no effect on any of the
keymaps in parents.

Functionkeymap-parents keymap
This function returns the list of parent keymaps of keymap, or nil if keymap has no
parents.

As an alternative to specifying a parent, you can also specify a default binding that is used
whenever a key is not otherwise bound in the keymap. This is useful for terminal emulators,
for example, which may want to trap all keystrokes and pass them on in some modified format.
Note that if you specify a default binding for a keymap, neither the keymap’s parents nor the
current global map are searched for key bindings.

Functionset-keymap-default-binding keymap command
This function sets the default binding of keymap to command, or nil if no default is
desired.

Functionkeymap-default-binding keymap
This function returns the default binding of keymap, or nil if it has none.

20.5 Key Sequences

Contrary to popular belief, the world is not ASCII. When running under a window manager,
XEmacs can tell the difference between, for example, the keystrokes control-h, control-
shift-h, and backspace. You can, in fact, bind different commands to each of these.

A key sequence is a set of keystrokes. A keystroke is a keysym and some set of modifiers
(such as 〈CONTROL〉 and 〈META〉). A keysym is what is printed on the keys on your keyboard.

A keysym may be represented by a symbol, or (if and only if it is equivalent to an ASCII

character in the range 32 - 255) by a character or its equivalent ASCII code. The A key may
be represented by the symbol A, the character ?A, or by the number 65. The break key may be
represented only by the symbol break.

A keystroke may be represented by a list: the last element of the list is the key (a symbol,
character, or number, as above) and the preceding elements are the symbolic names of modifier
keys (〈CONTROL〉, 〈META〉, 〈SUPER〉, 〈HYPER〉, 〈ALT〉, and 〈SHIFT〉). Thus, the sequence control-b
is represented by the forms (control b), (control ?b), and (control 98). A keystroke may
also be represented by an event object, as returned by the next-command-event and read-key-
sequence functions.

Note that in this context, the keystroke control-b is not represented by the number 2 (the
ASCII code for ‘^B’) or the character ?\^B. See below.

The 〈SHIFT〉 modifier is somewhat of a special case. You should not (and cannot) use (meta
shift a) to mean (meta A), since for characters that have ASCII equivalents, the state of the

288 XEmacs Lisp Reference Manual

shift key is implicit in the keysym (‘a’ vs. ‘A’). You also cannot say (shift =) to mean +, as
that sort of thing varies from keyboard to keyboard. The 〈SHIFT〉 modifier is for use only with
characters that do not have a second keysym on the same key, such as backspace and tab.

A key sequence is a vector of keystrokes. As a degenerate case, elements of this vector may
also be keysyms if they have no modifiers. That is, the A keystroke is represented by all of these
forms:

A ?A 65 (A) (?A) (65)
[A] [?A] [65] [(A)] [(?A)] [(65)]

the control-a keystroke is represented by these forms:

(control A) (control ?A) (control 65)
[(control A)] [(control ?A)] [(control 65)]

the key sequence control-c control-a is represented by these forms:

[(control c) (control a)] [(control ?c) (control ?a)]
[(control 99) (control 65)] etc.

Mouse button clicks work just like keypresses: (control button1) means pressing the left
mouse button while holding down the control key. [(control c) (shift button3)] means
control-c, hold 〈SHIFT〉, click right.

Commands may be bound to the mouse-button up-stroke rather than the down-stroke as well.
button1 means the down-stroke, and button1up means the up-stroke. Different commands may
be bound to the up and down strokes, though that is probably not what you want, so be careful.

For backward compatibility, a key sequence may also be represented by a string. In this case,
it represents the key sequence(s) that would produce that sequence of ASCII characters in a
purely ASCII world. For example, a string containing the ASCII backspace character, "\^H",
would represent two key sequences: (control h) and backspace. Binding a command to this
will actually bind both of those key sequences. Likewise for the following pairs:

control h backspace
control i tab
control m return
control j linefeed
control [escape
control @ control space

After binding a command to two key sequences with a form like

(define-key global-map "\^X\^I" ’command-1)

it is possible to redefine only one of those sequences like so:

(define-key global-map [(control x) (control i)] ’command-2)
(define-key global-map [(control x) tab] ’command-3)

Of course, all of this applies only when running under a window system. If you’re talking to
XEmacs through a TTY connection, you don’t get any of these features.

Functionevent-matches-key-specifier-p event key-specifier
This function returns non-nil if event matches key-specifier, which can be any valid form
representing a key sequence. This can be useful, e.g., to determine if the user pressed
help-char or quit-char.

Chapter 20: Keymaps 289

20.6 Prefix Keys

A prefix key has an associated keymap that defines what to do with key sequences that start
with the prefix key. For example, C-x is a prefix key, and it uses a keymap that is also stored in
the variable ctl-x-map. Here is a list of the standard prefix keys of XEmacs and their keymaps:
• help-map is used for events that follow C-h.
• mode-specific-map is for events that follow C-c. This map is not actually mode specific;

its name was chosen to be informative for the user in C-h b (display-bindings), where it
describes the main use of the C-c prefix key.

• ctl-x-map is the map used for events that follow C-x. This map is also the function
definition of Control-X-prefix.

• ctl-x-4-map is used for events that follow C-x 4.
• ctl-x-5-map is used for events that follow C-x 5.
• The prefix keys C-x n, C-x r and C-x a use keymaps that have no special name.
• esc-map is an evil hack that is present for compatibility purposes with Emacs 18. Defining

a key in esc-map is equivalent to defining the same key in global-map but with the 〈META〉
prefix added. You should not use this in your code. (This map is also the function definition
of ESC-prefix.)

The binding of a prefix key is the keymap to use for looking up the events that follow the
prefix key. (It may instead be a symbol whose function definition is a keymap. The effect is
the same, but the symbol serves as a name for the prefix key.) Thus, the binding of C-x is the
symbol Control-X-prefix, whose function definition is the keymap for C-x commands. (The
same keymap is also the value of ctl-x-map.)

Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h and
〈ESC〉 as prefix keys appear in the global map, so these prefix keys are always available. Major
and minor modes can redefine a key as a prefix by putting a prefix key definition for it in the
local map or the minor mode’s map. See Section 20.7 [Active Keymaps], page 290.

If a key is defined as a prefix in more than one active map, then its various definitions are in
effect merged: the commands defined in the minor mode keymaps come first, followed by those
in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way that
C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just like C-x
C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
⇒ nil

(local-set-key "\C-p" ctl-x-map)
⇒ nil

(key-binding "\C-p\C-f")
⇒ find-file

(key-binding "\C-p6")
⇒ nil

Functiondefine-prefix-command symbol &optional mapvar
This function defines symbol as a prefix command: it creates a keymap and stores it as
symbol’s function definition. Storing the symbol as the binding of a key makes the key
a prefix key that has a name. If optional argument mapvar is not specified, it also sets
symbol as a variable, to have the keymap as its value. (If mapvar is given and is not t,
its value is stored as the value of symbol.) The function returns symbol.

290 XEmacs Lisp Reference Manual

In Emacs version 18, only the function definition of symbol was set, not the value as a
variable.

20.7 Active Keymaps

XEmacs normally contains many keymaps; at any given time, just a few of them are active
in that they participate in the interpretation of user input. These are the global keymap, the
current buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current buffer,
such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or overriding
definitions for keys. The current buffer’s local keymap is always active except when overriding-
local-map or overriding-terminal-local-map overrides it. Extents and text properties can
specify an alternative local map for certain parts of the buffer; see Section 40.10 [Extents and
Events], page 540.

Each minor mode may have a keymap; if it does, the keymap is active when the minor mode
is enabled.

The variable overriding-local-map and overriding-terminal-local-map, if non-nil,
specify other local keymaps that override the buffer’s local map and all the minor mode keymaps.

All the active keymaps are used together to determine what command to execute when a key
is entered. XEmacs searches these maps one by one, in order of decreasing precedence, until it
finds a binding in one of the maps.

More specifically:
For key-presses, the order of keymaps searched is:
• the keymap property of any extent(s) or text properties at point;
• any applicable minor-mode maps;
• the current local map of the current buffer;
• the current global map.

For mouse-clicks, the order of keymaps searched is:
• the current local map of the mouse-grabbed-buffer if any;
• the keymap property of any extent(s) at the position of the click (this includes modeline

extents);
• the modeline-map of the buffer corresponding to the modeline under the mouse (if the click

happened over a modeline);
• the value of toolbar-map in the current buffer (if the click happened over a toolbar);
• the current local map of the buffer under the mouse (does not apply to toolbar clicks);
• any applicable minor-mode maps;
• the current global map.

Note that if overriding-local-map or overriding-terminal-local-map is non-nil, only
those two maps and the current global map are searched.

The procedure for searching a single keymap is called key lookup; see Section 20.8 [Key
Lookup], page 293.

Since every buffer that uses the same major mode normally uses the same local keymap, you
can think of the keymap as local to the mode. A change to the local keymap of a buffer (using
local-set-key, for example) is seen also in the other buffers that share that keymap.

Chapter 20: Keymaps 291

The local keymaps that are used for Lisp mode, C mode, and several other major modes
exist even if they have not yet been used. These local maps are the values of the variables
lisp-mode-map, c-mode-map, and so on. For most other modes, which are less frequently used,
the local keymap is constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit commands.
See Section 18.1 [Intro to Minibuffers], page 237.

See Appendix E [Standard Keymaps], page 709, for a list of standard keymaps.

Functioncurrent-keymaps &optional event-or-keys
This function returns a list of the current keymaps that will be searched for bindings.
This lists keymaps such as the current local map and the minor-mode maps, but does not
list the parents of those keymaps. event-or-keys controls which keymaps will be listed.
If event-or-keys is a mouse event (or a vector whose last element is a mouse event), the
keymaps for that mouse event will be listed. Otherwise, the keymaps for key presses will
be listed.

Variableglobal-map
This variable contains the default global keymap that maps XEmacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap is a
full keymap that binds self-insert-command to all of the printing characters.
It is normal practice to change the bindings in the global map, but you should not assign
this variable any value other than the keymap it starts out with.

Functioncurrent-global-map
This function returns the current global keymap. This is the same as the value of global-
map unless you change one or the other.

(current-global-map)
⇒ #<keymap global-map 639 entries 0x221>

Functioncurrent-local-map
This function returns the current buffer’s local keymap, or nil if it has none. In the
following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction mode)
has a number of entries, including one prefix key, C-x.

(current-local-map)
⇒ #<keymap lisp-interaction-mode-map 5 entries 0x558>
(describe-bindings-internal (current-local-map))
⇒ ; Inserted into the buffer:
backspace backward-delete-char-untabify
linefeed eval-print-last-sexp
delete delete-char
C-j eval-print-last-sexp
C-x << Prefix Command >>
M-tab lisp-complete-symbol
M-; lisp-indent-for-comment
M-C-i lisp-complete-symbol
M-C-q indent-sexp
M-C-x eval-defun
Alt-backspace backward-kill-sexp
Alt-delete kill-sexp

C-x x edebug-defun

292 XEmacs Lisp Reference Manual

Functioncurrent-minor-mode-maps
This function returns a list of the keymaps of currently enabled minor modes.

Functionuse-global-map keymap
This function makes keymap the new current global keymap. It returns nil.
It is very unusual to change the global keymap.

Functionuse-local-map keymap &optional buffer
This function makes keymap the new local keymap of buffer. buffer defaults to the current
buffer. If keymap is nil, then the buffer has no local keymap. use-local-map returns
nil. Most major mode commands use this function.

Variableminor-mode-map-alist
This variable is an alist describing keymaps that may or may not be active according to
the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically variable
is the variable that enables or disables a minor mode. See Section 26.2.2 [Keymaps and
Minor Modes], page 337.
Note that elements of minor-mode-map-alist do not have the same structure as elements
of minor-mode-alist. The map must be the cdr of the element; a list with the map as
the second element will not do.
What’s more, the keymap itself must appear in the cdr. It does not work to store a
variable in the cdr and make the map the value of that variable.
When more than one minor mode keymap is active, their order of priority is the order of
minor-mode-map-alist. But you should design minor modes so that they don’t interfere
with each other. If you do this properly, the order will not matter.
See also minor-mode-key-binding, above. See Section 26.2.2 [Keymaps and Minor
Modes], page 337, for more information about minor modes.

Variablemodeline-map
This variable holds the keymap consulted for mouse-clicks on the modeline of a window.
This variable may be buffer-local; its value will be looked up in the buffer of the window
whose modeline was clicked upon.

Variabletoolbar-map
This variable holds the keymap consulted for mouse-clicks over a toolbar.

Variablemouse-grabbed-buffer
If non-nil, a buffer which should be consulted first for all mouse activity. When a mouse-
click is processed, it will first be looked up in the local-map of this buffer, and then
through the normal mechanism if there is no binding for that click. This buffer’s value
of mode-motion-hook will be consulted instead of the mode-motion-hook of the buffer of
the window under the mouse. You should bind this, not set it.

Variableoverriding-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap and
instead of all the minor mode keymaps. This keymap, if any, overrides all other maps that
would have been active, except for the current global map.

Chapter 20: Keymaps 293

Variableoverriding-terminal-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap and
instead of all the minor mode keymaps, but for the selected console only. (In other words,
this variable is always console-local; putting a keymap here only applies to keystrokes
coming from the selected console. See Chapter 33 [Consoles and Devices], page 437.)
This keymap, if any, overrides all other maps that would have been active, except for the
current global map.

20.8 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
Actual execution of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the event is
ignored. In fact, a key sequence used for key lookup may designate mouse events with just their
types (symbols) instead of with entire mouse events (lists). See Section 19.5 [Events], page 263.
Such a pseudo-key-sequence is insufficient for command-execute, but it is sufficient for looking
up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events sequen-
tially: the binding of the first event is found, and must be a keymap; then the second event’s
binding is found in that keymap, and so on until all the events in the key sequence are used up.
(The binding thus found for the last event may or may not be a keymap.) Thus, the process of
key lookup is defined in terms of a simpler process for looking up a single event in a keymap.
How that is done depends on the type of object associated with the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event type in
a keymap. (This doesn’t include the item string and other extra elements in menu key bindings
because lookup-key and other key lookup functions don’t include them in the returned value.)
While any Lisp object may be stored in a keymap as a keymap entry, not all make sense for key
lookup. Here is a list of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key. When
a keymap fails to mention an event type at all, and has no default binding, that is
equivalent to a binding of nil for that event type.

keymap The events used so far in the lookup form a prefix key. The next event of the key
sequence is looked up in keymap.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 11.1 [What Is a Function], page 147.

array The array (either a string or a vector) is a keyboard macro. The events used so far
in the lookup form a complete key, and the array is its binding. See Section 19.13
[Keyboard Macros], page 283, for more information. (Note that you cannot use a
shortened form of a key sequence here, such as (control y); you must use the full
form [(control y)]. See Section 20.5 [Key Sequences], page 287.)

list The meaning of a list depends on the types of the elements of the list.
• If the car of list is lambda, then the list is a lambda expression. This is

presumed to be a command, and is treated as such (see above).
• If the car of list is a keymap and the cdr is an event type, then this is an

indirect entry :
(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the binding
of othertype in othermap and uses that.

294 XEmacs Lisp Reference Manual

This feature permits you to define one key as an alias for another key. For
example, an entry whose car is the keymap called esc-map and whose cdr is
32 (the code for 〈SPC〉) means, “Use the global binding of Meta-〈SPC〉, whatever
that may be.”

symbol The function definition of symbol is used in place of symbol. If that too is a symbol,
then this process is repeated, any number of times. Ultimately this should lead to
an object that is a keymap, a command or a keyboard macro. A list is allowed if it
is a keymap or a command, but indirect entries are not understood when found via
symbols.
Note that keymaps and keyboard macros (strings and vectors) are not valid func-
tions, so a symbol with a keymap, string, or vector as its function definition is
invalid as a function. It is, however, valid as a key binding. If the definition is a
keyboard macro, then the symbol is also valid as an argument to command-execute
(see Section 19.3 [Interactive Call], page 260).
The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically for
an undefined key: it rings the bell (by calling ding) but does not signal an error.
undefined is used in local keymaps to override a global key binding and make the
key “undefined” locally. A local binding of nil would fail to do this because it
would not override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form a
complete key, and the object is its binding, but the binding is not executable as a
command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol that
leads to one of them, or an indirection or nil.

20.9 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

Functionlookup-key keymap key &optional accept-defaults
This function returns the definition of key in keymap. If the string or vector key is not
a valid key sequence according to the prefix keys specified in keymap (which means it is
“too long” and has extra events at the end), then the value is a number, the number of
events at the front of key that compose a complete key.
If accept-defaults is non-nil, then lookup-key considers default bindings as well as bind-
ings for the specific events in key. Otherwise, lookup-key reports only bindings for the
specific sequence key, ignoring default bindings except when you explicitly ask about them.
All the other functions described in this chapter that look up keys use lookup-key.

(lookup-key (current-global-map) "\C-x\C-f")
⇒ find-file

(lookup-key (current-global-map) "\C-x\C-f12345")
⇒ 2

If key begins with the character whose value is contained in meta-prefix-char, that
character is implicitly removed and the 〈META〉 modifier added to the key. Thus, the first
example below is handled by conversion into the second example.

Chapter 20: Keymaps 295

(lookup-key (current-global-map) "\ef")
⇒ forward-word

(lookup-key (current-global-map) "\M-f")
⇒ forward-word

Unlike read-key-sequence, this function does not modify the specified events in ways that
discard information (see Section 19.6.1 [Key Sequence Input], page 273). In particular, it
does not convert letters to lower case.

Commandundefined
Used in keymaps to undefine keys. If a key sequence is defined to this, invoking this key
sequence causes a “key undefined” error, just as if the key sequence had no binding.

Functionkey-binding key &optional accept-defaults
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.
The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

(key-binding "\C-x\C-f")
⇒ find-file

(key-binding ’(control home))
⇒ beginning-of-buffer

(key-binding [escape escape escape])
⇒ keyboard-escape-quit

Functionlocal-key-binding key &optional accept-defaults
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.
The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

Functionglobal-key-binding key &optional accept-defaults
This function returns the binding for command key in the current global keymap, or nil
if it is undefined there.
The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

Functionminor-mode-key-binding key &optional accept-defaults
This function returns a list of all the active minor mode bindings of key. More precisely,
it returns an alist of pairs (modename . binding), where modename is the variable that
enables the minor mode, and binding is key ’s binding in that mode. If key has no minor-
mode bindings, the value is nil.
If the first binding is not a prefix command, all subsequent bindings from other minor
modes are omitted, since they would be completely shadowed. Similarly, the list omits
non-prefix bindings that follow prefix bindings.
The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

Variablemeta-prefix-char
This variable is the meta-prefix character code. It is used when translating a two-character
sequence to a meta character so it can be looked up in a keymap. For useful results, the

296 XEmacs Lisp Reference Manual

value should be a prefix event (see Section 20.6 [Prefix Keys], page 289). The default value
is ?\^[(integer 27), which is the ASCII character usually produced by the 〈ESC〉 key.
As long as the value of meta-prefix-char remains ?\^[, key lookup translates 〈ESC〉 b
into M-b, which is normally defined as the backward-word command. However, if you
set meta-prefix-char to ?\^X (i.e. the keystroke C-x) or its equivalent ASCII code
24, then XEmacs will translate C-x b (whose standard binding is the switch-to-buffer
command) into M-b.

meta-prefix-char ; The default value.
⇒ ?\^[; Under XEmacs 20.
⇒ 27 ; Under XEmacs 19.

(key-binding "\eb")
⇒ backward-word

?\C-x ; The print representation
; of a character.

⇒ ?\^X ; Under XEmacs 20.
⇒ 24 ; Under XEmacs 19.

(setq meta-prefix-char 24)
⇒ 24

(key-binding "\C-xb")
⇒ backward-word ; Now, typing C-x b is

; like typing M-b.

(setq meta-prefix-char ?\e) ; Avoid confusion!
; Restore the default value!

⇒ ?\^[; Under XEmacs 20.
⇒ 27 ; Under XEmacs 19.

20.10 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding in the
global keymap, the change is effective in all buffers (though it has no direct effect in buffers
that shadow the global binding with a local one). If you change the current buffer’s local map,
that usually affects all buffers using the same major mode. The global-set-key and local-
set-key functions are convenient interfaces for these operations (see Section 20.11 [Key Binding
Commands], page 299). You can also use define-key, a more general function; then you must
specify explicitly the map to change.

The way to specify the key sequence that you want to rebind is described above (see Sec-
tion 20.5 [Key Sequences], page 287).

For the functions below, an error is signaled if keymap is not a keymap or if key is not a
string or vector representing a key sequence. You can use event types (symbols) as shorthand
for events that are lists.

Functiondefine-key keymap key binding
This function sets the binding for key in keymap. (If key is more than one event long, the
change is actually made in another keymap reached from keymap.) The argument binding
can be any Lisp object, but only certain types are meaningful. (For a list of meaningful
types, see Section 20.8 [Key Lookup], page 293.) The value returned by define-key is
binding.
Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined; otherwise
an error is signaled.

Chapter 20: Keymaps 297

If some prefix of key is undefined, then define-key defines it as a prefix key so that the
rest of key may be defined as specified.

Here is an example that creates a sparse keymap and makes a number of bindings in it:

(setq map (make-sparse-keymap))
⇒ #<keymap 0 entries 0xbee>

(define-key map "\C-f" ’forward-char)
⇒ forward-char

map
⇒ #<keymap 1 entry 0xbee>

(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char

;; Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)

⇒ forward-word
map

⇒ #<keymap 2 entries 0xbee>
(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char
C-x << Prefix Command >>

C-x f forward-word

;; Bind C-p to the ctl-x-map.
(define-key map "\C-p" ctl-x-map)
;; ctl-x-map
⇒ #<keymap Control-X-prefix 77 entries 0x3bf>

;; Bind C-f to foo in the ctl-x-map.
(define-key map "\C-p\C-f" ’foo)
⇒ foo

298 XEmacs Lisp Reference Manual

map
⇒ #<keymap 3 entries 0xbee>

(describe-bindings-internal map)
⇒ ; (Inserted in buffer)
C-f forward-char
C-p << Prefix command Control-X-prefix >>
C-x << Prefix Command >>

C-p tab indent-rigidly
C-p $ set-selective-display
C-p ’ expand-abbrev
C-p (start-kbd-macro
C-p) end-kbd-macro

...
C-p C-x exchange-point-and-mark
C-p C-z suspend-or-iconify-emacs
C-p M-escape repeat-complex-command
C-p M-C-[repeat-complex-command

C-x f forward-word

C-p 4 . find-tag-other-window
...

C-p 4 C-o display-buffer

C-p 5 0 delete-frame
...

C-p 5 C-f find-file-other-frame

...

C-p a i g inverse-add-global-abbrev
C-p a i l inverse-add-mode-abbrev

Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-x-map,
and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the default
global map.

Functionsubstitute-key-definition olddef newdef keymap &optional oldmap
This function replaces olddef with newdef for any keys in keymap that were bound to
olddef. In other words, olddef is replaced with newdef wherever it appears. The function
returns nil.
For example, this redefines C-x C-f, if you do it in an XEmacs with standard bindings:

(substitute-key-definition
’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, then its bindings determine which keys to rebind. The rebindings
still happen in newmap, not in oldmap. Thus, you can change one map under the control
of the bindings in another. For example,

(substitute-key-definition
’delete-backward-char ’my-funny-delete
my-map global-map)

Chapter 20: Keymaps 299

puts the special deletion command in my-map for whichever keys are globally bound to
the standard deletion command.

Functionsuppress-keymap keymap &optional nodigits
This function changes the contents of the full keymap keymap by making all the printing
characters undefined. More precisely, it binds them to the command undefined. This
makes ordinary insertion of text impossible. suppress-keymap returns nil.
If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and - to
run negative-argument. Otherwise it makes them undefined like the rest of the printing
characters.
The suppress-keymap function does not make it impossible to modify a buffer, as it does
not suppress commands such as yank and quoted-insert. To prevent any modification
of a buffer, make it read-only (see Section 30.7 [Read Only Buffers], page 397).
Since this function modifies keymap, you would normally use it on a newly created keymap.
Operating on an existing keymap that is used for some other purpose is likely to cause
trouble; for example, suppressing global-map would make it impossible to use most of
XEmacs.
Most often, suppress-keymap is used to initialize local keymaps of modes such as Rmail
and Dired where insertion of text is not desirable and the buffer is read-only. Here is an
example taken from the file ‘emacs/lisp/dired.el’, showing how the local keymap for
Dired mode is set up:

...
(setq dired-mode-map (make-keymap))
(suppress-keymap dired-mode-map)
(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)
...

20.11 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings. They
work by calling define-key.

People often use global-set-key in their ‘.emacs’ file for simple customization. For example,
(global-set-key "\C-x\C-\\" ’next-line)

or
(global-set-key [(control ?x) (control ?\\)] ’next-line)

or
(global-set-key [?\C-x ?\C-\\] ’next-line)

redefines C-x C-\ to move down a line.
(global-set-key [(meta button1)] ’mouse-set-point)

redefines the first (leftmost) mouse button, typed with the Meta key, to set point where you
click.

300 XEmacs Lisp Reference Manual

Commandglobal-set-key key definition
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)
≡
(define-key (current-global-map) key definition)

Commandglobal-unset-key key
This function removes the binding of key from the current global map.
One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:

(global-unset-key "\C-l")
⇒ nil

(global-set-key "\C-l\C-l" ’redraw-display)
⇒ nil

This function is implemented simply using define-key:
(global-unset-key key)
≡
(define-key (current-global-map) key nil)

Commandlocal-set-key key definition
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)
≡
(define-key (current-local-map) key definition)

Commandlocal-unset-key key
This function removes the binding of key from the current local map.

(local-unset-key key)
≡
(define-key (current-local-map) key nil)

20.12 Scanning Keymaps

This section describes functions used to scan all the current keymaps, or all keys within a
keymap, for the sake of printing help information.

Functionaccessible-keymaps keymap &optional prefix
This function returns a list of all the keymaps that can be accessed (via prefix keys) from
keymap. The value is an association list with elements of the form (key . map), where
key is a prefix key whose definition in keymap is map.
The elements of the alist are ordered so that the key increases in length. The first element
is always ([] . keymap), because the specified keymap is accessible from itself with a
prefix of no events.
If prefix is given, it should be a prefix key sequence; then accessible-keymaps includes
only the submaps whose prefixes start with prefix. These elements look just as they do
in the value of (accessible-keymaps); the only difference is that some elements are
omitted.

Chapter 20: Keymaps 301

In the example below, the returned alist indicates that the key C-x, which is displayed
as ‘[(control x)]’, is a prefix key whose definition is the keymap #<keymap ((control
x) #<keymap emacs-lisp-mode-map 8 entries 0x546>) 1 entry 0x8a2>. (The strange
notation for the keymap’s name indicates that this is an internal submap of emacs-lisp-
mode-map. This is because lisp-interaction-mode-map has set up emacs-lisp-mode-
map as its parent, and lisp-interaction-mode-map defines no key sequences beginning
with C-x.)

(current-local-map)
⇒ #<keymap lisp-interaction-mode-map 5 entries 0x558>
(accessible-keymaps (current-local-map))
⇒(([] . #<keymap lisp-interaction-mode-map 5 entries 0x558>)

([(control x)] .
#<keymap ((control x) #<keymap emacs-lisp-mode-map 8 entries 0x546>)

1 entry 0x8a2>))

The following example shows the results of calling accessible-keymaps on a large, com-
plex keymap. Notice how some keymaps were given explicit names using set-keymap-
name; those submaps without explicit names are given descriptive names indicating their
relationship to their enclosing keymap.

(accessible-keymaps (current-global-map))
⇒ (([] . #<keymap global-map 639 entries 0x221>)

([(control c)] . #<keymap mode-specific-command-prefix 1 entry 0x3cb>)
([(control h)] . #<keymap help-map 33 entries 0x4ec>)
([(control x)] . #<keymap Control-X-prefix 77 entries 0x3bf>)
([(meta escape)] .

#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)
3 entries 0x3e0>)

([(meta control \[)] .
#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)

3 entries 0x3e0>)
([f1] . #<keymap help-map 33 entries 0x4ec>)
([(control x) \4] . #<keymap ctl-x-4-prefix 9 entries 0x3c5>)
([(control x) \5] . #<keymap ctl-x-5-prefix 8 entries 0x3c8>)
([(control x) \6] . #<keymap 13 entries 0x4d2>)
([(control x) a] .

#<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)
8 entries 0x3ef>)

([(control x) n] . #<keymap narrowing-prefix 3 entries 0x3dd>)
([(control x) r] . #<keymap rectangle-prefix 18 entries 0x3e9>)
([(control x) v] . #<keymap vc-prefix-map 13 entries 0x60e>)
([(control x) a i] .
#<keymap (i #<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)

8 entries 0x3ef>)
2 entries 0x3f5>))

Functionmap-keymap function keymap &optional sort-first
This function applies function to each element of KEYMAP. function will be called with two
arguments: a key-description list, and the binding. The order in which the elements of
the keymap are passed to the function is unspecified. If the function inserts new elements
into the keymap, it may or may not be called with them later. No element of the keymap
will ever be passed to the function more than once.
The function will not be called on elements of this keymap’s parents (see Section 20.4
[Inheritance and Keymaps], page 286) or upon keymaps which are contained within this

302 XEmacs Lisp Reference Manual

keymap (multi-character definitions). It will be called on 〈META〉 characters since they are
not really two-character sequences.
If the optional third argument sort-first is non-nil, then the elements of the keymap will
be passed to the mapper function in a canonical order. Otherwise, they will be passed in
hash (that is, random) order, which is faster.

Functionkeymap-fullness keymap
This function returns the number of bindings in the keymap.

Functionwhere-is-internal definition &optional keymaps firstonly noindirect
event-or-keys

This function returns a list of key sequences (of any length) that are bound to definition
in a set of keymaps.
The argument definition can be any object; it is compared with all keymap entries using
eq.
KEYMAPS can be either a keymap (meaning search in that keymap and the current global
keymap) or a list of keymaps (meaning search in exactly those keymaps and no others).
If KEYMAPS is nil, search in the currently applicable maps for EVENT-OR-KEYS.
If keymap is a keymap, then the maps searched are keymap and the global keymap. If
keymap is a list of keymaps, then the maps searched are exactly those keymaps, and no
others. If keymap is nil, then the maps used are the current active keymaps for event-or-
keys (this is equivalent to specifying (current-keymaps event-or-keys) as the argument
to keymaps).
If firstonly is non-nil, then the value is a single vector representing the first key sequence
found, rather than a list of all possible key sequences.
If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.
This function is used by where-is (see section “Help” in The XEmacs Reference Manual).

(where-is-internal ’describe-function)
⇒ ([(control h) d] [(control h) f] [f1 d] [f1 f])

Functiondescribe-bindings-internal map &optional all shadow prefix mouse-only-p
This function inserts (into the current buffer) a list of all defined keys and their definitions
in map. Optional second argument all says whether to include even “uninteresting” defi-
nitions, i.e. symbols with a non-nil suppress-keymap property. Third argument shadow
is a list of keymaps whose bindings shadow those of map; if a binding is present in any
shadowing map, it is not printed. Fourth argument prefix, if non-nil, should be a key se-
quence; only bindings which start with that key sequence will be printed. Fifth argument
mouse-only-p says to only print bindings for mouse clicks.

describe-bindings-internal is used to implement the help command describe-bindings.

Commanddescribe-bindings prefix mouse-only-p
This function creates a listing of all defined keys and their definitions. It writes the listing
in a buffer named ‘*Help*’ and displays it in a window.
If prefix is non-nil, it should be a prefix key; then the listing includes only keys that start
with prefix.
When several characters with consecutive ASCII codes have the same definition, they are
shown together, as ‘firstchar..lastchar’. In this instance, you need to know the ASCII

codes to understand which characters this means. For example, in the default global map,
the characters ‘〈SPC〉 .. ~’ are described by a single line. 〈SPC〉 is ASCII 32, ~ is ASCII

Chapter 20: Keymaps 303

126, and the characters between them include all the normal printing characters, (e.g.,
letters, digits, punctuation, etc.); all these characters are bound to self-insert-command.
If the second argument (prefix arg, interactively) is non-nil then only the mouse bindings
are displayed.

20.13 Other Keymap Functions

Functionset-keymap-prompt keymap new-prompt
This function sets the “prompt” of keymap to string new-prompt, or nil if no prompt
is desired. The prompt is shown in the echo-area when reading a key-sequence to be
looked-up in this keymap.

Functionkeymap-prompt keymap &optional use-inherited
This function returns the “prompt” of the given keymap. If use-inherited is non-nil, any
parent keymaps will also be searched for a prompt.

304 XEmacs Lisp Reference Manual

Chapter 21: Menus 305

21 Menus

21.1 Format of Menus

A menu is described using a menu description, which is a list of menu items, keyword-value
pairs, strings, and submenus. The menu description specifies which items are present in the
menu, what function each item invokes, and whether the item is selectable or not. Pop-up
menus are directly described with a menu description, while menubars are described slightly
differently (see below).

The first element of a menu must be a string, which is the name of the menu. This is the
string that will be displayed in the parent menu or menubar, if any. This string is not displayed
in the menu itself, except in the case of the top level pop-up menu, where there is no parent. In
this case, the string will be displayed at the top of the menu if popup-menu-titles is non-nil.

Immediately following the first element there may optionally be up to four keyword-value
pairs, as follows:

:included form
This can be used to control the visibility of a menu. The form is evaluated and the
menu will be omitted if the result is nil.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:filter function
A menu filter is used to sensitize or incrementally create a submenu only when it is
selected by the user and not every time the menubar is activated. The filter function
is passed the list of menu items in the submenu and must return a list of menu items
to be used for the menu. It is called only when the menu is about to be displayed,
so other menus may already be displayed. Vile and terrible things will happen if a
menu filter function changes the current buffer, window, or frame. It also should
not raise, lower, or iconify any frames. Basically, the filter function should have no
side-effects.

:accelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol name
of a key. See Section 21.7 [Menu Accelerators], page 312.

The rest of the menu consists of elements as follows:
• A menu item, which is a vector in the following form:

[name callback :keyword value :keyword value ...]

name is a string, the name of the menu item; it is the string to display on the menu. It is
filtered through the resource database, so it is possible for resources to override what string
is actually displayed.
callback is a form that will be invoked when the menu item is selected. If the callback of
a menu item is a symbol, then it must name a command. It will be invoked with call-
interactively. If it is a list, then it is evaluated with eval.
The valid keywords and their meanings are described below.
Note that for compatibility purposes, the form

306 XEmacs Lisp Reference Manual

[name callback active-p]

is also accepted and is equivalent to
[name callback :active active-p]

and the form
[name callback active-p suffix]

is accepted and is equivalent to
[name callback :active active-p :suffix suffix]

However, these older forms are deprecated and should generally not be used.
• If an element of a menu is a string, then that string will be presented in the menu as

unselectable text.
• If an element of a menu is a string consisting solely of hyphens, then that item will be

presented as a solid horizontal line.
• If an element of a menu is a string beginning with ‘--:’, then a particular sort of horizontal

line will be displayed, as follows:

‘"--:singleLine"’
A solid horizontal line. This is equivalent to a string consisting solely of hy-
phens.

‘"--:doubleLine"’
A solid double horizontal line.

‘"--:singleDashedLine"’
A dashed horizontal line.

‘"--:doubleDashedLine"’
A dashed double horizontal line.

‘"--:noLine"’
No line (but a small space is left).

‘"--:shadowEtchedIn"’
A solid horizontal line with a 3-d recessed appearance.

‘"--:shadowEtchedOut"’
A solid horizontal line with a 3-d pushed-out appearance.

‘"--:shadowDoubleEtchedIn"’
A solid double horizontal line with a 3-d recessed appearance.

‘"--:shadowDoubleEtchedOut"’
A solid double horizontal line with a 3-d pushed-out appearance.

‘"--:shadowEtchedInDash"’
A dashed horizontal line with a 3-d recessed appearance.

‘"--:shadowEtchedOutDash"’
A dashed horizontal line with a 3-d pushed-out appearance.

‘"--:shadowDoubleEtchedInDash"’
A dashed double horizontal line with a 3-d recessed appearance.

‘"--:shadowDoubleEtchedOutDash"’
A dashed double horizontal line with a 3-d pushed-out appearance.

• If an element of a menu is a list, it is treated as a submenu. The name of that submenu
(the first element in the list) will be used as the name of the item representing this menu
on the parent.

Chapter 21: Menus 307

The possible keywords are as follows:

:active form
form will be evaluated when the menu that this item is a part of is about to be
displayed, and the item will be selectable only if the result is non-nil. If the item
is unselectable, it will usually be displayed grayed-out to indicate this.

:suffix form
form will be evaluated when the menu that this item is a part of is about to be
displayed, and the resulting string is appended to the displayed name. This provides
a convenient way of adding the name of a command’s “argument” to the menu, like
‘Kill Buffer NAME’.

:keys string
Normally, the keyboard equivalents of commands in menus are displayed when the
“callback” is a symbol. This can be used to specify keys for more complex menu
items. It is passed through substitute-command-keys first.

:style style
Specifies what kind of object this menu item is. style be one of the symbols

nil A normal menu item.

toggle A toggle button.

radio A radio button.

button A menubar button.

The only difference between toggle and radio buttons is how they are displayed.
But for consistency, a toggle button should be used when there is one option whose
value can be turned on or off, and radio buttons should be used when there is a
set of mutually exclusive options. When using a group of radio buttons, you should
arrange for no more than one to be marked as selected at a time.

:selected form
Meaningful only when style is toggle, radio or button. This specifies whether the
button will be in the selected or unselected state. form is evaluated, as for :active.

:included form
This can be used to control the visibility of a menu item. The form is evaluated and
the menu item is only displayed if the result is non-nil. Note that this is different
from :active: If :active evaluates to nil, the item will be displayed grayed out,
while if :included evaluates to nil, the item will be omitted entirely.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:accelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol name
of a key. See Section 21.7 [Menu Accelerators], page 312.

Variablemenubar-configuration
This variable holds a list of symbols, against which the value of the :config tag for each
menubar item will be compared. If a menubar item has a :config tag, then it is omitted
from the menubar if that tag is not a member of the menubar-configuration list.

For example:

308 XEmacs Lisp Reference Manual

("File"
:filter file-menu-filter ; file-menu-filter is a function that takes

; one argument (a list of menu items) and
; returns a list of menu items
["Save As..." write-file]
["Revert Buffer" revert-buffer :active (buffer-modified-p)]
["Read Only" toggle-read-only :style toggle :selected buffer-read-only]
)

21.2 Format of the Menubar

A menubar is a list of menus, menu items, and strings. The format is similar to that of a
menu, except:
• The first item need not be a string, and is not treated specially.
• A string consisting solely of hyphens is not treated specially.
• If an element of a menubar is nil, then it is used to represent the division between the

set of menubar items which are flush-left and those which are flush-right. (Note: this isn’t
completely implemented yet.)

21.3 Menubar

Variablecurrent-menubar
This variable holds the description of the current menubar. This may be buffer-local.
When the menubar is changed, the function set-menubar-dirty-flag has to be called
in order for the menubar to be updated on the screen.

Constantdefault-menubar
This variable holds the menubar description of the menubar that is visible at startup.
This is the value that current-menubar has at startup.

Functionset-menubar-dirty-flag
This function tells XEmacs that the menubar widget has to be updated. Changes to the
menubar will generally not be visible until this function is called.

The following convenience functions are provided for setting the menubar. They are equiva-
lent to doing the appropriate action to change current-menubar, and then calling set-menubar-
dirty-flag. Note that these functions copy their argument using copy-sequence.

Functionset-menubar menubar
This function sets the default menubar to be menubar (see Section 21.1 [Menu Format],
page 305). This is the menubar that will be visible in buffers that have not defined their
own, buffer-local menubar.

Functionset-buffer-menubar menubar
This function sets the buffer-local menubar to be menubar. This does not change the
menubar in any buffers other than the current one.

Miscellaneous:

Chapter 21: Menus 309

Variablemenubar-show-keybindings
If true, the menubar will display keyboard equivalents. If false, only the command names
will be displayed.

Variableactivate-menubar-hook
Function or functions called before a menubar menu is pulled down. These functions
are called with no arguments, and should interrogate and modify the value of current-
menubar as desired.
The functions on this hook are invoked after the mouse goes down, but before the menu
is mapped, and may be used to activate, deactivate, add, or delete items from the menus.
However, using a filter (with the :filter keyword in a menu description) is generally a
more efficient way of accomplishing the same thing, because the filter is invoked only when
the actual menu goes down. With a complex menu, there can be a quite noticeable and
sometimes aggravating delay if all menu modification is implemented using the activate-
menubar-hook. See above.
These functions may return the symbol t to assert that they have made no changes to the
menubar. If any other value is returned, the menubar is recomputed. If t is returned but
the menubar has been changed, then the changes may not show up right away. Returning
nil when the menubar has not changed is not so bad; more computation will be done,
but redisplay of the menubar will still be performed optimally.

Variablemenu-no-selection-hook
Function or functions to call when a menu or dialog box is dismissed without a selection
having been made.

21.4 Modifying Menus

The following functions are provided to modify the menubar of one of its submenus. Note
that these functions modify the menu in-place, rather than copying it and making a new menu.

Some of these functions take a menu path, which is a list of strings identifying the menu to
be modified. For example, ("File") names the top-level “File” menu. ("File" "Foo") names
a hypothetical submenu of “File”.

Others take a menu item path, which is similar to a menu path but also specifies a particular
item to be modified. For example, ("File" "Save") means the menu item called “Save” under
the top-level “File” menu. ("Menu" "Foo" "Item") means the menu item called “Item” under
the “Foo” submenu of “Menu”.

Functionadd-submenu menu-path submenu &optional before
This function adds a menu to the menubar or one of its submenus. If the named menu
exists already, it is changed.
menu-path identifies the menu under which the new menu should be inserted. If menu-
path is nil, then the menu will be added to the menubar itself.
submenu is the new menu to add (see Section 21.1 [Menu Format], page 305).
before, if provided, is the name of a menu before which this menu should be added, if this
menu is not on its parent already. If the menu is already present, it will not be moved.

Functionadd-menu-button menu-path menu-leaf &optional before
This function adds a menu item to some menu, creating the menu first if necessary. If the
named item exists already, it is changed.

310 XEmacs Lisp Reference Manual

menu-path identifies the menu under which the new menu item should be inserted.
menu-leaf is a menubar leaf node (see Section 21.1 [Menu Format], page 305).
before, if provided, is the name of a menu before which this item should be added, if this
item is not on the menu already. If the item is already present, it will not be moved.

Functiondelete-menu-item menu-item-path
This function removes the menu item specified by menu-item-path from the menu hierar-
chy.

Functionenable-menu-item menu-item-path
This function makes the menu item specified by menu-item-path be selectable.

Functiondisable-menu-item menu-item-path
This function makes the menu item specified by menu-item-path be unselectable.

Functionrelabel-menu-item menu-item-path new-name
This function changes the string of the menu item specified by menu-item-path. new-name
is the string that the menu item will be printed as from now on.

The following function can be used to search for a particular item in a menubar specification,
given a path to the item.

Functionfind-menu-item menubar menu-item-path &optional parent
This function searches menubar for the item given by menu-item-path starting from parent
(nil means start at the top of menubar). This function returns (item . parent), where
parent is the immediate parent of the item found (a menu description), and item is either
a vector, list, or string, depending on the nature of the menu item.
This function signals an error if the item is not found.

The following deprecated functions are also documented, so that existing code can be under-
stood. You should not use these functions in new code.

Functionadd-menu menu-path menu-name menu-items &optional before
This function adds a menu to the menubar or one of its submenus. If the named menu
exists already, it is changed. This is obsolete; use add-submenu instead.
menu-path identifies the menu under which the new menu should be inserted. If menu-
path is nil, then the menu will be added to the menubar itself.
menu-name is the string naming the menu to be added; menu-items is a list of menu
items, strings, and submenus. These two arguments are the same as the first and following
elements of a menu description (see Section 21.1 [Menu Format], page 305).
before, if provided, is the name of a menu before which this menu should be added, if this
menu is not on its parent already. If the menu is already present, it will not be moved.

Functionadd-menu-item menu-path item-name function enabled-p &optional before
This function adds a menu item to some menu, creating the menu first if necessary. If the
named item exists already, it is changed. This is obsolete; use add-menu-button instead.
menu-path identifies the menu under which the new menu item should be inserted. item-
name, function, and enabled-p are the first, second, and third elements of a menu item
vector (see Section 21.1 [Menu Format], page 305).
before, if provided, is the name of a menu item before which this item should be added, if
this item is not on the menu already. If the item is already present, it will not be moved.

Chapter 21: Menus 311

21.5 Menu Filters

The following filter functions are provided for use in default-menubar. You may want to
use them in your own menubar description.

Functionfile-menu-filter menu-items
This function changes the arguments and sensitivity of these File menu items:

‘Delete Buffer’
Has the name of the current buffer appended to it.

‘Print Buffer’
Has the name of the current buffer appended to it.

‘Pretty-Print Buffer’
Has the name of the current buffer appended to it.

‘Save Buffer’
Has the name of the current buffer appended to it, and is sensitive only when
the current buffer is modified.

‘Revert Buffer’
Has the name of the current buffer appended to it, and is sensitive only when
the current buffer has a file.

‘Delete Frame’
Sensitive only when there is more than one visible frame.

Functionedit-menu-filter menu-items
This function changes the arguments and sensitivity of these Edit menu items:

‘Cut’ Sensitive only when XEmacs owns the primary X Selection (if zmacs-regions
is t, this is equivalent to saying that there is a region selected).

‘Copy’ Sensitive only when XEmacs owns the primary X Selection.

‘Clear’ Sensitive only when XEmacs owns the primary X Selection.

‘Paste’ Sensitive only when there is an owner for the X Clipboard Selection.

‘Undo’ Sensitive only when there is undo information. While in the midst of an undo,
this is changed to ‘Undo More’.

Functionbuffers-menu-filter menu-items
This function sets up the Buffers menu. See Section 21.8 [Buffers Menu], page 314, for
more information.

21.6 Pop-Up Menus

Functionpopup-menu menu-desc
This function pops up a menu specified by menu-desc, which is a menu description (see
Section 21.1 [Menu Format], page 305). The menu is displayed at the current mouse
position.

Functionpopup-menu-up-p
This function returns t if a pop-up menu is up, nil otherwise.

312 XEmacs Lisp Reference Manual

Variablepopup-menu-titles
If true (the default), pop-up menus will have title bars at the top.

Some machinery is provided that attempts to provide a higher-level mechanism onto pop-up
menus. This only works if you do not redefine the binding for button3.

Commandpopup-mode-menu
This function pops up a menu of global and mode-specific commands. The menu is
computed by combining global-popup-menu and mode-popup-menu. This is the default
binding for button3. You should generally not change this binding.

Variableglobal-popup-menu
This holds the global popup menu. This is present in all modes. (This is nil by default.)

Variablemode-popup-menu
The mode-specific popup menu. Automatically buffer local. This is appended to the
default items in global-popup-menu.

Constantdefault-popup-menu
This holds the default value of mode-popup-menu.

Variableactivate-popup-menu-hook
Function or functions run before a mode-specific popup menu is made visible. These
functions are called with no arguments, and should interrogate and modify the value of
global-popup-menu or mode-popup-menu as desired. Note: this hook is only run if you
use popup-mode-menu for activating the global and mode-specific commands; if you have
your own binding for button3, this hook won’t be run.

The following convenience functions are provided for displaying pop-up menus.

Functionpopup-buffer-menu event
This function pops up a copy of the ‘Buffers’ menu (from the menubar) where the mouse
is clicked.

Functionpopup-menubar-menu event
This function pops up a copy of menu that also appears in the menubar.

21.7 Menu Accelerators

Menu accelerators are keyboard shortcuts for accessing the menubar. Accelerator keys can
be specified for menus as well as for menu items. An accelerator key for a menu is used to
activate that menu when it appears as a submenu of another menu. An accelerator key for a
menu item is used to activate that item.

21.7.1 Creating Menu Accelerators

Menu accelerators are specified as part of the menubar format using the :accelerator tag to
specify a key or by placing "% " in the menu or menu item name prior to the letter which
is to be used as the accelerator key. The advantage of the second method is that the menu
rendering code then knows to draw an underline under that character, which is the canonical
way of indicating an accelerator key to a user.

For example, the command

Chapter 21: Menus 313

(add-submenu nil ’("%_Test"
["One" (insert "1") :accelerator ?1 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")]))

will add a new menu to the top level menubar. The new menu can be reached by pressing
"t" while the top level menubar is active. When the menu is active, pressing "1" will activate
the first item and insert the character "1" into the buffer. Pressing "2" will activate the second
item and insert the character "2" into the buffer. Pressing "3" will activate the third item and
insert the character "3" into the buffer.

It is possible to activate the top level menubar itself using accelerator keys. See Section 21.7.3
[Menu Accelerator Functions], page 313.

21.7.2 Keyboard Menu Traversal

In addition to immediately activating a menu or menu item, the keyboard can be used to
traverse the menus without activating items. The keyboard arrow keys, the return key and the
escape key are defined to traverse the menus in a way that should be familiar to users of any of
a certain family of popular PC operating systems.

This behavior can be changed by modifying the bindings in menu-accelerator-map. At this
point, the online help is your best bet for more information about how to modify the menu
traversal keys.

21.7.3 Menu Accelerator Functions

Functionaccelerate-menu
Make the menubar immediately active and place the cursor on the left most entry in the
top level menu. Menu items can be selected as usual.

Variablemenu-accelerator-enabled
Whether menu accelerator keys can cause the menubar to become active.
If menu-force or menu-fallback, then menu accelerator keys can be used to activate
the top level menu. Once the menubar becomes active, the accelerator keys can be used
regardless of the value of this variable.
menu-force is used to indicate that the menu accelerator key takes precedence over bind-
ings in the current keymap(s). menu-fallback means that bindings in the current keymap
take precedence over menu accelerator keys. Thus a top level menu with an accelerator
of "T" would be activated on a keypress of Meta-t if menu-accelerator-enabled is menu-
force. However, if menu-accelerator-enabled is menu-fallback, then Meta-t will not
activate the menubar and will instead run the function transpose-words, to which it is
normally bound.
The default value is nil.
See also menu-accelerator-modifiers and menu-accelerator-prefix.

Variablemenu-accelerator-map
Keymap consulted to determine the commands to run in response to keypresses occurring
while the menubar is active. See Section 21.7.2 [Keyboard Menu Traversal], page 313.

314 XEmacs Lisp Reference Manual

Variablemenu-accelerator-modifiers
A list of modifier keys which must be pressed in addition to a valid menu accelerator in
order for the top level menu to be activated in response to a keystroke. The default value
of (meta) mirrors the usage of the alt key as a menu accelerator in popular PC operating
systems.
The modifier keys in menu-accelerator-modifiers must match exactly the modifiers present
in the keypress. The only exception is that the shift modifier is accepted in conjunction
with alphabetic keys even if it is not a menu accelerator modifier.
See also menu-accelerator-enabled and menu-accelerator-prefix.

Variablemenu-accelerator-prefix
Prefix key(s) that must be typed before menu accelerators will be activated. Must be a
valid key descriptor.
The default value is nil.

(setq menu-accelerator-prefix ?\C-x)
(setq menu-accelerator-modifiers ’(meta control))
(setq menu-accelerator-enabled ’menu-force)
(add-submenu nil ’("%_Test"

["One" (insert "1") :accelerator ?1 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")]))

will add the menu "Test" to the top level menubar. Pressing C-x followed by C-M-T will
activate the menubar and display the "Test" menu. Pressing C-M-T by itself will not activate
the menubar. Neither will pressing C-x followed by anything else.

21.8 Buffers Menu

The following options control how the ‘Buffers’ menu is displayed. This is a list of all (or a
subset of) the buffers currently in existence, and is updated dynamically.

User Optionbuffers-menu-max-size
This user option holds the maximum number of entries which may appear on the ‘Buffers’
menu. If this is 10, then only the ten most-recently-selected buffers will be shown. If this
is nil, then all buffers will be shown. Setting this to a large number or nil will slow down
menu responsiveness.

Functionformat-buffers-menu-line buffer
This function returns a string to represent buffer in the ‘Buffers’ menu. nil means the
buffer shouldn’t be listed. You can redefine this.

User Optioncomplex-buffers-menu-p
If true, the ‘Buffers’ menu will contain several commands, as submenus of each buffer
line. If this is false, then there will be only one command: select that buffer.

User Optionbuffers-menu-switch-to-buffer-function
This user option holds the function to call to select a buffer from the ‘Buffers’ menu.
switch-to-buffer is a good choice, as is pop-to-buffer.

Chapter 22: Dialog Boxes 315

22 Dialog Boxes

22.1 Dialog Box Format

A dialog box description is a list.
• The first element of the list is a string to display in the dialog box.
• The rest of the elements are descriptions of the dialog box’s buttons. Each one is a vector

of three elements:
− The first element is the text of the button.
− The second element is the callback.
− The third element is t or nil, whether this button is selectable.

If the callback of a button is a symbol, then it must name a command. It will be invoked
with call-interactively. If it is a list, then it is evaluated with eval.

One (and only one) of the buttons may be nil. This marker means that all following buttons
should be flushright instead of flushleft.

The syntax, more precisely:
form := <something to pass to ‘eval’>
command := <a symbol or string, to pass to ‘call-interactively’>
callback := command | form
active-p := <t, nil, or a form to evaluate to decide whether this
button should be selectable>
name := <string>
partition := ’nil’
button := ’[’ name callback active-p ’]’
dialog := ’(’ name [button]+ [partition [button]+] ’)’

22.2 Dialog Box Functions

Functionpopup-dialog-box dbox-desc
This function pops up a dialog box. dbox-desc describes how the dialog box will appear
(see Section 22.1 [Dialog Box Format], page 315).

See Section 18.6 [Yes-or-No Queries], page 249, for functions to ask a yes/no question using
a dialog box.

316 XEmacs Lisp Reference Manual

Chapter 23: Toolbar 317

23 Toolbar

23.1 Toolbar Intro

A toolbar is a bar of icons displayed along one edge of a frame. You can view a toolbar as
a series of menu shortcuts – the most common menu options can be accessed with a single click
rather than a series of clicks and/or drags to select the option from a menu. Consistent with
this, a help string (called the help-echo) describing what an icon in the toolbar (called a toolbar
button) does, is displayed in the minibuffer when the mouse is over the button.

In XEmacs, a toolbar can be displayed along any of the four edges of the frame, and two
or more different edges can be displaying toolbars simultaneously. The contents, thickness, and
visibility of the toolbars can be controlled separately, and the values can be per-buffer, per-frame,
etc., using specifiers (see Chapter 41 [Specifiers], page 541).

Normally, there is one toolbar displayed in a frame. Usually, this is the standard toolbar,
but certain modes will override this and substitute their own toolbar. In some cases (e.g. the
VM package), a package will supply its own toolbar along a different edge from the standard
toolbar, so that both can be visible at once. This standard toolbar is usually positioned along
the top of the frame, but this can be changed using set-default-toolbar-position.

Note that, for each of the toolbar properties (contents, thickness, and visibility), there is a
separate specifier for each of the four toolbar positions (top, bottom, left, and right), and an
additional specifier for the “default” toolbar, i.e. the toolbar whose position is controlled by
set-default-toolbar-position. The way this works is that set-default-toolbar-position
arranges things so that the appropriate position-specific specifiers for the default position inherit
from the corresponding default specifiers. That way, if the position-specific specifier does not
give a value (which it usually doesn’t), then the value from the default specifier applies. If
you want to control the default toolbar, you just change the default specifiers, and everything
works. A package such as VM that wants to put its own toolbar in a different location from the
default just sets the position-specific specifiers, and if the user sets the default toolbar to the
same position, it will just not be visible.

23.2 Toolbar Descriptor Format

The contents of a toolbar are specified using a toolbar descriptor. The format of a toolbar
descriptor is a list of toolbar button descriptors. Each toolbar button descriptor is a vector in
one of the following formats:
• [glyph-list function enabled-p help]

• [:style 2d-or-3d]

• [:style 2d-or-3d :size width-or-height]

• [:size width-or-height :style 2d-or-3d]

Optionally, one of the toolbar button descriptors may be nil instead of a vector; this signifies
the division between the toolbar buttons that are to be displayed flush-left, and the buttons to
be displayed flush-right.

The first vector format above specifies a normal toolbar button; the others specify blank
areas in the toolbar.

For the first vector format:

318 XEmacs Lisp Reference Manual

• glyph-list should be a list of one to six glyphs (as created by make-glyph) or a symbol
whose value is such a list. The first glyph, which must be provided, is the glyph used to
display the toolbar button when it is in the “up” (not pressed) state. The optional second
glyph is for displaying the button when it is in the “down” (pressed) state. The optional
third glyph is for when the button is disabled. The last three glyphs are for displaying
the button in the “up”, “down”, and “disabled” states, respectively, but are used when the
user has called for captioned toolbar buttons (using toolbar-buttons-captioned-p). The
function toolbar-make-button-list is useful in creating these glyph lists.

• Even if you do not provide separate down-state and disabled-state glyphs, the user will still
get visual feedback to indicate which state the button is in. Buttons in the up-state are
displayed with a shadowed border that gives a raised appearance to the button. Buttons
in the down-state are displayed with shadows that give a recessed appearance. Buttons in
the disabled state are displayed with no shadows, giving a 2-d effect.

• If some of the toolbar glyphs are not provided, they inherit as follows:
UP: up
DOWN: down -> up
DISABLED: disabled -> up
CAP-UP: cap-up -> up
CAP-DOWN: cap-down -> cap-up -> down -> up
CAP-DISABLED: cap-disabled -> cap-up -> disabled -> up

• The second element function is a function to be called when the toolbar button is activated
(i.e. when the mouse is released over the toolbar button, if the press occurred in the toolbar).
It can be any form accepted by call-interactively, since this is how it is invoked.

• The third element enabled-p specifies whether the toolbar button is enabled (disabled but-
tons do nothing when they are activated, and are displayed differently; see above). It should
be either a boolean or a form that evaluates to a boolean.

• The fourth element help, if non-nil, should be a string. This string is displayed in the echo
area when the mouse passes over the toolbar button.

For the other vector formats (specifying blank areas of the toolbar):
• 2d-or-3d should be one of the symbols 2d or 3d, indicating whether the area is displayed

with shadows (giving it a raised, 3-d appearance) or without shadows (giving it a flat
appearance).

• width-or-height specifies the length, in pixels, of the blank area. If omitted, it defaults to a
device-specific value (8 pixels for X devices).

Functiontoolbar-make-button-list up &optional down disabled cap-up cap-down
cap-disabled

This function calls make-glyph on each arg and returns a list of the results. This is useful
for setting the first argument of a toolbar button descriptor (typically, the result of this
function is assigned to a symbol, which is specified as the first argument of the toolbar
button descriptor).

Functioncheck-toolbar-button-syntax button &optional noerror
Verify the syntax of entry button in a toolbar description list. If you want to verify the
syntax of a toolbar description list as a whole, use check-valid-instantiator with a
specifier type of toolbar.

23.3 Specifying the Toolbar

Chapter 23: Toolbar 319

In order to specify the contents of a toolbar, set one of the specifier variables default-
toolbar, top-toolbar, bottom-toolbar, left-toolbar, or right-toolbar. These are speci-
fiers, which means you set them with set-specifier and query them with specifier-specs
or specifier-instance. You will get an error if you try to set them using setq. The valid
instantiators for these specifiers are toolbar descriptors, as described above. See Chapter 41
[Specifiers], page 541, for more information.

Most of the time, you will set default-toolbar, which allows the user to choose where the
toolbar should go.

Specifierdefault-toolbar
The position of this toolbar is specified in the function default-toolbar-position. If the
corresponding position-specific toolbar (e.g. top-toolbar if default-toolbar-position
is top) does not specify a toolbar in a particular domain, then the value of default-
toolbar in that domain, of any, will be used instead.

Note that the toolbar at any particular position will not be displayed unless its thickness
(width or height, depending on orientation) is non-zero and its visibility status is true. The
thickness is controlled by the specifiers top-toolbar-height, bottom-toolbar-height, left-
toolbar-width, and right-toolbar-width, and the visibility status is controlled by the spec-
ifiers top-toolbar-visible-p, bottom-toolbar-visible-p, left-toolbar-visible-p, and
right-toolbar-visible-p (see Section 23.4 [Other Toolbar Variables], page 320).

Functionset-default-toolbar-position position
This function sets the position that the default-toolbar will be displayed at. Valid
positions are the symbols top, bottom, left and right. What this actually does is set
the fallback specifier for the position-specific specifier corresponding to the given posi-
tion to default-toolbar, and set the fallbacks for the other position-specific specifiers
to nil. It also does the same thing for the position-specific thickness and visibility spec-
ifiers, which inherit from one of default-toolbar-height or default-toolbar-width,
and from default-toolbar-visible-p, respectively (see Section 23.4 [Other Toolbar
Variables], page 320).

Functiondefault-toolbar-position
This function returns the position that the default-toolbar will be displayed at.

You can also explicitly set a toolbar at a particular position. When redisplay determines
what to display at a particular position in a particular domain (i.e. window), it first consults
the position-specific toolbar. If that does not yield a toolbar descriptor, the default-toolbar
is consulted if default-toolbar-position indicates this position.

Specifiertop-toolbar
Specifier for the toolbar at the top of the frame.

Specifierbottom-toolbar
Specifier for the toolbar at the bottom of the frame.

Specifierleft-toolbar
Specifier for the toolbar at the left edge of the frame.

Specifierright-toolbar
Specifier for the toolbar at the right edge of the frame.

320 XEmacs Lisp Reference Manual

Functiontoolbar-specifier-p object
This function returns non-nil if object is a toolbar specifier. Toolbar specifiers are the
actual objects contained in the toolbar variables described above, and their valid instan-
tiators are toolbar descriptors (see Section 23.2 [Toolbar Descriptor Format], page 317).

23.4 Other Toolbar Variables

The variables to control the toolbar thickness, visibility status, and captioned status are all
specifiers. See Chapter 41 [Specifiers], page 541.

Specifierdefault-toolbar-height
This specifies the height of the default toolbar, if it’s oriented horizontally. The position
of the default toolbar is specified by the function set-default-toolbar-position. If
the corresponding position-specific toolbar thickness specifier (e.g. top-toolbar-height
if default-toolbar-position is top) does not specify a thickness in a particular domain
(a window or a frame), then the value of default-toolbar-height or default-toolbar-
width (depending on the toolbar orientation) in that domain, if any, will be used instead.

Specifierdefault-toolbar-width
This specifies the width of the default toolbar, if it’s oriented vertically. This behaves like
default-toolbar-height.

Note that default-toolbar-height is only used when default-toolbar-position is top
or bottom, and default-toolbar-width is only used when default-toolbar-position is left
or right.

Specifiertop-toolbar-height
This specifies the height of the top toolbar.

Specifierbottom-toolbar-height
This specifies the height of the bottom toolbar.

Specifierleft-toolbar-width
This specifies the width of the left toolbar.

Specifierright-toolbar-width
This specifies the width of the right toolbar.

Note that all of the position-specific toolbar thickness specifiers have a fallback value of zero
when they do not correspond to the default toolbar. Therefore, you will have to set a non-zero
thickness value if you want a position-specific toolbar to be displayed.

Specifierdefault-toolbar-visible-p
This specifies whether the default toolbar is visible. The position of the default toolbar is
specified by the function set-default-toolbar-position. If the corresponding position-
specific toolbar visibility specifier (e.g. top-toolbar-visible-p if default-toolbar-
position is top) does not specify a visible-p value in a particular domain (a window or
a frame), then the value of default-toolbar-visible-p in that domain, if any, will be
used instead.

Specifiertop-toolbar-visible-p
This specifies whether the top toolbar is visible.

Chapter 23: Toolbar 321

Specifierbottom-toolbar-visible-p
This specifies whether the bottom toolbar is visible.

Specifierleft-toolbar-visible-p
This specifies whether the left toolbar is visible.

Specifierright-toolbar-visible-p
This specifies whether the right toolbar is visible.

default-toolbar-visible-p and all of the position-specific toolbar visibility specifiers have
a fallback value of true.

Internally, toolbar thickness and visibility specifiers are instantiated in both window and
frame domains, for different purposes. The value in the domain of a frame’s selected window
specifies the actual toolbar thickness or visibility that you will see in that frame. The value in
the domain of a frame itself specifies the toolbar thickness or visibility that is used in frame
geometry calculations.

Thus, for example, if you set the frame width to 80 characters and the left toolbar width
for that frame to 68 pixels, then the frame will be sized to fit 80 characters plus a 68-pixel left
toolbar. If you then set the left toolbar width to 0 for a particular buffer (or if that buffer does
not specify a left toolbar or has a nil value specified for left-toolbar-visible-p), you will
find that, when that buffer is displayed in the selected window, the window will have a width
of 86 or 87 characters – the frame is sized for a 68-pixel left toolbar but the selected window
specifies that the left toolbar is not visible, so it is expanded to take up the slack.

Specifiertoolbar-buttons-captioned-p
Whether toolbar buttons are captioned. This affects which glyphs from a toolbar button
descriptor are chosen. See Section 23.2 [Toolbar Descriptor Format], page 317.

You can also reset the toolbar to what it was when XEmacs started up.

Constantinitial-toolbar-spec
The toolbar descriptor used to initialize default-toolbar at startup.

322 XEmacs Lisp Reference Manual

Chapter 24: scrollbars 323

24 scrollbars

Not yet documented.

324 XEmacs Lisp Reference Manual

Chapter 25: Drag and Drop 325

25 Drag and Drop

WARNING : the Drag’n’Drop API is still under development and the interface may change!
The current implementation is considered experimental.

Drag’n’drop is a way to transfer information between multiple applications. To do this
several GUIs define their own protocols. Examples are OffiX, CDE, Motif, KDE, MSWindows,
GNOME, and many more. To catch all these protocols, XEmacs provides a generic API.

One prime idea behind the API is to use a data interface that is transparent for all systems.
The author thinks that this is best archived by using URL and MIME data, cause any internet
enabled system must support these for email already. XEmacs also already provides powerful
interfaces to support these types of data (tm and w3).

25.1 Supported Protocols

The current release of XEmacs only support a small set of Drag’n’drop protocols. Some of
these only support limited options available in the API.

25.1.1 OffiX DND

WARNING : If you compile in OffiX, you may not be able to use multiple X displays suc-
cessfully. If the two servers are from different vendors, the results may be unpredictable.

The OffiX Drag’n’Drop protocol is part of a X API/Widget library created by Cesar Crusius.
It is based on X-Atoms and ClientMessage events, and works with any X platform supporting
them.

OffiX is supported if ’offix is member of the variable dragdrop-protocols, or the feature ’offix
is defined.

Unfortunately it uses it’s own data types. Examples are: File, Files, Exe, Link, URL, MIME.
The API tries to choose the right type for the data that is dragged from XEmacs (well, not yet...).

XEmacs supports both MIME and URL drags and drops using this API. No application
interaction is possible while dragging is in progress.

For information about the OffiX project have a look at http://leb.net/~offix/

25.1.2 CDE dt

CDE stands for Common Desktop Environment. It is based on the Motif widget library. It’s
drag’n’drop protocol is also an abstraction of the Motif protocol (so it might be possible, that
XEmacs will also support the Motif protocol soon).

CDE has three different types: file, buffer, and text. XEmacs only uses file and buffer drags.
The API will disallow full URL drags, only file method URLs are passed through.

Buffer drags are always converted to plain text.

25.1.3 MSWindows OLE

Only allows file drags and drops.

326 XEmacs Lisp Reference Manual

25.1.4 Loose ends

The following protocols will be supported soon: Xdnd, Motif, Xde (if I get some specs), KDE
OffiX (if KDE can find XEmacs windows).

In particular Xdnd will be one of the protocols that can benefit from the XEmacs API, cause
it also uses MIME types to encode dragged data.

25.2 Drop Interface

For each activated low-level protocol, a internal routine will catch incoming drops and convert
them to a dragdrop-drop type misc-user-event.

This misc-user-event has its function argument set to dragdrop-drop-dispatch and the
object contains the data of the drop (converted to URL/MIME specific data). This function will
search the variable experimental-dragdrop-drop-functions for a function that can handle
the dropped data.

To modify the drop behavior, the user can modify the variable experimental-dragdrop-
drop-functions. Each element of this list specifies a possible handler for dropped data. The
first one that can handle the data will return t and exit. Another possibility is to set a extent-
property with the same name. Extents are checked prior to the variable.

The customization group drag-n-drop shows all variables of user interest.

25.3 Drag Interface

This describes the drag API (not implemented yet).

Chapter 26: Major and Minor Modes 327

26 Major and Minor Modes

A mode is a set of definitions that customize XEmacs and can be turned on and off while you
edit. There are two varieties of modes: major modes, which are mutually exclusive and used for
editing particular kinds of text, and minor modes, which provide features that users can enable
individually.

This chapter describes how to write both major and minor modes, how to indicate them in the
modeline, and how they run hooks supplied by the user. For related topics such as keymaps and
syntax tables, see Chapter 20 [Keymaps], page 285, and Chapter 38 [Syntax Tables], page 513.

26.1 Major Modes

Major modes specialize XEmacs for editing particular kinds of text. Each buffer has only
one major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific definitions or variable settings, so each XEmacs command behaves in its default manner,
and each option is in its default state. All other major modes redefine various keys and options.
For example, Lisp Interaction mode provides special key bindings for 〈LFD〉 (eval-print-last-
sexp), 〈TAB〉 (lisp-indent-line), and other keys.

When you need to write several editing commands to help you perform a specialized editing
task, creating a new major mode is usually a good idea. In practice, writing a major mode is
easy (in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to serve two
purposes, since it may become harder to use and maintain. Instead, copy and rename an existing
major mode definition and alter the copy—or define a derived mode (see Section 26.1.5 [Derived
Modes], page 335). For example, Rmail Edit mode, which is in ‘emacs/lisp/rmailedit.el’,
is a major mode that is very similar to Text mode except that it provides three additional
commands. Its definition is distinct from that of Text mode, but was derived from it.

Rmail Edit mode is an example of a case where one piece of text is put temporarily into a
different major mode so it can be edited in a different way (with ordinary XEmacs commands
rather than Rmail). In such cases, the temporary major mode usually has a command to switch
back to the buffer’s usual mode (Rmail mode, in this case). You might be tempted to present
the temporary redefinitions inside a recursive edit and restore the usual ones when the user
exits; but this is a bad idea because it constrains the user’s options when it is done in more than
one buffer: recursive edits must be exited most-recently-entered first. Using alternative major
modes avoids this limitation. See Section 19.10 [Recursive Editing], page 281.

The standard XEmacs Lisp library directory contains the code for several major modes, in
files including ‘text-mode.el’, ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and ‘rmail.el’.
You can look at these libraries to see how modes are written. Text mode is perhaps the simplest
major mode aside from Fundamental mode. Rmail mode is a complicated and specialized mode.

26.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including conventions
for local keymap and syntax table initialization, global names, and hooks. Please follow these
conventions when you define a new major mode:

328 XEmacs Lisp Reference Manual

• Define a command whose name ends in ‘-mode’, with no arguments, that switches to the
new mode in the current buffer. This command should set up the keymap, syntax table,
and local variables in an existing buffer without changing the buffer’s text.

• Write a documentation string for this command that describes the special commands avail-
able in this mode. C-h m (describe-mode) in your mode will display this string.
The documentation string may include the special documentation substrings, ‘\[com-
mand]’, ‘\{keymap}’, and ‘\<keymap>’, that enable the documentation to adapt automat-
ically to the user’s own key bindings. See Section 27.3 [Keys in Documentation], page 348.

• The major mode command should start by calling kill-all-local-variables. This is
what gets rid of the local variables of the major mode previously in effect.

• The major mode command should set the variable major-mode to the major mode command
symbol. This is how describe-mode discovers which documentation to print.

• The major mode command should set the variable mode-name to the “pretty” name of the
mode, as a string. This appears in the mode line.

• Since all global names are in the same name space, all the global variables, constants, and
functions that are part of the mode should have names that start with the major mode
name (or with an abbreviation of it if the name is long). See Section A.1 [Style Tips],
page 685.

• The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode function should call use-local-map to install
this local map. See Section 20.7 [Active Keymaps], page 290, for more information.
This keymap should be kept in a global variable named modename-mode-map. Normally
the library that defines the mode sets this variable.

• The mode may have its own syntax table or may share one with other related modes. If it
has its own syntax table, it should store this in a variable named modename-mode-syntax-
table. See Chapter 38 [Syntax Tables], page 513.

• The mode may have its own abbrev table or may share one with other related modes. If it
has its own abbrev table, it should store this in a variable named modename-mode-abbrev-
table. See Section 39.2 [Abbrev Tables], page 523.

• Use defvar to set mode-related variables, so that they are not reinitialized if they already
have a value. (Such reinitialization could discard customizations made by the user.)

• To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set, which
would affect buffers that do not use this mode. It is undesirable for a mode to have such
global effects. See Section 10.9 [Buffer-Local Variables], page 141.
It’s ok to use make-variable-buffer-local, if you wish, for a variable used only within a
single Lisp package.

• Each major mode should have a mode hook named modename-mode-hook. The major
mode command should run that hook, with run-hooks, as the very last thing it does. See
Section 26.4 [Hooks], page 342.

• The major mode command may also run the hooks of some more basic modes. For example,
indented-text-mode runs text-mode-hook as well as indented-text-mode-hook. It may
run these other hooks immediately before the mode’s own hook (that is, after everything
else), or it may run them earlier.

• If something special should be done if the user switches a buffer from this mode to any
other major mode, the mode can set a local value for change-major-mode-hook.

• If this mode is appropriate only for specially-prepared text, then the major mode command
symbol should have a property named mode-class with value special, put on as follows:

Chapter 26: Major and Minor Modes 329

(put ’funny-mode ’mode-class ’special)

This tells XEmacs that new buffers created while the current buffer has Funny mode should
not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this feature.

• If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names. If you define
the mode command to autoload, you should add this element in the same file that calls
autoload. Otherwise, it is sufficient to add the element in the file that contains the mode
definition. See Section 26.1.3 [Auto Major Mode], page 332.

• In the documentation, you should provide a sample autoload form and an example of how
to add to auto-mode-alist, that users can include in their ‘.emacs’ files.

• The top-level forms in the file defining the mode should be written so that they may be
evaluated more than once without adverse consequences. Even if you never load the file
more than once, someone else will.

Variablechange-major-mode-hook
This normal hook is run by kill-all-local-variables before it does anything else.
This gives major modes a way to arrange for something special to be done if the user
switches to a different major mode. For best results, make this variable buffer-local, so
that it will disappear after doing its job and will not interfere with the subsequent major
mode. See Section 26.4 [Hooks], page 342.

26.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts from
‘text-mode.el’ that illustrate many of the conventions listed above:

;; Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
() ; Do not change the table if it is already set up.

(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry ?\" ". " text-mode-syntax-table)
(modify-syntax-entry ?\\ ". " text-mode-syntax-table)
(modify-syntax-entry ?’ "w " text-mode-syntax-table))

(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")

(define-abbrev-table ’text-mode-abbrev-table ())

(defvar text-mode-map nil) ; Create a mode-specific keymap.

(if text-mode-map
() ; Do not change the keymap if it is already set up.

(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\t" ’tab-to-tab-stop)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:
(defun text-mode ()
"Major mode for editing text intended for humans to read.
Special commands: \\{text-mode-map}

330 XEmacs Lisp Reference Manual

Turning on text-mode runs the hook ‘text-mode-hook’."
(interactive)
(kill-all-local-variables)
(use-local-map text-mode-map) ; This provides the local keymap.
(setq mode-name "Text") ; This name goes into the modeline.
(setq major-mode ’text-mode) ; This is how describe-mode

; finds the doc string to print.
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to

; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have more
features than Text mode and the code is correspondingly more complicated. Here are excerpts
from ‘lisp-mode.el’ that illustrate how these modes are written.

;; Create mode-specific table variables.
(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")

(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.

(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

;; Set syntax of chars up to 0 to class of chars that are
;; part of symbol names but not words.
;; (The number 0 is 48 in the ASCII character set.)
(while (< i ?0)

(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ i)))

...
;; Set the syntax for other characters.
(modify-syntax-entry ? " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\t " " emacs-lisp-mode-syntax-table)
...
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)
...))

;; Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())

Much code is shared among the three Lisp modes. The following function sets various vari-
ables; it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
;; The lisp-syntax argument is nil in Emacs Lisp mode,
;; and t in the other two Lisp modes.
(cond (lisp-syntax

(if (not lisp-mode-syntax-table)
;; The Emacs Lisp mode syntax table always exists, but
;; the Lisp Mode syntax table is created the first time a
;; mode that needs it is called. This is to save space.

Chapter 26: Major and Minor Modes 331

(progn (setq lisp-mode-syntax-table
(copy-syntax-table emacs-lisp-mode-syntax-table))

;; Change some entries for Lisp mode.
(modify-syntax-entry ?\| "\" "

lisp-mode-syntax-table)
(modify-syntax-entry ?\["_ "

lisp-mode-syntax-table)
(modify-syntax-entry ?\] "_ "

lisp-mode-syntax-table)))
(set-syntax-table lisp-mode-syntax-table)))

(setq local-abbrev-table lisp-mode-abbrev-table)
...)

Functions such as forward-paragraph use the value of the paragraph-start variable. Since
Lisp code is different from ordinary text, the paragraph-start variable needs to be set specially
to handle Lisp. Also, comments are indented in a special fashion in Lisp and the Lisp modes
need their own mode-specific comment-indent-function. The code to set these variables is the
rest of lisp-mode-variables.

(make-local-variable ’paragraph-start)
;; Having ‘^’ is not clean, but page-delimiter
;; has them too, and removing those is a pain.
(setq paragraph-start (concat "^$\\|" page-delimiter))
...
(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-l to run-lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following function adds these common commands to a given
keymap.

(defun lisp-mode-commands (map)
(define-key map "\e\C-q" ’indent-sexp)
(define-key map "\177" ’backward-delete-char-untabify)
(define-key map "\t" ’lisp-indent-line))

Here is an example of using lisp-mode-commands to initialize a keymap, as part of the code
for Emacs Lisp mode. First we declare a variable with defvar to hold the mode-specific keymap.
When this defvar executes, it sets the variable to nil if it was void. Then we set up the keymap
if the variable is nil.

This code avoids changing the keymap or the variable if it is already set up. This lets the
user customize the keymap.

(defvar emacs-lisp-mode-map () "")
(if emacs-lisp-mode-map

()
(setq emacs-lisp-mode-map (make-sparse-keymap))
(define-key emacs-lisp-mode-map "\e\C-x" ’eval-defun)
(lisp-mode-commands emacs-lisp-mode-map))

Finally, here is the complete major mode function definition for Emacs Lisp mode.

332 XEmacs Lisp Reference Manual

(defun emacs-lisp-mode ()
"Major mode for editing Lisp code to run in XEmacs.

Commands:
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{emacs-lisp-mode-map}
Entry to this mode runs the hook ‘emacs-lisp-mode-hook’."

(interactive)
(kill-all-local-variables)
(use-local-map emacs-lisp-mode-map) ; This provides the local keymap.
(set-syntax-table emacs-lisp-mode-syntax-table)
(setq major-mode ’emacs-lisp-mode) ; This is how describe-mode

; finds out what to describe.
(setq mode-name "Emacs-Lisp") ; This goes into the modeline.
(lisp-mode-variables nil) ; This defines various variables.
(run-hooks ’emacs-lisp-mode-hook)) ; This permits the user to use a

; hook to customize the mode.

26.1.3 How XEmacs Chooses a Major Mode

Based on information in the file name or in the file itself, XEmacs automatically selects a
major mode for the new buffer when a file is visited.

Commandfundamental-mode
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their definitions
say what to change, starting from Fundamental mode. The fundamental-mode function
does not run any hooks; you’re not supposed to customize it. (If you want Emacs to
behave differently in Fundamental mode, change the global state of Emacs.)

Commandnormal-mode &optional find-file
This function establishes the proper major mode and local variable bindings for the current
buffer. First it calls set-auto-mode, then it runs hack-local-variables to parse, and
bind or evaluate as appropriate, any local variables.
If the find-file argument to normal-mode is non-nil, normal-mode assumes that the find-
file function is calling it. In this case, it may process a local variables list at the end of
the file and in the ‘-*-’ line. The variable enable-local-variables controls whether to
do so.
If you run normal-mode interactively, the argument find-file is normally nil. In this
case, normal-mode unconditionally processes any local variables list. See section “Local
Variables in Files” in The XEmacs Reference Manual, for the syntax of the local variables
section of a file.
normal-mode uses condition-case around the call to the major mode function, so errors
are caught and reported as a ‘File mode specification error’, followed by the original
error message.

User Optionenable-local-variables
This variable controls processing of local variables lists in files being visited. A value of t
means process the local variables lists unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is t.

Chapter 26: Major and Minor Modes 333

Variableignored-local-variables
This variable holds a list of variables that should not be set by a local variables list. Any
value specified for one of these variables is ignored.

In addition to this list, any variable whose name has a non-nil risky-local-variable
property is also ignored.

User Optionenable-local-eval
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything else
means ask the user what to do for each file. The default value is maybe.

Functionset-auto-mode
This function selects the major mode that is appropriate for the current buffer. It may
base its decision on the value of the ‘-*-’ line, on the visited file name (using auto-mode-
alist), or on the value of a local variable. However, this function does not look for the
‘mode:’ local variable near the end of a file; the hack-local-variables function does
that. See section “How Major Modes are Chosen” in The XEmacs Reference Manual.

User Optiondefault-major-mode
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.
If the value of default-major-mode is nil, XEmacs uses the (previously) current buffer’s
major mode for the major mode of a new buffer. However, if the major mode symbol has a
mode-class property with value special, then it is not used for new buffers; Fundamental
mode is used instead. The modes that have this property are those such as Dired and
Rmail that are useful only with text that has been specially prepared.

Functionset-buffer-major-mode buffer
This function sets the major mode of buffer to the value of default-major-mode. If that
variable is nil, it uses the current buffer’s major mode (if that is suitable).
The low-level primitives for creating buffers do not use this function, but medium-level
commands such as switch-to-buffer and find-file-noselect use it whenever they
create buffers.

Variableinitial-major-mode
The value of this variable determines the major mode of the initial ‘*scratch*’ buffer.
The value should be a symbol that is a major mode command name. The default value is
lisp-interaction-mode.

Variableauto-mode-alist
This variable contains an association list of file name patterns (regular expressions; see
Section 37.2 [Regular Expressions], page 496) and corresponding major mode functions.
Usually, the file name patterns test for suffixes, such as ‘.el’ and ‘.c’, but this need not
be the case. An ordinary element of the alist looks like (regexp . mode-function).
For example,

(("^/tmp/fol/" . text-mode)
("\\.texinfo\\’" . texinfo-mode)
("\\.texi\\’" . texinfo-mode)
("\\.el\\’" . emacs-lisp-mode)
("\\.c\\’" . c-mode)
("\\.h\\’" . c-mode)
...)

334 XEmacs Lisp Reference Manual

When you visit a file whose expanded file name (see Section 28.8.4 [File Name Expansion],
page 371) matches a regexp, set-auto-mode calls the corresponding mode-function. This
feature enables XEmacs to select the proper major mode for most files.
If an element of auto-mode-alist has the form (regexp function t), then after calling
function, XEmacs searches auto-mode-alist again for a match against the portion of the
file name that did not match before.
This match-again feature is useful for uncompression packages: an entry of the form
("\\.gz\\’" . function) can uncompress the file and then put the uncompressed file in
the proper mode according to the name sans ‘.gz’.
Here is an example of how to prepend several pattern pairs to auto-mode-alist. (You
might use this sort of expression in your ‘.emacs’ file.)

(setq auto-mode-alist
(append
;; File name starts with a dot.
’(("/\\.[^/]*\\’" . fundamental-mode)

;; File name has no dot.
("[^\\./]*\\’" . fundamental-mode)
;; File name ends in ‘.C’.
("\\.C\\’" . c++-mode))

auto-mode-alist))

Variableinterpreter-mode-alist
This variable specifies major modes to use for scripts that specify a command interpreter
in an ‘#!’ line. Its value is a list of elements of the form (interpreter . mode); for example,
("perl" . perl-mode) is one element present by default. The element says to use mode
mode if the file specifies interpreter.
This variable is applicable only when the auto-mode-alist does not indicate which major
mode to use.

Functionhack-local-variables &optional force
This function parses, and binds or evaluates as appropriate, any local variables for the
current buffer.
The handling of enable-local-variables documented for normal-mode actually takes
place here. The argument force usually comes from the argument find-file given to normal-
mode.

26.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is nor-
mally called with C-h m. The describe-mode function uses the value of major-mode, which is
why every major mode function needs to set the major-mode variable.

Commanddescribe-mode
This function displays the documentation of the current major mode.
The describe-mode function calls the documentation function using the value of major-
mode as an argument. Thus, it displays the documentation string of the major mode
function. (See Section 27.2 [Accessing Documentation], page 346.)

Chapter 26: Major and Minor Modes 335

Variablemajor-mode
This variable holds the symbol for the current buffer’s major mode. This symbol should
have a function definition that is the command to switch to that major mode. The
describe-mode function uses the documentation string of the function as the documen-
tation of the major mode.

26.1.5 Defining Derived Modes

It’s often useful to define a new major mode in terms of an existing one. An easy way to do
this is to use define-derived-mode.

Macrodefine-derived-mode variant parent name docstring body. . .
This construct defines variant as a major mode command, using name as the string form
of the mode name.
The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:
• The new mode has its own keymap, named variant-map. define-derived-mode

initializes this map to inherit from parent-map, if it is not already set.
• The new mode has its own syntax table, kept in the variable variant-syntax-table.

define-derived-mode initializes this variable by copying parent-syntax-table, if it
is not already set.

• The new mode has its own abbrev table, kept in the variable variant-abbrev-table.
define-derived-mode initializes this variable by copying parent-abbrev-table, if it
is not already set.

• The new mode has its own mode hook, variant-hook, which it runs in standard fashion
as the very last thing that it does. (The new mode also runs the mode hook of parent
as part of calling parent.)

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides, just
before running variant-hook.
The argument docstring specifies the documentation string for the new mode. If you omit
docstring, define-derived-mode generates a documentation string.
Here is a hypothetical example:

(define-derived-mode hypertext-mode
text-mode "Hypertext"
"Major mode for hypertext.

\\{hypertext-mode-map}"
(setq case-fold-search nil))

(define-key hypertext-mode-map
[down-mouse-3] ’do-hyper-link)

26.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the choice
of major mode. Minor modes can be enabled individually or in combination. Minor modes
would be better named “Generally available, optional feature modes” except that such a name
is unwieldy.

336 XEmacs Lisp Reference Manual

A minor mode is not usually a modification of single major mode. For example, Auto Fill
mode may be used in any major mode that permits text insertion. To be general, a minor mode
must be effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason is
that you should be able to activate and deactivate minor modes in any order. A minor mode
should be able to have its desired effect regardless of the major mode and regardless of the other
minor modes in effect.

Often the biggest problem in implementing a minor mode is finding a way to insert the
necessary hook into the rest of XEmacs. Minor mode keymaps make this easier than it used to
be.

26.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several
of the major mode conventions apply to minor modes as well: those regarding the name of the
mode initialization function, the names of global symbols, and the use of keymaps and other
tables.

In addition, there are several conventions that are specific to minor modes.
• Make a variable whose name ends in ‘-mode’ to represent the minor mode. Its value should

enable or disable the mode (nil to disable; anything else to enable.) We call this the mode
variable.
This variable is used in conjunction with the minor-mode-alist to display the minor mode
name in the modeline. It can also enable or disable a minor mode keymap. Individual
commands or hooks can also check the variable’s value.
If you want the minor mode to be enabled separately in each buffer, make the variable
buffer-local.

• Define a command whose name is the same as the mode variable. Its job is to enable and
disable the mode by setting the variable.
The command should accept one optional argument. If the argument is nil, it should toggle
the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the mode on
if the argument is a positive integer, a symbol other than nil or -, or a list whose car is
such an integer or symbol; it should turn the mode off otherwise.
Here is an example taken from the definition of transient-mark-mode. It shows the use of
transient-mark-mode as a variable that enables or disables the mode’s behavior, and also
shows the proper way to toggle, enable or disable the minor mode based on the raw prefix
argument value.

(setq transient-mark-mode
(if (null arg) (not transient-mark-mode)

(> (prefix-numeric-value arg) 0)))

• Add an element to minor-mode-alist for each minor mode (see Section 26.3.2 [Modeline
Variables], page 339). This element should be a list of the following form:

(mode-variable string)
Here mode-variable is the variable that controls enabling of the minor mode, and string is
a short string, starting with a space, to represent the mode in the modeline. These strings
must be short so that there is room for several of them at once.
When you add an element to minor-mode-alist, use assq to check for an existing element,
to avoid duplication. For example:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist

(cons ’(leif-mode " Leif") minor-mode-alist)))

Chapter 26: Major and Minor Modes 337

26.2.2 Keymaps and Minor Modes

Each minor mode can have its own keymap, which is active when the mode is enabled. To
set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist. See
Section 20.7 [Active Keymaps], page 290.

One use of minor mode keymaps is to modify the behavior of certain self-inserting characters
so that they do something else as well as self-insert. In general, this is the only way to do that,
since the facilities for customizing self-insert-command are limited to special cases (designed
for abbrevs and Auto Fill mode). (Do not try substituting your own definition of self-insert-
command for the standard one. The editor command loop handles this function specially.)

26.3 Modeline Format

Each Emacs window (aside from minibuffer windows) includes a modeline, which displays
status information about the buffer displayed in the window. The modeline contains information
about the buffer, such as its name, associated file, depth of recursive editing, and the major and
minor modes.

This section describes how the contents of the modeline are controlled. It is in the chapter on
modes because much of the information displayed in the modeline relates to the enabled major
and minor modes.

modeline-format is a buffer-local variable that holds a template used to display the modeline
of the current buffer. All windows for the same buffer use the same modeline-format and their
modelines appear the same (except for scrolling percentages and line numbers).

The modeline of a window is normally updated whenever a different buffer is shown in the
window, or when the buffer’s modified-status changes from nil to t or vice-versa. If you modify
any of the variables referenced by modeline-format (see Section 26.3.2 [Modeline Variables],
page 339), you may want to force an update of the modeline so as to display the new information.

Functionredraw-modeline &optional all
Force redisplay of the current buffer’s modeline. If all is non-nil, then force redisplay of
all modelines.

The modeline is usually displayed in inverse video. This is controlled using the modeline
face. See Section 42.1 [Faces], page 555.

26.3.1 The Data Structure of the Modeline

The modeline contents are controlled by a data structure of lists, strings, symbols, and
numbers kept in the buffer-local variable mode-line-format. The data structure is called a
modeline construct, and it is built in recursive fashion out of simpler modeline constructs.
The same data structure is used for constructing frame titles (see Section 32.3 [Frame Titles],
page 429).

Variablemodeline-format
The value of this variable is a modeline construct with overall responsibility for the mod-
eline format. The value of this variable controls which other variables are used to form
the modeline text, and where they appear.

338 XEmacs Lisp Reference Manual

A modeline construct may be as simple as a fixed string of text, but it usually specifies how
to use other variables to construct the text. Many of these variables are themselves defined to
have modeline constructs as their values.

The default value of modeline-format incorporates the values of variables such as mode-
name and minor-mode-alist. Because of this, very few modes need to alter modeline-format.
For most purposes, it is sufficient to alter the variables referenced by modeline-format.

A modeline construct may be a list, a symbol, or a string. If the value is a list, each element
may be a list, a symbol, or a string.

string A string as a modeline construct is displayed verbatim in the mode line except for
%-constructs. Decimal digits after the ‘%’ specify the field width for space filling on
the right (i.e., the data is left justified). See Section 26.3.3 [%-Constructs], page 341.

symbol A symbol as a modeline construct stands for its value. The value of symbol is used
as a modeline construct, in place of symbol. However, the symbols t and nil are
ignored; so is any symbol whose value is void.
There is one exception: if the value of symbol is a string, it is displayed verbatim:
the %-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list means to process all the elements re-
cursively and concatenate the results. This is the most common form of mode line
construct.

(symbol then else)
A list whose first element is a symbol is a conditional. Its meaning depends on the
value of symbol. If the value is non-nil, the second element, then, is processed
recursively as a modeline element. But if the value of symbol is nil, the third
element, else, is processed recursively. You may omit else; then the mode line
element displays nothing if the value of symbol is nil.

(width rest...)
A list whose first element is an integer specifies truncation or padding of the results
of rest. The remaining elements rest are processed recursively as modeline constructs
and concatenated together. Then the result is space filled (if width is positive) or
truncated (to −width columns, if width is negative) on the right.
For example, the usual way to show what percentage of a buffer is above the top of
the window is to use a list like this: (-3 "%p").

If you do alter modeline-format itself, the new value should use the same variables that
appear in the default value (see Section 26.3.2 [Modeline Variables], page 339), rather than
duplicating their contents or displaying the information in another fashion. This way, cus-
tomizations made by the user or by Lisp programs (such as display-time and major modes)
via changes to those variables remain effective.

Here is an example of a modeline-format that might be useful for shell-mode, since it
contains the hostname and default directory.

(setq modeline-format
(list ""
’modeline-modified
"%b--"
(getenv "HOST") ; One element is not constant.
":"
’default-directory
" "
’global-mode-string

Chapter 26: Major and Minor Modes 339

" %[("
’mode-name
’modeline-process
’minor-mode-alist
"%n"
")%]----"
’(line-number-mode "L%l--")
’(-3 . "%p")
"-%-"))

26.3.2 Variables Used in the Modeline

This section describes variables incorporated by the standard value of modeline-format into
the text of the mode line. There is nothing inherently special about these variables; any other
variables could have the same effects on the modeline if modeline-format were changed to use
them.

Variablemodeline-modified
This variable holds the value of the modeline construct that displays whether the current
buffer is modified.
The default value of modeline-modified is ("--%1*%1+-"). This means that the mode-
line displays ‘--**-’ if the buffer is modified, ‘-----’ if the buffer is not modified, ‘--%%-’
if the buffer is read only, and ‘--%*--’ if the buffer is read only and modified.
Changing this variable does not force an update of the modeline.

Variablemodeline-buffer-identification
This variable identifies the buffer being displayed in the window. Its default value is ("%F:
%17b"), which means that it usually displays ‘Emacs:’ followed by seventeen characters of
the buffer name. (In a terminal frame, it displays the frame name instead of ‘Emacs’; this
has the effect of showing the frame number.) You may want to change this in modes such
as Rmail that do not behave like a “normal” XEmacs.

Variableglobal-mode-string
This variable holds a modeline spec that appears in the mode line by default, just after
the buffer name. The command display-time sets global-mode-string to refer to
the variable display-time-string, which holds a string containing the time and load
information.
The ‘%M’ construct substitutes the value of global-mode-string, but this is obsolete,
since the variable is included directly in the modeline.

Variablemode-name
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
Each major mode should set this variable so that the mode name will appear in the
modeline.

Variableminor-mode-alist
This variable holds an association list whose elements specify how the modeline should
indicate that a minor mode is active. Each element of the minor-mode-alist should be
a two-element list:

340 XEmacs Lisp Reference Manual

(minor-mode-variable modeline-string)

More generally, modeline-string can be any mode line spec. It appears in the mode line
when the value of minor-mode-variable is non-nil, and not otherwise. These strings
should begin with spaces so that they don’t run together. Conventionally, the minor-
mode-variable for a specific mode is set to a non-nil value when that minor mode is
activated.

The default value of minor-mode-alist is:

minor-mode-alist
⇒ ((vc-mode vc-mode)

(abbrev-mode " Abbrev")
(overwrite-mode overwrite-mode)
(auto-fill-function " Fill")
(defining-kbd-macro " Def")
(isearch-mode isearch-mode))

minor-mode-alist is not buffer-local. The variables mentioned in the alist should be
buffer-local if the minor mode can be enabled separately in each buffer.

Variablemodeline-process
This buffer-local variable contains the modeline information on process status in modes
used for communicating with subprocesses. It is displayed immediately following the
major mode name, with no intervening space. For example, its value in the ‘*shell*’
buffer is (": %s"), which allows the shell to display its status along with the major mode
as: ‘(Shell: run)’. Normally this variable is nil.

Variabledefault-modeline-format
This variable holds the default modeline-format for buffers that do not override it. This
is the same as (default-value ’modeline-format).

The default value of default-modeline-format is:

(""
modeline-modified
modeline-buffer-identification
" "
global-mode-string
" %[("
mode-name
modeline-process
minor-mode-alist
"%n"
")%]----"
(line-number-mode "L%l--")
(-3 . "%p")
"-%-")

Variablevc-mode
The variable vc-mode, local in each buffer, records whether the buffer’s visited file is
maintained with version control, and, if so, which kind. Its value is nil for no version
control, or a string that appears in the mode line.

Chapter 26: Major and Minor Modes 341

26.3.3 %-Constructs in the ModeLine

The following table lists the recognized %-constructs and what they mean. In any construct
except ‘%%’, you can add a decimal integer after the ‘%’ to specify how many characters to display.

%b The current buffer name, obtained with the buffer-name function. See Section 30.3
[Buffer Names], page 393.

%f The visited file name, obtained with the buffer-file-name function. See Sec-
tion 30.4 [Buffer File Name], page 394.

%F The name of the selected frame.

%c The current column number of point.

%l The current line number of point.

%* ‘%’ if the buffer is read only (see buffer-read-only);
‘*’ if the buffer is modified (see buffer-modified-p);
‘-’ otherwise. See Section 30.5 [Buffer Modification], page 395.

%+ ‘*’ if the buffer is modified (see buffer-modified-p);
‘%’ if the buffer is read only (see buffer-read-only);
‘-’ otherwise. This differs from ‘%*’ only for a modified read-only buffer. See Sec-
tion 30.5 [Buffer Modification], page 395.

%& ‘*’ if the buffer is modified, and ‘-’ otherwise.

%s The status of the subprocess belonging to the current buffer, obtained with process-
status. See Section 49.6 [Process Information], page 612.

%l the current line number.

%S the name of the selected frame; this is only meaningful under the X Window System.
See Section 32.2.5 [Frame Name], page 429.

%t Whether the visited file is a text file or a binary file. (This is a meaningful distinction
only on certain operating systems.)

%p The percentage of the buffer text above the top of window, or ‘Top’, ‘Bottom’ or
‘All’.

%P The percentage of the buffer text that is above the bottom of the window (which
includes the text visible in the window, as well as the text above the top), plus ‘Top’
if the top of the buffer is visible on screen; or ‘Bottom’ or ‘All’.

%n ‘Narrow’ when narrowing is in effect; nothing otherwise (see narrow-to-region in
Section 34.4 [Narrowing], page 449).

%[An indication of the depth of recursive editing levels (not counting minibuffer levels):
one ‘[’ for each editing level. See Section 19.10 [Recursive Editing], page 281.

%] One ‘]’ for each recursive editing level (not counting minibuffer levels).

%% The character ‘%’—this is how to include a literal ‘%’ in a string in which %-constructs
are allowed.

%- Dashes sufficient to fill the remainder of the modeline.

The following two %-constructs are still supported, but they are obsolete, since you can get
the same results with the variables mode-name and global-mode-string.

%m The value of mode-name.

%M The value of global-mode-string. Currently, only display-time modifies the
value of global-mode-string.

342 XEmacs Lisp Reference Manual

26.4 Hooks

A hook is a variable where you can store a function or functions to be called on a particular
occasion by an existing program. XEmacs provides hooks for the sake of customization. Most
often, hooks are set up in the ‘.emacs’ file, but Lisp programs can set them also. See Appendix F
[Standard Hooks], page 711, for a list of standard hook variables.

Most of the hooks in XEmacs are normal hooks. These variables contain lists of functions to
be called with no arguments. The reason most hooks are normal hooks is so that you can use
them in a uniform way. You can usually tell when a hook is a normal hook, because its name
ends in ‘-hook’.

The recommended way to add a hook function to a normal hook is by calling add-hook (see
below). The hook functions may be any of the valid kinds of functions that funcall accepts
(see Section 11.1 [What Is a Function], page 147). Most normal hook variables are initially void;
add-hook knows how to deal with this.

As for abnormal hooks, those whose names end in ‘-function’ have a value that is a single
function. Those whose names end in ‘-hooks’ have a value that is a list of functions. Any hook
that is abnormal is abnormal because a normal hook won’t do the job; either the functions are
called with arguments, or their values are meaningful. The name shows you that the hook is
abnormal and that you should look at its documentation string to see how to use it properly.

Major mode functions are supposed to run a hook called the mode hook as the last step
of initialization. This makes it easy for a user to customize the behavior of the mode, by
overriding the local variable assignments already made by the mode. But hooks are used in
other contexts too. For example, the hook suspend-hook runs just before XEmacs suspends
itself (see Section 50.2.2 [Suspending XEmacs], page 627).

Here’s an expression that uses a mode hook to turn on Auto Fill mode when in Lisp Inter-
action mode:

(add-hook ’lisp-interaction-mode-hook ’turn-on-auto-fill)

The next example shows how to use a hook to customize the way XEmacs formats C code.
(People often have strong personal preferences for one format or another.) Here the hook function
is an anonymous lambda expression.

(add-hook ’c-mode-hook
(function (lambda ()

(setq c-indent-level 4
c-argdecl-indent 0
c-label-offset -4
c-continued-statement-indent 0
c-brace-offset 0
comment-column 40))))

(setq c++-mode-hook c-mode-hook)

The final example shows how the appearance of the modeline can be modified for a particular
class of buffers only.

(add-hook ’text-mode-hook
(function (lambda ()

(setq modeline-format
’(modeline-modified

"Emacs: %14b"
" "

Chapter 26: Major and Minor Modes 343

default-directory
" "
global-mode-string
"%[("
mode-name
minor-mode-alist
"%n"
modeline-process
") %]---"
(-3 . "%p")
"-%-")))))

At the appropriate time, XEmacs uses the run-hooks function to run particular hooks. This
function calls the hook functions you have added with add-hooks.

Functionrun-hooks &rest hookvar
This function takes one or more hook variable names as arguments, and runs each hook
in turn. Each hookvar argument should be a symbol that is a hook variable. These
arguments are processed in the order specified.
If a hook variable has a non-nil value, that value may be a function or a list of functions. If
the value is a function (either a lambda expression or a symbol with a function definition),
it is called. If it is a list, the elements are called, in order. The hook functions are called
with no arguments.
For example, here’s how emacs-lisp-mode runs its mode hook:

(run-hooks ’emacs-lisp-mode-hook)

Functionadd-hook hook function &optional append local
This function is the handy way to add function function to hook variable hook. The
argument function may be any valid Lisp function with the proper number of arguments.
For example,

(add-hook ’text-mode-hook ’my-text-hook-function)

adds my-text-hook-function to the hook called text-mode-hook.
You can use add-hook for abnormal hooks as well as for normal hooks.
It is best to design your hook functions so that the order in which they are executed does
not matter. Any dependence on the order is “asking for trouble.” However, the order is
predictable: normally, function goes at the front of the hook list, so it will be executed
first (barring another add-hook call).
If the optional argument append is non-nil, the new hook function goes at the end of the
hook list and will be executed last.
If local is non-nil, that says to make the new hook function local to the current buffer.
Before you can do this, you must make the hook itself buffer-local by calling make-local-
hook (not make-local-variable). If the hook itself is not buffer-local, then the value of
local makes no difference—the hook function is always global.

Functionremove-hook hook function &optional local
This function removes function from the hook variable hook.
If local is non-nil, that says to remove function from the local hook list instead of from
the global hook list. If the hook itself is not buffer-local, then the value of local makes no
difference.

344 XEmacs Lisp Reference Manual

Functionmake-local-hook hook
This function makes the hook variable hook local to the current buffer. When a hook
variable is local, it can have local and global hook functions, and run-hooks runs all of
them.
This function works by making t an element of the buffer-local value. That serves as a
flag to use the hook functions in the default value of the hook variable as well as those in
the local value. Since run-hooks understands this flag, make-local-hook works with all
normal hooks. It works for only some non-normal hooks—those whose callers have been
updated to understand this meaning of t.
Do not use make-local-variable directly for hook variables; it is not sufficient.

Chapter 27: Documentation 345

27 Documentation

XEmacs Lisp has convenient on-line help facilities, most of which derive their information
from the documentation strings associated with functions and variables. This chapter describes
how to write good documentation strings for your Lisp programs, as well as how to write
programs to access documentation.

Note that the documentation strings for XEmacs are not the same thing as the XEmacs
manual. Manuals have their own source files, written in the Texinfo language; documentation
strings are specified in the definitions of the functions and variables they apply to. A collection
of documentation strings is not sufficient as a manual because a good manual is not organized
in that fashion; it is organized in terms of topics of discussion.

27.1 Documentation Basics

A documentation string is written using the Lisp syntax for strings, with double-quote char-
acters surrounding the text of the string. This is because it really is a Lisp string object. The
string serves as documentation when it is written in the proper place in the definition of a func-
tion or variable. In a function definition, the documentation string follows the argument list. In
a variable definition, the documentation string follows the initial value of the variable.

When you write a documentation string, make the first line a complete sentence (or two
complete sentences) since some commands, such as apropos, show only the first line of a multi-
line documentation string. Also, you should not indent the second line of a documentation
string, if you have one, because that looks odd when you use C-h f (describe-function) or
C-h v (describe-variable). See Section A.3 [Documentation Tips], page 688.

Documentation strings may contain several special substrings, which stand for key bindings
to be looked up in the current keymaps when the documentation is displayed. This allows
documentation strings to refer to the keys for related commands and be accurate even when a
user rearranges the key bindings. (See Section 27.2 [Accessing Documentation], page 346.)

Within the Lisp world, a documentation string is accessible through the function or variable
that it describes:
• The documentation for a function is stored in the function definition itself (see Section 11.2

[Lambda Expressions], page 148). The function documentation knows how to extract it.
• The documentation for a variable is stored in the variable’s property list under the property

name variable-documentation. The function documentation-property knows how to
extract it.

To save space, the documentation for preloaded functions and variables (including primitive
functions and autoloaded functions) is stored in the internal doc file ‘DOC’. The documentation
for functions and variables loaded during the XEmacs session from byte-compiled files is stored
in those very same byte-compiled files (see Section 15.3 [Docs and Compilation], page 190).

XEmacs does not keep documentation strings in memory unless necessary. Instead, XEmacs
maintains, for preloaded symbols, an integer offset into the internal doc file, and for symbols
loaded from byte-compiled files, a list containing the filename of the byte-compiled file and
an integer offset, in place of the documentation string. The functions documentation and
documentation-property use that information to read the documentation from the appropriate
file; this is transparent to the user.

For information on the uses of documentation strings, see section “Help” in The XEmacs
Reference Manual.

The ‘emacs/lib-src’ directory contains two utilities that you can use to print nice-looking
hardcopy for the file ‘emacs/etc/DOC-version’. These are ‘sorted-doc.c’ and ‘digest-doc.c’.

346 XEmacs Lisp Reference Manual

27.2 Access to Documentation Strings

Functiondocumentation-property symbol property &optional verbatim
This function returns the documentation string that is recorded in symbol’s property
list under property property. It retrieves the text from a file if necessary, and runs
substitute-command-keys to substitute actual key bindings. (This substitution is not
done if verbatim is non-nil; the verbatim argument exists only as of Emacs 19.)

(documentation-property ’command-line-processed
’variable-documentation)
⇒ "t once command line has been processed"

(symbol-plist ’command-line-processed)
⇒ (variable-documentation 188902)

Functiondocumentation function &optional verbatim
This function returns the documentation string of function. It reads the text from a file
if necessary. Then (unless verbatim is non-nil) it calls substitute-command-keys, to
return a value containing the actual (current) key bindings.
The function documentation signals a void-function error if function has no function
definition. However, it is ok if the function definition has no documentation string. In
that case, documentation returns nil.

Here is an example of using the two functions, documentation and documentation-
property, to display the documentation strings for several symbols in a ‘*Help*’ buffer.

(defun describe-symbols (pattern)
"Describe the XEmacs Lisp symbols matching PATTERN.

All symbols that have PATTERN in their name are described
in the ‘*Help*’ buffer."

(interactive "sDescribe symbols matching: ")
(let ((describe-func

(function
(lambda (s)

;; Print description of symbol.
(if (fboundp s) ; It is a function.

(princ
(format "%s\t%s\n%s\n\n" s
(if (commandp s)

(let ((keys (where-is-internal s)))
(if keys

(concat
"Keys: "
(mapconcat ’key-description

keys " "))
"Keys: none"))

"Function")
(or (documentation s)

"not documented"))))

(if (boundp s) ; It is a variable.

Chapter 27: Documentation 347

(princ
(format "%s\t%s\n%s\n\n" s
(if (user-variable-p s)

"Option " "Variable")
(or (documentation-property

s ’variable-documentation)
"not documented")))))))

sym-list)

;; Build a list of symbols that match pattern.
(mapatoms (function

(lambda (sym)
(if (string-match pattern (symbol-name sym))

(setq sym-list (cons sym sym-list))))))

;; Display the data.
(with-output-to-temp-buffer "*Help*"

(mapcar describe-func (sort sym-list ’string<))
(print-help-return-message))))

The describe-symbols function works like apropos, but provides more information.

(describe-symbols "goal")

---------- Buffer: *Help* ----------
goal-column Option
*Semipermanent goal column for vertical motion, as set by C-x C-n, or nil.

set-goal-column Command: C-x C-n
Set the current horizontal position as a goal for C-n and C-p.
Those commands will move to this position in the line moved to
rather than trying to keep the same horizontal position.
With a non-nil argument, clears out the goal column
so that C-n and C-p resume vertical motion.
The goal column is stored in the variable ‘goal-column’.

temporary-goal-column Variable
Current goal column for vertical motion.
It is the column where point was
at the start of current run of vertical motion commands.
When the ‘track-eol’ feature is doing its job, the value is 9999.
---------- Buffer: *Help* ----------

FunctionSnarf-documentation filename
This function is used only during XEmacs initialization, just before the runnable XEmacs
is dumped. It finds the file offsets of the documentation strings stored in the file filename,
and records them in the in-core function definitions and variable property lists in place of
the actual strings. See Section B.1 [Building XEmacs], page 693.

XEmacs finds the file filename in the ‘lib-src’ directory. When the dumped XEmacs is
later executed, the same file is found in the directory doc-directory. The usual value
for filename is ‘DOC’, but this can be changed by modifying the variable internal-doc-
file-name.

348 XEmacs Lisp Reference Manual

Variableinternal-doc-file-name
This variable holds the name of the file containing documentation strings of built-in sym-
bols, usually ‘DOC’. The full pathname of the internal doc file is ‘(concat doc-directory
internal-doc-file-name)’.

Variabledoc-directory
This variable holds the name of the directory which contains the internal doc file that
contains documentation strings for built-in and preloaded functions and variables.
In most cases, this is the same as exec-directory. They may be different when you
run XEmacs from the directory where you built it, without actually installing it. See
exec-directory in Section 27.5 [Help Functions], page 350.
In older Emacs versions, exec-directory was used for this.

Variabledata-directory
This variable holds the name of the directory in which XEmacs finds certain system inde-
pendent documentation and text files that come with XEmacs. In older Emacs versions,
exec-directory was used for this.

27.3 Substituting Key Bindings in Documentation

When documentation strings refer to key sequences, they should use the current, actual
key bindings. They can do so using certain special text sequences described below. Accessing
documentation strings in the usual way substitutes current key binding information for these
special sequences. This works by calling substitute-command-keys. You can also call that
function yourself.

Here is a list of the special sequences and what they mean:

\[command]
stands for a key sequence that will invoke command, or ‘M-x command’ if command
has no key bindings.

\{mapvar}
stands for a summary of the value of mapvar, which should be a keymap. The
summary is made by describe-bindings.

\<mapvar>
stands for no text itself. It is used for a side effect: it specifies mapvar as the keymap
for any following ‘\[command]’ sequences in this documentation string.

\= quotes the following character and is discarded; this ‘\=\=’ puts ‘\=’ into the output,
and ‘\=\[’ puts ‘\[’ into the output.

Please note: Each ‘\’ must be doubled when written in a string in XEmacs Lisp.

Functionsubstitute-command-keys string
This function scans string for the above special sequences and replaces them by what they
stand for, returning the result as a string. This permits display of documentation that
refers accurately to the user’s own customized key bindings.

Here are examples of the special sequences:
(substitute-command-keys

"To abort recursive edit, type: \\[abort-recursive-edit]")
⇒ "To abort recursive edit, type: C-]"

Chapter 27: Documentation 349

(substitute-command-keys
"The keys that are defined for the minibuffer here are:
\\{minibuffer-local-must-match-map}")

⇒ "The keys that are defined for the minibuffer here are:

? minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete
LFD minibuffer-complete-and-exit
RET minibuffer-complete-and-exit
C-g abort-recursive-edit
"

(substitute-command-keys
"To abort a recursive edit from the minibuffer, type\

\\<minibuffer-local-must-match-map>\\[abort-recursive-edit].")
⇒ "To abort a recursive edit from the minibuffer, type C-g."

(substitute-command-keys
"Substrings of the form \\=\\{MAPVAR} are replaced by summaries

\(made by describe-bindings) of the value of MAPVAR, taken as a keymap.
Substrings of the form \\=\\<MAPVAR> specify to use the value of MAPVAR
as the keymap for future \\=\\[COMMAND] substrings.
\\=\\= quotes the following character and is discarded;
thus, \\=\\=\\=\\= puts \\=\\= into the output,
and \\=\\=\\=\\[puts \\=\\[into the output.")
⇒ "Substrings of the form \{MAPVAR} are replaced by summaries
(made by describe-bindings) of the value of MAPVAR, taken as a keymap.
Substrings of the form \<MAPVAR> specify to use the value of MAPVAR
as the keymap for future \[COMMAND] substrings.
\= quotes the following character and is discarded;
thus, \=\= puts \= into the output,
and \=\[puts \[into the output."

27.4 Describing Characters for Help Messages

These functions convert events, key sequences or characters to textual descriptions. These
descriptions are useful for including arbitrary text characters or key sequences in messages,
because they convert non-printing and whitespace characters to sequences of printing characters.
The description of a non-whitespace printing character is the character itself.

Functionkey-description sequence
This function returns a string containing the XEmacs standard notation for the input
events in sequence. The argument sequence may be a string, vector or list. See Section 19.5
[Events], page 263, for more information about valid events. See also the examples for
single-key-description, below.

Functionsingle-key-description key
This function returns a string describing key in the standard XEmacs notation for key-
board input. A normal printing character appears as itself, but a control character turns
into a string starting with ‘C-’, a meta character turns into a string starting with ‘M-’,

350 XEmacs Lisp Reference Manual

and space, linefeed, etc. appear as ‘SPC’, ‘LFD’, etc. A symbol appears as the name of the
symbol. An event that is a list appears as the name of the symbol in the car of the list.

(single-key-description ?\C-x)
⇒ "C-x"

(key-description "\C-x \M-y \n \t \r \f123")
⇒ "C-x SPC M-y SPC LFD SPC TAB SPC RET SPC C-l 1 2 3"

(single-key-description ’kp_next)
⇒ "kp_next"

(single-key-description ’(shift button1))
⇒ "Sh-button1"

Functiontext-char-description character
This function returns a string describing character in the standard XEmacs notation
for characters that appear in text—like single-key-description, except that control
characters are represented with a leading caret (which is how control characters in XEmacs
buffers are usually displayed).

(text-char-description ?\C-c)
⇒ "^C"

(text-char-description ?\M-m)
⇒ "M-m"

(text-char-description ?\C-\M-m)
⇒ "M-^M"

27.5 Help Functions

XEmacs provides a variety of on-line help functions, all accessible to the user as subcommands
of the prefix C-h, or on some keyboards, help. For more information about them, see section
“Help” in The XEmacs Reference Manual. Here we describe some program-level interfaces to
the same information.

Commandapropos regexp &optional do-all predicate
This function finds all symbols whose names contain a match for the regular expression
regexp, and returns a list of them (see Section 37.2 [Regular Expressions], page 496). It
also displays the symbols in a buffer named ‘*Help*’, each with a one-line description.
If do-all is non-nil, then apropos also shows key bindings for the functions that are found.
If predicate is non-nil, it should be a function to be called on each symbol that has
matched regexp. Only symbols for which predicate returns a non-nil value are listed or
displayed.
In the first of the following examples, apropos finds all the symbols with names containing
‘exec’. In the second example, it finds and returns only those symbols that are also
commands. (We don’t show the output that results in the ‘*Help*’ buffer.)

(apropos "exec")
⇒ (Buffer-menu-execute command-execute exec-directory

exec-path execute-extended-command execute-kbd-macro
executing-kbd-macro executing-macro)

(apropos "exec" nil ’commandp)
⇒ (Buffer-menu-execute execute-extended-command)

Chapter 27: Documentation 351

apropos is used by various user-level commands, such as C-h a (hyper-apropos), a graph-
ical front-end to apropos; and C-h A (command-apropos), which does an apropos over only
those functions which are user commands. command-apropos calls apropos, specifying a
predicate to restrict the output to symbols that are commands. The call to apropos looks
like this:

(apropos string t ’commandp)

Variablehelp-map
The value of this variable is a local keymap for characters following the Help key, C-h.

Prefix Commandhelp-command
This symbol is not a function; its function definition is actually the keymap known as
help-map. It is defined in ‘help.el’ as follows:

(define-key global-map "\C-h" ’help-command)
(fset ’help-command help-map)

Functionprint-help-return-message &optional function
This function builds a string that explains how to restore the previous state of the windows
after a help command. After building the message, it applies function to it if function is
non-nil. Otherwise it calls message to display it in the echo area.
This function expects to be called inside a with-output-to-temp-buffer special form,
and expects standard-output to have the value bound by that special form. For an exam-
ple of its use, see the long example in Section 27.2 [Accessing Documentation], page 346.

Variablehelp-char
The value of this variable is the help character—the character that XEmacs recognizes
as meaning Help. By default, it is the character ‘?\^H’ (ASCII 8), which is C-h. When
XEmacs reads this character, if help-form is non-nil Lisp expression, it evaluates that
expression, and displays the result in a window if it is a string.
help-char can be a character or a key description such as help or (meta h).
Usually the value of help-form’s value is nil. Then the help character has no special
meaning at the level of command input, and it becomes part of a key sequence in the
normal way. The standard key binding of C-h is a prefix key for several general-purpose
help features.
The help character is special after prefix keys, too. If it has no binding as a subcommand
of the prefix key, it runs describe-prefix-bindings, which displays a list of all the
subcommands of the prefix key.

Variablehelp-form
If this variable is non-nil, its value is a form to evaluate whenever the character help-char
is read. If evaluating the form produces a string, that string is displayed.
A command that calls next-command-event or next-event probably should bind help-
form to a non-nil expression while it does input. (The exception is when C-h is meaningful
input.) Evaluating this expression should result in a string that explains what the input
is for and how to enter it properly.
Entry to the minibuffer binds this variable to the value of minibuffer-help-form (see
Section 18.8 [Minibuffer Misc], page 252).

Variableprefix-help-command
This variable holds a function to print help for a prefix character. The function is called
when the user types a prefix key followed by the help character, and the help character has
no binding after that prefix. The variable’s default value is describe-prefix-bindings.

352 XEmacs Lisp Reference Manual

Functiondescribe-prefix-bindings
This function calls describe-bindings to display a list of all the subcommands of the
prefix key of the most recent key sequence. The prefix described consists of all but the
last event of that key sequence. (The last event is, presumably, the help character.)

The following two functions are found in the library ‘helper’. They are for modes that want
to provide help without relinquishing control, such as the “electric” modes. You must load that
library with (require ’helper) in order to use them. Their names begin with ‘Helper’ to
distinguish them from the ordinary help functions.

CommandHelper-describe-bindings
This command pops up a window displaying a help buffer containing a listing of all of
the key bindings from both the local and global keymaps. It works by calling describe-
bindings.

CommandHelper-help
This command provides help for the current mode. It prompts the user in the minibuffer
with the message ‘Help (Type ? for further options)’, and then provides assistance in
finding out what the key bindings are, and what the mode is intended for. It returns nil.
This can be customized by changing the map Helper-help-map.

27.6 Obsoleteness

As you add functionality to a package, you may at times want to replace an older function
with a new one. To preserve compatibility with existing code, the older function needs to still
exist; but users of that function should be told to use the newer one instead. XEmacs Lisp lets
you mark a function or variable as obsolete, and indicate what should be used instead.

Functionmake-obsolete function new
This function indicates that function is an obsolete function, and the function new should
be used instead. The byte compiler will issue a warning to this effect when it encounters
a usage of the older function, and the help system will also note this in the function’s
documentation. new can also be a string (if there is not a single function with the same
functionality any more), and should be a descriptive statement, such as "use foo or bar
instead" or "this function is unnecessary".

Functionmake-obsolete-variable variable new
This is like make-obsolete but is for variables instead of functions.

Functiondefine-obsolete-function-alias oldfun newfun
This function combines make-obsolete and define-function, declaring oldfun to be an
obsolete variant of newfun and defining oldfun as an alias for newfun.

Functiondefine-obsolete-variable-alias oldvar newvar
This is like define-obsolete-function-alias but for variables.

Note that you should not normally put obsoleteness information explicitly in a function or
variable’s doc string. The obsoleteness information that you specify using the above functions
will be displayed whenever the doc string is displayed, and by adding it explicitly the result is
redundancy.

Also, if an obsolete function is substantially the same as a newer one but is not actually
an alias, you should consider omitting the doc string entirely (use a null string ‘""’ as the
doc string). That way, the user is told about the obsoleteness and is forced to look at the
documentation of the new function, making it more likely that he will use the new function.

Chapter 27: Documentation 353

Functionfunction-obsoleteness-doc function
If function is obsolete, this function returns a string describing this. This is the message
that is printed out during byte compilation or in the function’s documentation. If function
is not obsolete, nil is returned.

Functionvariable-obsoleteness-doc variable
This is like function-obsoleteness-doc but for variables.

The obsoleteness information is stored internally by putting a property byte-obsolete-info
(for functions) or byte-obsolete-variable (for variables) on the symbol that specifies the
obsolete function or variable. For more information, see the implementation of make-obsolete
and make-obsolete-variable in ‘lisp/bytecomp/bytecomp-runtime.el’.

354 XEmacs Lisp Reference Manual

Chapter 28: Files 355

28 Files

In XEmacs, you can find, create, view, save, and otherwise work with files and file directories.
This chapter describes most of the file-related functions of XEmacs Lisp, but a few others are
described in Chapter 30 [Buffers], page 391, and those related to backups and auto-saving are
described in Chapter 29 [Backups and Auto-Saving], page 383.

Many of the file functions take one or more arguments that are file names. A file name is
actually a string. Most of these functions expand file name arguments using expand-file-name,
so that ‘~’ is handled correctly, as are relative file names (including ‘../’). These functions don’t
recognize environment variable substitutions such as ‘$HOME’. See Section 28.8.4 [File Name
Expansion], page 371.

28.1 Visiting Files

Visiting a file means reading a file into a buffer. Once this is done, we say that the buffer is
visiting that file, and call the file “the visited file” of the buffer.

A file and a buffer are two different things. A file is information recorded permanently in the
computer (unless you delete it). A buffer, on the other hand, is information inside of XEmacs
that will vanish at the end of the editing session (or when you kill the buffer). Usually, a buffer
contains information that you have copied from a file; then we say the buffer is visiting that file.
The copy in the buffer is what you modify with editing commands. Such changes to the buffer
do not change the file; therefore, to make the changes permanent, you must save the buffer,
which means copying the altered buffer contents back into the file.

In spite of the distinction between files and buffers, people often refer to a file when they
mean a buffer and vice-versa. Indeed, we say, “I am editing a file,” rather than, “I am editing
a buffer that I will soon save as a file of the same name.” Humans do not usually need to make
the distinction explicit. When dealing with a computer program, however, it is good to keep
the distinction in mind.

28.1.1 Functions for Visiting Files

This section describes the functions normally used to visit files. For historical reasons, these
functions have names starting with ‘find-’ rather than ‘visit-’. See Section 30.4 [Buffer File
Name], page 394, for functions and variables that access the visited file name of a buffer or that
find an existing buffer by its visited file name.

In a Lisp program, if you want to look at the contents of a file but not alter it, the fastest
way is to use insert-file-contents in a temporary buffer. Visiting the file is not necessary
and takes longer. See Section 28.3 [Reading from Files], page 359.

Commandfind-file filename
This command selects a buffer visiting the file filename, using an existing buffer if there is
one, and otherwise creating a new buffer and reading the file into it. It also returns that
buffer.
The body of the find-file function is very simple and looks like this:

(switch-to-buffer (find-file-noselect filename))

(See switch-to-buffer in Section 31.7 [Displaying Buffers], page 410.)
When find-file is called interactively, it prompts for filename in the minibuffer.

356 XEmacs Lisp Reference Manual

Functionfind-file-noselect filename &optional nowarn
This function is the guts of all the file-visiting functions. It finds or creates a buffer visiting
the file filename, and returns it. It uses an existing buffer if there is one, and otherwise
creates a new buffer and reads the file into it. You may make the buffer current or display
it in a window if you wish, but this function does not do so.

When find-file-noselect uses an existing buffer, it first verifies that the file has not
changed since it was last visited or saved in that buffer. If the file has changed, then
this function asks the user whether to reread the changed file. If the user says ‘yes’, any
changes previously made in the buffer are lost.

If find-file-noselect needs to create a buffer, and there is no file named filename, it
displays the message ‘New file’ in the echo area, and leaves the buffer empty.

If no-warn is non-nil, various warnings that XEmacs normally gives (e.g. if another buffer
is already visiting filename but filename has been removed from disk since that buffer was
created) are suppressed.

The find-file-noselect function calls after-find-file after reading the file (see Sec-
tion 28.1.2 [Subroutines of Visiting], page 357). That function sets the buffer major mode,
parses local variables, warns the user if there exists an auto-save file more recent than the
file just visited, and finishes by running the functions in find-file-hooks.

The find-file-noselect function returns the buffer that is visiting the file filename.

(find-file-noselect "/etc/fstab")
⇒ #<buffer fstab>

Commandfind-file-other-window filename
This command selects a buffer visiting the file filename, but does so in a window other
than the selected window. It may use another existing window or split a window; see
Section 31.7 [Displaying Buffers], page 410.

When this command is called interactively, it prompts for filename.

Commandfind-file-read-only filename
This command selects a buffer visiting the file filename, like find-file, but it marks the
buffer as read-only. See Section 30.7 [Read Only Buffers], page 397, for related functions
and variables.

When this command is called interactively, it prompts for filename.

Commandview-file filename
This command visits filename in View mode, and displays it in a recursive edit, returning
to the previous buffer when done. View mode is a mode that allows you to skim rapidly
through the file but does not let you modify it. Entering View mode runs the normal hook
view-mode-hook. See Section 26.4 [Hooks], page 342.

When view-file is called interactively, it prompts for filename.

Variablefind-file-hooks
The value of this variable is a list of functions to be called after a file is visited. The file’s
local-variables specification (if any) will have been processed before the hooks are run.
The buffer visiting the file is current when the hook functions are run.

This variable works just like a normal hook, but we think that renaming it would not be
advisable.

Chapter 28: Files 357

Variablefind-file-not-found-hooks
The value of this variable is a list of functions to be called when find-file or find-file-
noselect is passed a nonexistent file name. find-file-noselect calls these functions
as soon as it detects a nonexistent file. It calls them in the order of the list, until one of
them returns non-nil. buffer-file-name is already set up.
This is not a normal hook because the values of the functions are used and they may not
all be called.

28.1.2 Subroutines of Visiting

The find-file-noselect function uses the create-file-buffer and after-find-file
functions as subroutines. Sometimes it is useful to call them directly.

Functioncreate-file-buffer filename
This function creates a suitably named buffer for visiting filename, and returns it. It uses
filename (sans directory) as the name if that name is free; otherwise, it appends a string
such as ‘<2>’ to get an unused name. See also Section 30.9 [Creating Buffers], page 399.
Please note: create-file-buffer does not associate the new buffer with a file and does
not select the buffer. It also does not use the default major mode.

(create-file-buffer "foo")
⇒ #<buffer foo>

(create-file-buffer "foo")
⇒ #<buffer foo<2>>

(create-file-buffer "foo")
⇒ #<buffer foo<3>>

This function is used by find-file-noselect. It uses generate-new-buffer (see Sec-
tion 30.9 [Creating Buffers], page 399).

Functionafter-find-file &optional error warn noauto
This function sets the buffer major mode, and parses local variables (see Section 26.1.3
[Auto Major Mode], page 332). It is called by find-file-noselect and by the default
revert function (see Section 29.3 [Reverting], page 390).
If reading the file got an error because the file does not exist, but its directory does
exist, the caller should pass a non-nil value for error. In that case, after-find-file
issues a warning: ‘(New File)’. For more serious errors, the caller should usually not call
after-find-file.
If warn is non-nil, then this function issues a warning if an auto-save file exists and is
more recent than the visited file.
If noauto is non-nil, then this function does not turn on auto-save mode; otherwise, it
does.
The last thing after-find-file does is call all the functions in find-file-hooks.

28.2 Saving Buffers

When you edit a file in XEmacs, you are actually working on a buffer that is visiting that
file—that is, the contents of the file are copied into the buffer and the copy is what you edit.
Changes to the buffer do not change the file until you save the buffer, which means copying the
contents of the buffer into the file.

358 XEmacs Lisp Reference Manual

Commandsave-buffer &optional backup-option
This function saves the contents of the current buffer in its visited file if the buffer has
been modified since it was last visited or saved. Otherwise it does nothing.
save-buffer is responsible for making backup files. Normally, backup-option is nil, and
save-buffer makes a backup file only if this is the first save since visiting the file. Other
values for backup-option request the making of backup files in other circumstances:
• With an argument of 4 or 64, reflecting 1 or 3 C-u’s, the save-buffer function marks

this version of the file to be backed up when the buffer is next saved.
• With an argument of 16 or 64, reflecting 2 or 3 C-u’s, the save-buffer function

unconditionally backs up the previous version of the file before saving it.

Commandsave-some-buffers &optional save-silently-p exiting
This command saves some modified file-visiting buffers. Normally it asks the user about
each buffer. But if save-silently-p is non-nil, it saves all the file-visiting buffers without
querying the user.
The optional exiting argument, if non-nil, requests this function to offer also to save
certain other buffers that are not visiting files. These are buffers that have a non-nil
local value of buffer-offer-save. (A user who says yes to saving one of these is asked
to specify a file name to use.) The save-buffers-kill-emacs function passes a non-nil
value for this argument.

Variablebuffer-offer-save
When this variable is non-nil in a buffer, XEmacs offers to save the buffer on exit even if
the buffer is not visiting a file. The variable is automatically local in all buffers. Normally,
Mail mode (used for editing outgoing mail) sets this to t.

Commandwrite-file filename
This function writes the current buffer into file filename, makes the buffer visit that file,
and marks it not modified. Then it renames the buffer based on filename, appending a
string like ‘<2>’ if necessary to make a unique buffer name. It does most of this work by
calling set-visited-file-name and save-buffer.

Variablewrite-file-hooks
The value of this variable is a list of functions to be called before writing out a buffer to
its visited file. If one of them returns non-nil, the file is considered already written and
the rest of the functions are not called, nor is the usual code for writing the file executed.
If a function in write-file-hooks returns non-nil, it is responsible for making a backup
file (if that is appropriate). To do so, execute the following code:

(or buffer-backed-up (backup-buffer))

You might wish to save the file modes value returned by backup-buffer and use that to
set the mode bits of the file that you write. This is what save-buffer normally does.
Even though this is not a normal hook, you can use add-hook and remove-hook to ma-
nipulate the list. See Section 26.4 [Hooks], page 342.

Variablelocal-write-file-hooks
This works just like write-file-hooks, but it is intended to be made local to particular
buffers. It’s not a good idea to make write-file-hooks local to a buffer—use this variable
instead.
The variable is marked as a permanent local, so that changing the major mode does not
alter a buffer-local value. This is convenient for packages that read “file” contents in
special ways, and set up hooks to save the data in a corresponding way.

Chapter 28: Files 359

Variablewrite-contents-hooks
This works just like write-file-hooks, but it is intended for hooks that pertain to
the contents of the file, as opposed to hooks that pertain to where the file came from.
Such hooks are usually set up by major modes, as buffer-local bindings for this variable.
Switching to a new major mode always resets this variable.

Variableafter-save-hook
This normal hook runs after a buffer has been saved in its visited file.

Variablefile-precious-flag
If this variable is non-nil, then save-buffer protects against I/O errors while saving by
writing the new file to a temporary name instead of the name it is supposed to have, and
then renaming it to the intended name after it is clear there are no errors. This procedure
prevents problems such as a lack of disk space from resulting in an invalid file.
As a side effect, backups are necessarily made by copying. See Section 29.1.2 [Rename or
Copy], page 384. Yet, at the same time, saving a precious file always breaks all hard links
between the file you save and other file names.
Some modes set this variable non-nil locally in particular buffers.

User Optionrequire-final-newline
This variable determines whether files may be written out that do not end with a newline.
If the value of the variable is t, then save-buffer silently adds a newline at the end of
the file whenever the buffer being saved does not already end in one. If the value of the
variable is non-nil, but not t, then save-buffer asks the user whether to add a newline
each time the case arises.
If the value of the variable is nil, then save-buffer doesn’t add newlines at all. nil is
the default value, but a few major modes set it to t in particular buffers.

28.3 Reading from Files

You can copy a file from the disk and insert it into a buffer using the insert-file-contents
function. Don’t use the user-level command insert-file in a Lisp program, as that sets the
mark.

Functioninsert-file-contents filename &optional visit beg end replace
This function inserts the contents of file filename into the current buffer after point. It
returns a list of the absolute file name and the length of the data inserted. An error is
signaled if filename is not the name of a file that can be read.
The function insert-file-contents checks the file contents against the defined file for-
mats, and converts the file contents if appropriate. See Section 28.13 [Format Conversion],
page 378. It also calls the functions in the list after-insert-file-functions; see Sec-
tion 36.18.5 [Saving Properties], page 491.
If visit is non-nil, this function additionally marks the buffer as unmodified and sets
up various fields in the buffer so that it is visiting the file filename: these include the
buffer’s visited file name and its last save file modtime. This feature is used by find-
file-noselect and you probably should not use it yourself.
If beg and end are non-nil, they should be integers specifying the portion of the file to
insert. In this case, visit must be nil. For example,

360 XEmacs Lisp Reference Manual

(insert-file-contents filename nil 0 500)

inserts the first 500 characters of a file.
If the argument replace is non-nil, it means to replace the contents of the buffer (actually,
just the accessible portion) with the contents of the file. This is better than simply deleting
the buffer contents and inserting the whole file, because (1) it preserves some marker
positions and (2) it puts less data in the undo list.

If you want to pass a file name to another process so that another program can read the file,
use the function file-local-copy; see Section 28.11 [Magic File Names], page 375.

28.4 Writing to Files

You can write the contents of a buffer, or part of a buffer, directly to a file on disk using the
append-to-file and write-region functions. Don’t use these functions to write to files that
are being visited; that could cause confusion in the mechanisms for visiting.

Commandappend-to-file start end filename
This function appends the contents of the region delimited by start and end in the current
buffer to the end of file filename. If that file does not exist, it is created. If that file exists
it is overwritten. This function returns nil.
An error is signaled if filename specifies a nonwritable file, or a nonexistent file in a
directory where files cannot be created.

Commandwrite-region start end filename &optional append visit
This function writes the region delimited by start and end in the current buffer into the
file specified by filename.
If start is a string, then write-region writes or appends that string, rather than text
from the buffer.
If append is non-nil, then the specified text is appended to the existing file contents (if
any).
If visit is t, then XEmacs establishes an association between the buffer and the file: the
buffer is then visiting that file. It also sets the last file modification time for the current
buffer to filename’s modtime, and marks the buffer as not modified. This feature is used
by save-buffer, but you probably should not use it yourself.
If visit is a string, it specifies the file name to visit. This way, you can write the data to
one file (filename) while recording the buffer as visiting another file (visit). The argument
visit is used in the echo area message and also for file locking; visit is stored in buffer-
file-name. This feature is used to implement file-precious-flag; don’t use it yourself
unless you really know what you’re doing.
The function write-region converts the data which it writes to the appropriate file
formats specified by buffer-file-format. See Section 28.13 [Format Conversion],
page 378. It also calls the functions in the list write-region-annotate-functions;
see Section 36.18.5 [Saving Properties], page 491.
Normally, write-region displays a message ‘Wrote file filename’ in the echo area. If
visit is neither t nor nil nor a string, then this message is inhibited. This feature is useful
for programs that use files for internal purposes, files that the user does not need to know
about.

Chapter 28: Files 361

28.5 File Locks

When two users edit the same file at the same time, they are likely to interfere with each
other. XEmacs tries to prevent this situation from arising by recording a file lock when a file is
being modified. XEmacs can then detect the first attempt to modify a buffer visiting a file that
is locked by another XEmacs process, and ask the user what to do.

File locks do not work properly when multiple machines can share file systems, such as with
NFS. Perhaps a better file locking system will be implemented in the future. When file locks
do not work, it is possible for two users to make changes simultaneously, but XEmacs can still
warn the user who saves second. Also, the detection of modification of a buffer visiting a file
changed on disk catches some cases of simultaneous editing; see Section 30.6 [Modification Time],
page 396.

Functionfile-locked-p &optional filename
This function returns nil if the file filename is not locked by this XEmacs process. It
returns t if it is locked by this XEmacs, and it returns the name of the user who has
locked it if it is locked by someone else.

(file-locked-p "foo")
⇒ nil

Functionlock-buffer &optional filename
This function locks the file filename, if the current buffer is modified. The argument
filename defaults to the current buffer’s visited file. Nothing is done if the current buffer
is not visiting a file, or is not modified.

Functionunlock-buffer
This function unlocks the file being visited in the current buffer, if the buffer is modified.
If the buffer is not modified, then the file should not be locked, so this function does
nothing. It also does nothing if the current buffer is not visiting a file.

Functionask-user-about-lock file other-user
This function is called when the user tries to modify file, but it is locked by another user
named other-user. The value it returns determines what happens next:

• A value of t says to grab the lock on the file. Then this user may edit the file and
other-user loses the lock.

• A value of nil says to ignore the lock and let this user edit the file anyway.
• This function may instead signal a file-locked error, in which case the change that

the user was about to make does not take place.
The error message for this error looks like this:

error File is locked: file other-user

where file is the name of the file and other-user is the name of the user who has
locked the file.

The default definition of this function asks the user to choose what to do. If you wish,
you can replace the ask-user-about-lock function with your own version that decides
in another way. The code for its usual definition is in ‘userlock.el’.

362 XEmacs Lisp Reference Manual

28.6 Information about Files

The functions described in this section all operate on strings that designate file names. All the
functions have names that begin with the word ‘file’. These functions all return information
about actual files or directories, so their arguments must all exist as actual files or directories
unless otherwise noted.

28.6.1 Testing Accessibility

These functions test for permission to access a file in specific ways.

Functionfile-exists-p filename
This function returns t if a file named filename appears to exist. This does not mean
you can necessarily read the file, only that you can find out its attributes. (On Unix, this
is true if the file exists and you have execute permission on the containing directories,
regardless of the protection of the file itself.)
If the file does not exist, or if fascist access control policies prevent you from finding the
attributes of the file, this function returns nil.

Functionfile-readable-p filename
This function returns t if a file named filename exists and you can read it. It returns nil
otherwise.

(file-readable-p "files.texi")
⇒ t

(file-exists-p "/usr/spool/mqueue")
⇒ t

(file-readable-p "/usr/spool/mqueue")
⇒ nil

Functionfile-executable-p filename
This function returns t if a file named filename exists and you can execute it. It returns
nil otherwise. If the file is a directory, execute permission means you can check the
existence and attributes of files inside the directory, and open those files if their modes
permit.

Functionfile-writable-p filename
This function returns t if the file filename can be written or created by you, and nil
otherwise. A file is writable if the file exists and you can write it. It is creatable if it does
not exist, but the specified directory does exist and you can write in that directory.
In the third example below, ‘foo’ is not writable because the parent directory does not
exist, even though the user could create such a directory.

(file-writable-p "~/foo")
⇒ t

(file-writable-p "/foo")
⇒ nil

(file-writable-p "~/no-such-dir/foo")
⇒ nil

Chapter 28: Files 363

Functionfile-accessible-directory-p dirname
This function returns t if you have permission to open existing files in the directory whose
name as a file is dirname; otherwise (or if there is no such directory), it returns nil. The
value of dirname may be either a directory name or the file name of a directory.
Example: after the following,

(file-accessible-directory-p "/foo")
⇒ nil

we can deduce that any attempt to read a file in ‘/foo/’ will give an error.

Functionfile-ownership-preserved-p filename
This function returns t if deleting the file filename and then creating it anew would keep
the file’s owner unchanged.

Functionfile-newer-than-file-p filename1 filename2
This function returns t if the file filename1 is newer than file filename2. If filename1 does
not exist, it returns nil. If filename2 does not exist, it returns t.
In the following example, assume that the file ‘aug-19’ was written on the 19th, ‘aug-20’
was written on the 20th, and the file ‘no-file’ doesn’t exist at all.

(file-newer-than-file-p "aug-19" "aug-20")
⇒ nil

(file-newer-than-file-p "aug-20" "aug-19")
⇒ t

(file-newer-than-file-p "aug-19" "no-file")
⇒ t

(file-newer-than-file-p "no-file" "aug-19")
⇒ nil

You can use file-attributes to get a file’s last modification time as a list of two numbers.
See Section 28.6.4 [File Attributes], page 364.

28.6.2 Distinguishing Kinds of Files

This section describes how to distinguish various kinds of files, such as directories, symbolic
links, and ordinary files.

Functionfile-symlink-p filename
If the file filename is a symbolic link, the file-symlink-p function returns the file name
to which it is linked. This may be the name of a text file, a directory, or even another
symbolic link, or it may be a nonexistent file name.
If the file filename is not a symbolic link (or there is no such file), file-symlink-p returns
nil.

(file-symlink-p "foo")
⇒ nil

(file-symlink-p "sym-link")
⇒ "foo"

(file-symlink-p "sym-link2")
⇒ "sym-link"

(file-symlink-p "/bin")
⇒ "/pub/bin"

364 XEmacs Lisp Reference Manual

Functionfile-directory-p filename
This function returns t if filename is the name of an existing directory, nil otherwise.

(file-directory-p "~rms")
⇒ t

(file-directory-p "~rms/lewis/files.texi")
⇒ nil

(file-directory-p "~rms/lewis/no-such-file")
⇒ nil

(file-directory-p "$HOME")
⇒ nil

(file-directory-p
(substitute-in-file-name "$HOME"))

⇒ t

Functionfile-regular-p filename
This function returns t if the file filename exists and is a regular file (not a directory,
symbolic link, named pipe, terminal, or other I/O device).

28.6.3 Truenames

The truename of a file is the name that you get by following symbolic links until none remain,
then expanding to get rid of ‘.’ and ‘..’ as components. Strictly speaking, a file need not have
a unique truename; the number of distinct truenames a file has is equal to the number of hard
links to the file. However, truenames are useful because they eliminate symbolic links as a cause
of name variation.

Functionfile-truename filename &optional default
The function file-truename returns the true name of the file filename. This is the name
that you get by following symbolic links until none remain.
If the filename is relative, default is the directory to start with. If default is nil or missing,
the current buffer’s value of default-directory is used.

See Section 30.4 [Buffer File Name], page 394, for related information.

28.6.4 Other Information about Files

This section describes the functions for getting detailed information about a file, other than
its contents. This information includes the mode bits that control access permission, the owner
and group numbers, the number of names, the inode number, the size, and the times of access
and modification.

Functionfile-modes filename
This function returns the mode bits of filename, as an integer. The mode bits are also
called the file permissions, and they specify access control in the usual Unix fashion. If
the low-order bit is 1, then the file is executable by all users, if the second-lowest-order
bit is 1, then the file is writable by all users, etc.
The highest value returnable is 4095 (7777 octal), meaning that everyone has read, write,
and execute permission, that the suid bit is set for both others and group, and that the
sticky bit is set.

Chapter 28: Files 365

(file-modes "~/junk/diffs")
⇒ 492 ; Decimal integer.

(format "%o" 492)
⇒ "754" ; Convert to octal.

(set-file-modes "~/junk/diffs" 438)
⇒ nil

(format "%o" 438)
⇒ "666" ; Convert to octal.

% ls -l diffs
-rw-rw-rw- 1 lewis 0 3063 Oct 30 16:00 diffs

Functionfile-nlinks filename
This functions returns the number of names (i.e., hard links) that file filename has. If the
file does not exist, then this function returns nil. Note that symbolic links have no effect
on this function, because they are not considered to be names of the files they link to.

% ls -l foo*
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo
-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo1

(file-nlinks "foo")
⇒ 2

(file-nlinks "doesnt-exist")
⇒ nil

Functionfile-attributes filename
This function returns a list of attributes of file filename. If the specified file cannot be
opened, it returns nil.
The elements of the list, in order, are:
0. t for a directory, a string for a symbolic link (the name linked to), or nil for a text

file.
1. The number of names the file has. Alternate names, also known as hard links, can

be created by using the add-name-to-file function (see Section 28.7 [Changing File
Attributes], page 366).

2. The file’s uid.
3. The file’s gid.
4. The time of last access, as a list of two integers. The first integer has the high-order

16 bits of time, the second has the low 16 bits. (This is similar to the value of
current-time; see Section 50.5 [Time of Day], page 633.)

5. The time of last modification as a list of two integers (as above).
6. The time of last status change as a list of two integers (as above).
7. The size of the file in bytes.
8. The file’s modes, as a string of ten letters or dashes, as in ‘ls -l’.
9. t if the file’s gid would change if file were deleted and recreated; nil otherwise.

10. The file’s inode number.
11. The file system number of the file system that the file is in. This element and the

file’s inode number together give enough information to distinguish any two files on
the system—no two files can have the same values for both of these numbers.

For example, here are the file attributes for ‘files.texi’:

366 XEmacs Lisp Reference Manual

(file-attributes "files.texi")
⇒ (nil

1
2235
75
(8489 20284)
(8489 20284)
(8489 20285)
14906
"-rw-rw-rw-"
nil
129500
-32252)

and here is how the result is interpreted:

nil is neither a directory nor a symbolic link.

1 has only one name (the name ‘files.texi’ in the current default directory).

2235 is owned by the user with uid 2235.

75 is in the group with gid 75.

(8489 20284)
was last accessed on Aug 19 00:09. Use format-time-string to ! convert
this number into a time string. See Section 50.6 [Time Conversion], page 633.

(8489 20284)
was last modified on Aug 19 00:09.

(8489 20285)
last had its inode changed on Aug 19 00:09.

14906 is 14906 characters long.

"-rw-rw-rw-"
has a mode of read and write access for the owner, group, and world.

nil would retain the same gid if it were recreated.

129500 has an inode number of 129500.

-32252 is on file system number -32252.

28.7 Changing File Names and Attributes

The functions in this section rename, copy, delete, link, and set the modes of files.
In the functions that have an argument newname, if a file by the name of newname already

exists, the actions taken depend on the value of the argument ok-if-already-exists:
• Signal a file-already-exists error if ok-if-already-exists is nil.
• Request confirmation if ok-if-already-exists is a number.
• Replace the old file without confirmation if ok-if-already-exists is any other value.

Commandadd-name-to-file oldname newname &optional ok-if-already-exists
This function gives the file named oldname the additional name newname. This means
that newname becomes a new “hard link” to oldname.
In the first part of the following example, we list two files, ‘foo’ and ‘foo3’.

Chapter 28: Files 367

% ls -l fo*
-rw-rw-rw- 1 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Then we evaluate the form (add-name-to-file "~/lewis/foo" "~/lewis/foo2").
Again we list the files. This shows two names, ‘foo’ and ‘foo2’.

(add-name-to-file "~/lewis/foo1" "~/lewis/foo2")
⇒ nil

% ls -l fo*
-rw-rw-rw- 2 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 2 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Finally, we evaluate the following:

(add-name-to-file "~/lewis/foo" "~/lewis/foo3" t)

and list the files again. Now there are three names for one file: ‘foo’, ‘foo2’, and ‘foo3’.
The old contents of ‘foo3’ are lost.

(add-name-to-file "~/lewis/foo1" "~/lewis/foo3")
⇒ nil

% ls -l fo*
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo3

This function is meaningless on VMS, where multiple names for one file are not allowed.
See also file-nlinks in Section 28.6.4 [File Attributes], page 364.

Commandrename-file filename newname &optional ok-if-already-exists
This command renames the file filename as newname.
If filename has additional names aside from filename, it continues to have those names.
In fact, adding the name newname with add-name-to-file and then deleting filename
has the same effect as renaming, aside from momentary intermediate states.
In an interactive call, this function prompts for filename and newname in the minibuffer;
also, it requests confirmation if newname already exists.

Commandcopy-file oldname newname &optional ok-if-exists time
This command copies the file oldname to newname. An error is signaled if oldname does
not exist.
If time is non-nil, then this functions gives the new file the same last-modified time that
the old one has. (This works on only some operating systems.)
In an interactive call, this function prompts for filename and newname in the minibuffer;
also, it requests confirmation if newname already exists.

Commanddelete-file filename
This command deletes the file filename, like the shell command ‘rm filename’. If the file
has multiple names, it continues to exist under the other names.
A suitable kind of file-error error is signaled if the file does not exist, or is not deletable.
(On Unix, a file is deletable if its directory is writable.)
See also delete-directory in Section 28.10 [Create/Delete Dirs], page 375.

368 XEmacs Lisp Reference Manual

Commandmake-symbolic-link filename newname &optional ok-if-exists
This command makes a symbolic link to filename, named newname. This is like the shell
command ‘ln -s filename newname’.
In an interactive call, this function prompts for filename and newname in the minibuffer;
also, it requests confirmation if newname already exists.

Functiondefine-logical-name varname string
This function defines the logical name name to have the value string. It is available only
on VMS.

Functionset-file-modes filename mode
This function sets mode bits of filename to mode (which must be an integer). Only the
low 12 bits of mode are used.

Functionset-default-file-modes mode
This function sets the default file protection for new files created by XEmacs and its
subprocesses. Every file created with XEmacs initially has this protection. On Unix, the
default protection is the bitwise complement of the “umask” value.
The argument mode must be an integer. Only the low 9 bits of mode are used.
Saving a modified version of an existing file does not count as creating the file; it does not
change the file’s mode, and does not use the default file protection.

Functiondefault-file-modes
This function returns the current default protection value.

On MS-DOS, there is no such thing as an “executable” file mode bit. So Emacs considers a
file executable if its name ends in ‘.com’, ‘.bat’ or ‘.exe’. This is reflected in the values returned
by file-modes and file-attributes.

28.8 File Names

Files are generally referred to by their names, in XEmacs as elsewhere. File names in XEmacs
are represented as strings. The functions that operate on a file all expect a file name argument.

In addition to operating on files themselves, XEmacs Lisp programs often need to operate
on the names; i.e., to take them apart and to use part of a name to construct related file names.
This section describes how to manipulate file names.

The functions in this section do not actually access files, so they can operate on file names
that do not refer to an existing file or directory.

On VMS, all these functions understand both VMS file-name syntax and Unix syntax. This
is so that all the standard Lisp libraries can specify file names in Unix syntax and work properly
on VMS without change. On MS-DOS, these functions understand MS-DOS file-name syntax
as well as Unix syntax.

28.8.1 File Name Components

The operating system groups files into directories. To specify a file, you must specify the
directory and the file’s name within that directory. Therefore, XEmacs considers a file name
as having two main parts: the directory name part, and the nondirectory part (or file name

Chapter 28: Files 369

within the directory). Either part may be empty. Concatenating these two parts reproduces
the original file name.

On Unix, the directory part is everything up to and including the last slash; the nondirectory
part is the rest. The rules in VMS syntax are complicated.

For some purposes, the nondirectory part is further subdivided into the name proper and
the version number. On Unix, only backup files have version numbers in their names; on VMS,
every file has a version number, but most of the time the file name actually used in XEmacs
omits the version number. Version numbers are found mostly in directory lists.

Functionfile-name-directory filename
This function returns the directory part of filename (or nil if filename does not include
a directory part). On Unix, the function returns a string ending in a slash. On VMS, it
returns a string ending in one of the three characters ‘:’, ‘]’, or ‘>’.

(file-name-directory "lewis/foo") ; Unix example
⇒ "lewis/"

(file-name-directory "foo") ; Unix example
⇒ nil

(file-name-directory "[X]FOO.TMP") ; VMS example
⇒ "[X]"

Functionfile-name-nondirectory filename
This function returns the nondirectory part of filename.

(file-name-nondirectory "lewis/foo")
⇒ "foo"

(file-name-nondirectory "foo")
⇒ "foo"

;; The following example is accurate only on VMS.
(file-name-nondirectory "[X]FOO.TMP")

⇒ "FOO.TMP"

Functionfile-name-sans-versions filename &optional keep-backup-version
This function returns filename without any file version numbers, backup version numbers,
or trailing tildes.
If keep-backup-version is non-nil, we do not remove backup version numbers, only true
file version numbers.

(file-name-sans-versions "~rms/foo.~1~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo~")
⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo")
⇒ "~rms/foo"

;; The following example applies to VMS only.
(file-name-sans-versions "foo;23")

⇒ "foo"

Functionfile-name-sans-extension filename
This function returns filename minus its “extension,” if any. The extension, in a file name,
is the part that starts with the last ‘.’ in the last name component. For example,

370 XEmacs Lisp Reference Manual

(file-name-sans-extension "foo.lose.c")
⇒ "foo.lose"

(file-name-sans-extension "big.hack/foo")
⇒ "big.hack/foo"

28.8.2 Directory Names

A directory name is the name of a directory. A directory is a kind of file, and it has a file
name, which is related to the directory name but not identical to it. (This is not quite the same
as the usual Unix terminology.) These two different names for the same entity are related by
a syntactic transformation. On Unix, this is simple: a directory name ends in a slash, whereas
the directory’s name as a file lacks that slash. On VMS, the relationship is more complicated.

The difference between a directory name and its name as a file is subtle but crucial. When
an XEmacs variable or function argument is described as being a directory name, a file name of
a directory is not acceptable.

The following two functions convert between directory names and file names. They do nothing
special with environment variable substitutions such as ‘$HOME’, and the constructs ‘~’, and ‘..’.

Functionfile-name-as-directory filename
This function returns a string representing filename in a form that the operating system
will interpret as the name of a directory. In Unix, this means appending a slash to the
string. On VMS, the function converts a string of the form ‘[X]Y.DIR.1’ to the form
‘[X.Y]’.

(file-name-as-directory "~rms/lewis")
⇒ "~rms/lewis/"

Functiondirectory-file-name dirname
This function returns a string representing dirname in a form that the operating system
will interpret as the name of a file. On Unix, this means removing a final slash from the
string. On VMS, the function converts a string of the form ‘[X.Y]’ to ‘[X]Y.DIR.1’.

(directory-file-name "~lewis/")
⇒ "~lewis"

Directory name abbreviations are useful for directories that are normally accessed through
symbolic links. Sometimes the users recognize primarily the link’s name as “the name” of the
directory, and find it annoying to see the directory’s “real” name. If you define the link name
as an abbreviation for the “real” name, XEmacs shows users the abbreviation instead.

If you wish to convert a directory name to its abbreviation, use this function:

Functionabbreviate-file-name dirname &optional hack-homedir
This function applies abbreviations from directory-abbrev-alist to its argument, and
substitutes ‘~’ for the user’s home directory.
If hack-homedir is non-nil, then this also substitutes ‘~’ for the user’s home directory.

Variabledirectory-abbrev-alist
The variable directory-abbrev-alist contains an alist of abbreviations to use for file
directories. Each element has the form (from . to), and says to replace from with to when
it appears in a directory name. The from string is actually a regular expression; it should
always start with ‘^’. The function abbreviate-file-name performs these substitutions.

Chapter 28: Files 371

You can set this variable in ‘site-init.el’ to describe the abbreviations appropriate for
your site.
Here’s an example, from a system on which file system ‘/home/fsf’ and so on are normally
accessed through symbolic links named ‘/fsf’ and so on.

(("^/home/fsf" . "/fsf")
("^/home/gp" . "/gp")
("^/home/gd" . "/gd"))

28.8.3 Absolute and Relative File Names

All the directories in the file system form a tree starting at the root directory. A file name
can specify all the directory names starting from the root of the tree; then it is called an absolute
file name. Or it can specify the position of the file in the tree relative to a default directory;
then it is called a relative file name. On Unix, an absolute file name starts with a slash or a
tilde (‘~’), and a relative one does not. The rules on VMS are complicated.

Functionfile-name-absolute-p filename
This function returns t if file filename is an absolute file name, nil otherwise. On VMS,
this function understands both Unix syntax and VMS syntax.

(file-name-absolute-p "~rms/foo")
⇒ t

(file-name-absolute-p "rms/foo")
⇒ nil

(file-name-absolute-p "/user/rms/foo")
⇒ t

28.8.4 Functions that Expand Filenames

Expansion of a file name means converting a relative file name to an absolute one. Since this
is done relative to a default directory, you must specify the default directory name as well as
the file name to be expanded. Expansion also simplifies file names by eliminating redundancies
such as ‘./’ and ‘name/../’.

Functionexpand-file-name filename &optional directory
This function converts filename to an absolute file name. If directory is supplied, it is the
directory to start with if filename is relative. (The value of directory should itself be an
absolute directory name; it may start with ‘~’.) Otherwise, the current buffer’s value of
default-directory is used. For example:

(expand-file-name "foo")
⇒ "/xcssun/users/rms/lewis/foo"

(expand-file-name "../foo")
⇒ "/xcssun/users/rms/foo"

(expand-file-name "foo" "/usr/spool/")
⇒ "/usr/spool/foo"

(expand-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/lewis/$HOME/foo"

Filenames containing ‘.’ or ‘..’ are simplified to their canonical form:

372 XEmacs Lisp Reference Manual

(expand-file-name "bar/../foo")
⇒ "/xcssun/users/rms/lewis/foo"

‘~/’ at the beginning is expanded into the user’s home directory. A ‘/’ or ‘~’ following a
‘/’.

Note that expand-file-name does not expand environment variables; only substitute-
in-file-name does that.

Functionfile-relative-name filename &optional directory
This function does the inverse of expansion—it tries to return a relative name that is
equivalent to filename when interpreted relative to directory.

If directory is nil or omitted, the value of default-directory is used.

(file-relative-name "/foo/bar" "/foo/")
⇒ "bar")

(file-relative-name "/foo/bar" "/hack/")
⇒ "../foo/bar")

Variabledefault-directory
The value of this buffer-local variable is the default directory for the current buffer. It
should be an absolute directory name; it may start with ‘~’. This variable is local in every
buffer.

expand-file-name uses the default directory when its second argument is nil.

On Unix systems, the value is always a string ending with a slash.

default-directory
⇒ "/user/lewis/manual/"

Functionsubstitute-in-file-name filename
This function replaces environment variable references in filename with the environment
variable values. Following standard Unix shell syntax, ‘$’ is the prefix to substitute an
environment variable value.

The environment variable name is the series of alphanumeric characters (including under-
scores) that follow the ‘$’. If the character following the ‘$’ is a ‘{’, then the variable
name is everything up to the matching ‘}’.

Here we assume that the environment variable HOME, which holds the user’s home directory
name, has value ‘/xcssun/users/rms’.

(substitute-in-file-name "$HOME/foo")
⇒ "/xcssun/users/rms/foo"

After substitution, a ‘/’ or ‘~’ following a ‘/’ is taken to be the start of an absolute file
name that overrides what precedes it, so everything before that ‘/’ or ‘~’ is deleted. For
example:

(substitute-in-file-name "bar/~/foo")
⇒ "~/foo"

(substitute-in-file-name "/usr/local/$HOME/foo")
⇒ "/xcssun/users/rms/foo"

On VMS, ‘$’ substitution is not done, so this function does nothing on VMS except discard
superfluous initial components as shown above.

Chapter 28: Files 373

28.8.5 Generating Unique File Names

Some programs need to write temporary files. Here is the usual way to construct a name for
such a file:

(make-temp-name (expand-file-name name-of-application (temp-directory)))

Here we use (temp-directory) to specify a directory for temporary files—under Unix, it will
normally evaluate to ‘"/tmp/"’. The job of make-temp-name is to prevent two different users or
two different processes from trying to use the same name.

Functiontemp-directory
This function returns the name of the directory to use for temporary files. Under Unix,
this will be the value of TMPDIR, defaulting to ‘/tmp’. On Windows, this will be obtained
from the TEMP or TMP environment variables, defaulting to ‘/’.
Note that the temp-directory function does not exist under FSF Emacs.

Functionmake-temp-name prefix
This function generates a temporary file name starting with prefix. The Emacs process
number forms part of the result, so there is no danger of generating a name being used by
another process.

(make-temp-name "/tmp/foo")
⇒ "/tmp/fooGaAQjC"

In addition, this function makes an attempt to choose a name that does not specify an
existing file. To make this work, prefix should be an absolute file name.
To avoid confusion, each Lisp application should preferably use a unique prefix to make-
temp-name.

28.8.6 File Name Completion

This section describes low-level subroutines for completing a file name. For other completion
functions, see Section 18.5 [Completion], page 241.

Functionfile-name-all-completions partial-filename directory
This function returns a list of all possible completions for a file whose name starts with
partial-filename in directory directory. The order of the completions is the order of the
files in the directory, which is unpredictable and conveys no useful information.
The argument partial-filename must be a file name containing no directory part and no
slash. The current buffer’s default directory is prepended to directory, if directory is not
absolute.
In the following example, suppose that the current default directory, ‘~rms/lewis’,
has five files whose names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’, and
‘file.c.~2~’.

(file-name-all-completions "f" "")
⇒ ("foo" "file~" "file.c.~2~"

"file.c.~1~" "file.c")

(file-name-all-completions "fo" "")
⇒ ("foo")

374 XEmacs Lisp Reference Manual

Functionfile-name-completion filename directory
This function completes the file name filename in directory directory. It returns the
longest prefix common to all file names in directory directory that start with filename.
If only one match exists and filename matches it exactly, the function returns t. The
function returns nil if directory directory contains no name starting with filename.
In the following example, suppose that the current default directory has five files whose
names begin with ‘f’: ‘foo’, ‘file~’, ‘file.c’, ‘file.c.~1~’, and ‘file.c.~2~’.

(file-name-completion "fi" "")
⇒ "file"

(file-name-completion "file.c.~1" "")
⇒ "file.c.~1~"

(file-name-completion "file.c.~1~" "")
⇒ t

(file-name-completion "file.c.~3" "")
⇒ nil

User Optioncompletion-ignored-extensions
file-name-completion usually ignores file names that end in any string in this list. It
does not ignore them when all the possible completions end in one of these suffixes or
when a buffer showing all possible completions is displayed.
A typical value might look like this:

completion-ignored-extensions
⇒ (".o" ".elc" "~" ".dvi")

28.9 Contents of Directories

A directory is a kind of file that contains other files entered under various names. Directories
are a feature of the file system.

XEmacs can list the names of the files in a directory as a Lisp list, or display the names in
a buffer using the ls shell command. In the latter case, it can optionally display information
about each file, depending on the value of switches passed to the ls command.

Functiondirectory-files directory &optional full-name match-regexp nosort files-only
This function returns a list of the names of the files in the directory directory. By default,
the list is in alphabetical order.
If full-name is non-nil, the function returns the files’ absolute file names. Otherwise, it
returns just the names relative to the specified directory.
If match-regexp is non-nil, this function returns only those file names that contain that
regular expression—the other file names are discarded from the list.
If nosort is non-nil, directory-files does not sort the list, so you get the file names in
no particular order. Use this if you want the utmost possible speed and don’t care what
order the files are processed in. If the order of processing is visible to the user, then the
user will probably be happier if you do sort the names.
If files-only is the symbol t, then only the “files” in the directory will be returned; subdirec-
tories will be excluded. If files-only is not nil and not t, then only the subdirectories will
be returned. Otherwise, if files-only is nil (the default) then both files and subdirectories
will be returned.

Chapter 28: Files 375

(directory-files "~lewis")
⇒ ("#foo#" "#foo.el#" "." ".."

"dired-mods.el" "files.texi"
"files.texi.~1~")

An error is signaled if directory is not the name of a directory that can be read.

Functioninsert-directory file switches &optional wildcard full-directory-p
This function inserts (in the current buffer) a directory listing for directory file, formatted
with ls according to switches. It leaves point after the inserted text.
The argument file may be either a directory name or a file specification including wild-
card characters. If wildcard is non-nil, that means treat file as a file specification with
wildcards.
If full-directory-p is non-nil, that means file is a directory and switches do not contain
‘-d’, so that the listing should show the full contents of the directory. (The ‘-d’ option to
ls says to describe a directory itself rather than its contents.)
This function works by running a directory listing program whose name is in the variable
insert-directory-program. If wildcard is non-nil, it also runs the shell specified by
shell-file-name, to expand the wildcards.

Variableinsert-directory-program
This variable’s value is the program to run to generate a directory listing for the function
insert-directory.

28.10 Creating and Deleting Directories

Most XEmacs Lisp file-manipulation functions get errors when used on files that are direc-
tories. For example, you cannot delete a directory with delete-file. These special functions
exist to create and delete directories.

Commandmake-directory dirname &optional parents
This function creates a directory named dirname. Interactively, the default choice of
directory to create is the current default directory for file names. That is useful when you
have visited a file in a nonexistent directory.
Non-interactively, optional argument parents says whether to create parent directories if
they don’t exist. (Interactively, this always happens.)

Commanddelete-directory dirname
This function deletes the directory named dirname. The function delete-file does not
work for files that are directories; you must use delete-directory in that case.

28.11 Making Certain File Names “Magic”

You can implement special handling for certain file names. This is called making those names
magic. You must supply a regular expression to define the class of names (all those that match
the regular expression), plus a handler that implements all the primitive XEmacs file operations
for file names that do match.

The variable file-name-handler-alist holds a list of handlers, together with regular ex-
pressions that determine when to apply each handler. Each element has this form:

376 XEmacs Lisp Reference Manual

(regexp . handler)

All the XEmacs primitives for file access and file name transformation check the given file name
against file-name-handler-alist. If the file name matches regexp, the primitives handle that
file by calling handler.

The first argument given to handler is the name of the primitive; the remaining arguments
are the arguments that were passed to that operation. (The first of these arguments is typically
the file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:

(funcall handler ’file-exists-p filename)

Here are the operations that a magic file name handler gets to handle:

add-name-to-file, copy-file, delete-directory, delete-file,
diff-latest-backup-file, directory-file-name, directory-files, dired-compress-
file, dired-uncache, expand-file-name,
file-accessible-directory-p, file-attributes, file-directory-p, file-executable-p,
file-exists-p, file-local-copy, file-modes, file-name-all-completions, file-name-
as-directory, file-name-completion, file-name-directory, file-name-nondirectory,
file-name-sans-versions, file-newer-than-file-p, file-readable-p, file-regular-p,
file-symlink-p, file-truename, file-writable-p, get-file-buffer, insert-directory,
insert-file-contents, load, make-directory, make-symbolic-link, rename-file,
set-file-modes, set-visited-file-modtime, unhandled-file-name-directory,
verify-visited-file-modtime, write-region.

Handlers for insert-file-contents typically need to clear the buffer’s modified flag, with
(set-buffer-modified-p nil), if the visit argument is non-nil. This also has the effect of
unlocking the buffer if it is locked.

The handler function must handle all of the above operations, and possibly others to be
added in the future. It need not implement all these operations itself—when it has nothing
special to do for a certain operation, it can reinvoke the primitive, to handle the operation “in
the usual way”. It should always reinvoke the primitive for an operation it does not recognize.
Here’s one way to do this:

(defun my-file-handler (operation &rest args)
;; First check for the specific operations
;; that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)

((eq operation ’write-region) ...)
...
;; Handle any operation we don’t know about.
(t (let ((inhibit-file-name-handlers

(cons ’my-file-handler
(and (eq inhibit-file-name-operation operation)

inhibit-file-name-handlers)))
(inhibit-file-name-operation operation))

(apply operation args)))))

When a handler function decides to call the ordinary Emacs primitive for the operation at
hand, it needs to prevent the primitive from calling the same handler once again, thus leading
to an infinite recursion. The example above shows how to do this, with the variables inhibit-
file-name-handlers and inhibit-file-name-operation. Be careful to use them exactly as
shown above; the details are crucial for proper behavior in the case of multiple handlers, and
for operations that have two file names that may each have handlers.

Chapter 28: Files 377

Variableinhibit-file-name-handlers
This variable holds a list of handlers whose use is presently inhibited for a certain opera-
tion.

Variableinhibit-file-name-operation
The operation for which certain handlers are presently inhibited.

Functionfind-file-name-handler file operation
This function returns the handler function for file name file, or nil if there is none. The
argument operation should be the operation to be performed on the file—the value you
will pass to the handler as its first argument when you call it. The operation is needed
for comparison with inhibit-file-name-operation.

Functionfile-local-copy filename
This function copies file filename to an ordinary non-magic file, if it isn’t one already.

If filename specifies a “magic” file name, which programs outside Emacs cannot directly
read or write, this copies the contents to an ordinary file and returns that file’s name.

If filename is an ordinary file name, not magic, then this function does nothing and returns
nil.

Functionunhandled-file-name-directory filename
This function returns the name of a directory that is not magic. It uses the directory part
of filename if that is not magic. Otherwise, it asks the handler what to do.

This is useful for running a subprocess; every subprocess must have a non-magic directory
to serve as its current directory, and this function is a good way to come up with one.

28.12 Partial Files

28.12.1 Intro to Partial Files

A partial file is a section of a buffer (called the master buffer) that is placed in its own buffer
and treated as its own file. Changes made to the partial file are not reflected in the master
buffer until the partial file is “saved” using the standard buffer save commands. Partial files
can be “reverted” (from the master buffer) just like normal files. When a file part is active on
a master buffer, that section of the master buffer is marked as read-only. Two file parts on the
same master buffer are not allowed to overlap. Partial file buffers are indicated by the words
‘File Part’ in the modeline.

The master buffer knows about all the partial files that are active on it, and thus killing or
reverting the master buffer will be handled properly. When the master buffer is saved, if there
are any unsaved partial files active on it then the user will be given the opportunity to first save
these files.

When a partial file buffer is first modified, the master buffer is automatically marked as
modified so that saving the master buffer will work correctly.

378 XEmacs Lisp Reference Manual

28.12.2 Creating a Partial File

Functionmake-file-part &optional start end name buffer
Make a file part on buffer buffer out of the region. Call it name. This command creates a
new buffer containing the contents of the region and marks the buffer as referring to the
specified buffer, called the master buffer. When the file-part buffer is saved, its changes
are integrated back into the master buffer. When the master buffer is deleted, all file parts
are deleted with it.
When called from a function, expects four arguments, start, end, name, and buffer, all
of which are optional and default to the beginning of buffer, the end of buffer, a name
generated from buffer name, and the current buffer, respectively.

28.12.3 Detached Partial Files

Every partial file has an extent in the master buffer associated with it (called the master
extent), marking where in the master buffer the partial file begins and ends. If the text in
master buffer that is contained by the extent is deleted, then the extent becomes “detached”,
meaning that it no longer refers to a specific region of the master buffer. This can happen either
when the text is deleted directly or when the master buffer is reverted. Neither of these should
happen in normal usage because the master buffer should generally not be edited directly.

Before doing any operation that references a partial file’s master extent, XEmacs checks to
make sure that the extent is not detached. If this is the case, XEmacs warns the user of this
and the master extent is deleted out of the master buffer, disconnecting the file part. The file
part’s filename is cleared and thus must be explicitly specified if the detached file part is to be
saved.

28.13 File Format Conversion

The variable format-alist defines a list of file formats, which describe textual represen-
tations used in files for the data (text, text-properties, and possibly other information) in an
Emacs buffer. Emacs performs format conversion if appropriate when reading and writing files.

Variableformat-alist
This list contains one format definition for each defined file format.

Each format definition is a list of this form:
(name doc-string regexp from-fn to-fn modify mode-fn)

Here is what the elements in a format definition mean:

name The name of this format.

doc-string A documentation string for the format.

regexp A regular expression which is used to recognize files represented in this format.

from-fn A function to call to decode data in this format (to convert file data into the usual
Emacs data representation).
The from-fn is called with two args, begin and end, which specify the part of the
buffer it should convert. It should convert the text by editing it in place. Since this
can change the length of the text, from-fn should return the modified end position.

Chapter 28: Files 379

One responsibility of from-fn is to make sure that the beginning of the file no longer
matches regexp. Otherwise it is likely to get called again.

to-fn A function to call to encode data in this format (to convert the usual Emacs data
representation into this format).
The to-fn is called with two args, begin and end, which specify the part of the buffer
it should convert. There are two ways it can do the conversion:
• By editing the buffer in place. In this case, to-fn should return the end-position

of the range of text, as modified.
• By returning a list of annotations. This is a list of elements of the form (position

. string), where position is an integer specifying the relative position in the text
to be written, and string is the annotation to add there. The list must be sorted
in order of position when to-fn returns it.
When write-region actually writes the text from the buffer to the file, it
intermixes the specified annotations at the corresponding positions. All this
takes place without modifying the buffer.

modify A flag, t if the encoding function modifies the buffer, and nil if it works by returning
a list of annotations.

mode A mode function to call after visiting a file converted from this format.

The function insert-file-contents automatically recognizes file formats when it reads the
specified file. It checks the text of the beginning of the file against the regular expressions of
the format definitions, and if it finds a match, it calls the decoding function for that format.
Then it checks all the known formats over again. It keeps checking them until none of them is
applicable.

Visiting a file, with find-file-noselect or the commands that use it, performs conversion
likewise (because it calls insert-file-contents); it also calls the mode function for each format
that it decodes. It stores a list of the format names in the buffer-local variable buffer-file-
format.

Variablebuffer-file-format
This variable states the format of the visited file. More precisely, this is a list of the file
format names that were decoded in the course of visiting the current buffer’s file. It is
always local in all buffers.

When write-region writes data into a file, it first calls the encoding functions for the formats
listed in buffer-file-format, in the order of appearance in the list.

Functionformat-write-file file format
This command writes the current buffer contents into the file file in format format, and
makes that format the default for future saves of the buffer. The argument format is a
list of format names.

Functionformat-find-file file format
This command finds the file file, converting it according to format format. It also makes
format the default if the buffer is saved later.
The argument format is a list of format names. If format is nil, no conversion takes place.
Interactively, typing just 〈RET〉 for format specifies nil.

Functionformat-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format. If
beg and end are non-nil, they specify which part of the file to read, as in insert-file-
contents (see Section 28.3 [Reading from Files], page 359).

380 XEmacs Lisp Reference Manual

The return value is like what insert-file-contents returns: a list of the absolute file
name and the length of the data inserted (after conversion).
The argument format is a list of format names. If format is nil, no conversion takes place.
Interactively, typing just 〈RET〉 for format specifies nil.

Functionformat-find-file file format
This command finds the file file, converting it according to format format. It also makes
format the default if the buffer is saved later.
The argument format is a list of format names. If format is nil, no conversion takes place.
Interactively, typing just 〈RET〉 for format specifies nil.

Functionformat-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format. If
beg and end are non-nil, they specify which part of the file to read, as in insert-file-
contents (see Section 28.3 [Reading from Files], page 359).
The return value is like what insert-file-contents returns: a list of the absolute file
name and the length of the data inserted (after conversion).
The argument format is a list of format names. If format is nil, no conversion takes place.
Interactively, typing just 〈RET〉 for format specifies nil.

Variableauto-save-file-format
This variable specifies the format to use for auto-saving. Its value is a list of format names,
just like the value of buffer-file-format; but it is used instead of buffer-file-format
for writing auto-save files. This variable is always local in all buffers.

28.14 Files and MS-DOS

Emacs on MS-DOS makes a distinction between text files and binary files. This is necessary
because ordinary text files on MS-DOS use a two character sequence between lines: carriage-
return and linefeed (crlf). Emacs expects just a newline character (a linefeed) between lines.
When Emacs reads or writes a text file on MS-DOS, it needs to convert the line separators. This
means it needs to know which files are text files and which are binary. It makes this decision
when visiting a file, and records the decision in the variable buffer-file-type for use when
the file is saved.

See Section 49.3 [MS-DOS Subprocesses], page 610, for a related feature for subprocesses.

Variablebuffer-file-type
This variable, automatically local in each buffer, records the file type of the buffer’s visited
file. The value is nil for text, t for binary.

Functionfind-buffer-file-type filename
This function determines whether file filename is a text file or a binary file. It returns nil
for text, t for binary.

User Optionfile-name-buffer-file-type-alist
This variable holds an alist for distinguishing text files from binary files. Each element has
the form (regexp . type), where regexp is matched against the file name, and type may
be is nil for text, t for binary, or a function to call to compute which. If it is a function,
then it is called with a single argument (the file name) and should return t or nil.

Chapter 28: Files 381

User Optiondefault-buffer-file-type
This variable specifies the default file type for files whose names don’t indicate anything
in particular. Its value should be nil for text, or t for binary.

Commandfind-file-text filename
Like find-file, but treat the file as text regardless of its name.

Commandfind-file-binary filename
Like find-file, but treat the file as binary regardless of its name.

382 XEmacs Lisp Reference Manual

Chapter 29: Backups and Auto-Saving 383

29 Backups and Auto-Saving

Backup files and auto-save files are two methods by which XEmacs tries to protect the user
from the consequences of crashes or of the user’s own errors. Auto-saving preserves the text
from earlier in the current editing session; backup files preserve file contents prior to the current
session.

29.1 Backup Files

A backup file is a copy of the old contents of a file you are editing. XEmacs makes a backup
file the first time you save a buffer into its visited file. Normally, this means that the backup
file contains the contents of the file as it was before the current editing session. The contents of
the backup file normally remain unchanged once it exists.

Backups are usually made by renaming the visited file to a new name. Optionally, you
can specify that backup files should be made by copying the visited file. This choice makes a
difference for files with multiple names; it also can affect whether the edited file remains owned
by the original owner or becomes owned by the user editing it.

By default, XEmacs makes a single backup file for each file edited. You can alternatively
request numbered backups; then each new backup file gets a new name. You can delete old
numbered backups when you don’t want them any more, or XEmacs can delete them automat-
ically.

29.1.1 Making Backup Files

Functionbackup-buffer
This function makes a backup of the file visited by the current buffer, if appropriate. It is
called by save-buffer before saving the buffer the first time.

Variablebuffer-backed-up
This buffer-local variable indicates whether this buffer’s file has been backed up on account
of this buffer. If it is non-nil, then the backup file has been written. Otherwise, the file
should be backed up when it is next saved (if backups are enabled). This is a permanent
local; kill-local-variables does not alter it.

User Optionmake-backup-files
This variable determines whether or not to make backup files. If it is non-nil, then
XEmacs creates a backup of each file when it is saved for the first time—provided that
backup-inhibited is nil (see below).
The following example shows how to change the make-backup-files variable only in the
‘RMAIL’ buffer and not elsewhere. Setting it nil stops XEmacs from making backups of
the ‘RMAIL’ file, which may save disk space. (You would put this code in your ‘.emacs’
file.)

(add-hook ’rmail-mode-hook
(function (lambda ()

(make-local-variable
’make-backup-files)
(setq make-backup-files nil))))

384 XEmacs Lisp Reference Manual

Variablebackup-enable-predicate
This variable’s value is a function to be called on certain occasions to decide whether a file
should have backup files. The function receives one argument, a file name to consider. If
the function returns nil, backups are disabled for that file. Otherwise, the other variables
in this section say whether and how to make backups.
The default value is this:

(lambda (name)
(or (< (length name) 5)

(not (string-equal "/tmp/"
(substring name 0 5)))))

Variablebackup-inhibited
If this variable is non-nil, backups are inhibited. It records the result of testing backup-
enable-predicate on the visited file name. It can also coherently be used by other
mechanisms that inhibit backups based on which file is visited. For example, VC sets
this variable non-nil to prevent making backups for files managed with a version control
system.
This is a permanent local, so that changing the major mode does not lose its value. Major
modes should not set this variable—they should set make-backup-files instead.

29.1.2 Backup by Renaming or by Copying?

There are two ways that XEmacs can make a backup file:
• XEmacs can rename the original file so that it becomes a backup file, and then write the

buffer being saved into a new file. After this procedure, any other names (i.e., hard links)
of the original file now refer to the backup file. The new file is owned by the user doing the
editing, and its group is the default for new files written by the user in that directory.

• XEmacs can copy the original file into a backup file, and then overwrite the original file with
new contents. After this procedure, any other names (i.e., hard links) of the original file
still refer to the current version of the file. The file’s owner and group will be unchanged.

The first method, renaming, is the default.
The variable backup-by-copying, if non-nil, says to use the second method, which is to copy

the original file and overwrite it with the new buffer contents. The variable file-precious-
flag, if non-nil, also has this effect (as a sideline of its main significance). See Section 28.2
[Saving Buffers], page 357.

Variablebackup-by-copying
If this variable is non-nil, XEmacs always makes backup files by copying.

The following two variables, when non-nil, cause the second method to be used in certain
special cases. They have no effect on the treatment of files that don’t fall into the special cases.

Variablebackup-by-copying-when-linked
If this variable is non-nil, XEmacs makes backups by copying for files with multiple names
(hard links).
This variable is significant only if backup-by-copying is nil, since copying is always used
when that variable is non-nil.

Chapter 29: Backups and Auto-Saving 385

Variablebackup-by-copying-when-mismatch
If this variable is non-nil, XEmacs makes backups by copying in cases where renaming
would change either the owner or the group of the file.
The value has no effect when renaming would not alter the owner or group of the file; that
is, for files which are owned by the user and whose group matches the default for a new
file created there by the user.
This variable is significant only if backup-by-copying is nil, since copying is always used
when that variable is non-nil.

29.1.3 Making and Deleting Numbered Backup Files

If a file’s name is ‘foo’, the names of its numbered backup versions are ‘foo.~v~’, for various
integers v, like this: ‘foo.~1~’, ‘foo.~2~’, ‘foo.~3~’, . . . , ‘foo.~259~’, and so on.

User Optionversion-control
This variable controls whether to make a single non-numbered backup file or multiple
numbered backups.

nil Make numbered backups if the visited file already has numbered backups;
otherwise, do not.

never Do not make numbered backups.

anything else
Make numbered backups.

The use of numbered backups ultimately leads to a large number of backup versions, which
must then be deleted. XEmacs can do this automatically or it can ask the user whether to delete
them.

User Optionkept-new-versions
The value of this variable is the number of newest versions to keep when a new numbered
backup is made. The newly made backup is included in the count. The default value is 2.

User Optionkept-old-versions
The value of this variable is the number of oldest versions to keep when a new numbered
backup is made. The default value is 2.

If there are backups numbered 1, 2, 3, 5, and 7, and both of these variables have the value
2, then the backups numbered 1 and 2 are kept as old versions and those numbered 5 and 7 are
kept as new versions; backup version 3 is excess. The function find-backup-file-name (see
Section 29.1.4 [Backup Names], page 386) is responsible for determining which backup versions
to delete, but does not delete them itself.

User Optiontrim-versions-without-asking
If this variable is non-nil, then saving a file deletes excess backup versions silently. Oth-
erwise, it asks the user whether to delete them.

User Optiondired-kept-versions
This variable specifies how many of the newest backup versions to keep in the Dired com-
mand . (dired-clean-directory). That’s the same thing kept-new-versions specifies
when you make a new backup file. The default value is 2.

386 XEmacs Lisp Reference Manual

29.1.4 Naming Backup Files

The functions in this section are documented mainly because you can customize the naming
conventions for backup files by redefining them. If you change one, you probably need to change
the rest.

Functionbackup-file-name-p filename
This function returns a non-nil value if filename is a possible name for a backup file. A
file with the name filename need not exist; the function just checks the name.

(backup-file-name-p "foo")
⇒ nil

(backup-file-name-p "foo~")
⇒ 3

The standard definition of this function is as follows:
(defun backup-file-name-p (file)

"Return non-nil if FILE is a backup file \
name (numeric or not)..."

(string-match "~$" file))

Thus, the function returns a non-nil value if the file name ends with a ‘~’. (We use
a backslash to split the documentation string’s first line into two lines in the text, but
produce just one line in the string itself.)
This simple expression is placed in a separate function to make it easy to redefine for
customization.

Functionmake-backup-file-name filename
This function returns a string that is the name to use for a non-numbered backup file for
file filename. On Unix, this is just filename with a tilde appended.
The standard definition of this function is as follows:

(defun make-backup-file-name (file)
"Create the non-numeric backup file name for FILE.

..."
(concat file "~"))

You can change the backup-file naming convention by redefining this function. The follow-
ing example redefines make-backup-file-name to prepend a ‘.’ in addition to appending
a tilde:

(defun make-backup-file-name (filename)
(concat "." filename "~"))

(make-backup-file-name "backups.texi")
⇒ ".backups.texi~"

Functionfind-backup-file-name filename
This function computes the file name for a new backup file for filename. It may also
propose certain existing backup files for deletion. find-backup-file-name returns a list
whose car is the name for the new backup file and whose cdr is a list of backup files
whose deletion is proposed.
Two variables, kept-old-versions and kept-new-versions, determine which backup
versions should be kept. This function keeps those versions by excluding them from the
cdr of the value. See Section 29.1.3 [Numbered Backups], page 385.

Chapter 29: Backups and Auto-Saving 387

In this example, the value says that ‘~rms/foo.~5~’ is the name to use for the new backup
file, and ‘~rms/foo.~3~’ is an “excess” version that the caller should consider deleting now.

(find-backup-file-name "~rms/foo")
⇒ ("~rms/foo.~5~" "~rms/foo.~3~")

Functionfile-newest-backup filename
This function returns the name of the most recent backup file for filename, or nil if that
file has no backup files.
Some file comparison commands use this function so that they can automatically compare
a file with its most recent backup.

29.2 Auto-Saving

XEmacs periodically saves all files that you are visiting; this is called auto-saving. Auto-
saving prevents you from losing more than a limited amount of work if the system crashes.
By default, auto-saves happen every 300 keystrokes, or after around 30 seconds of idle time.
See section “Auto-Saving: Protection Against Disasters” in The XEmacs Reference Manual, for
information on auto-save for users. Here we describe the functions used to implement auto-saving
and the variables that control them.

Variablebuffer-auto-save-file-name
This buffer-local variable is the name of the file used for auto-saving the current buffer.
It is nil if the buffer should not be auto-saved.

buffer-auto-save-file-name
=> "/xcssun/users/rms/lewis/#files.texi#"

Commandauto-save-mode arg
When used interactively without an argument, this command is a toggle switch: it turns
on auto-saving of the current buffer if it is off, and vice-versa. With an argument arg,
the command turns auto-saving on if the value of arg is t, a nonempty list, or a positive
integer. Otherwise, it turns auto-saving off.

Functionauto-save-file-name-p filename
This function returns a non-nil value if filename is a string that could be the name of an
auto-save file. It works based on knowledge of the naming convention for auto-save files:
a name that begins and ends with hash marks (‘#’) is a possible auto-save file name. The
argument filename should not contain a directory part.

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#files.texi#"

(auto-save-file-name-p "#files.texi#")
⇒ 0

(auto-save-file-name-p "files.texi")
⇒ nil

The standard definition of this function is as follows:
(defun auto-save-file-name-p (filename)

"Return non-nil if FILENAME can be yielded by..."
(string-match "^#.*#$" filename))

This function exists so that you can customize it if you wish to change the naming con-
vention for auto-save files. If you redefine it, be sure to redefine the function make-auto-
save-file-name correspondingly.

388 XEmacs Lisp Reference Manual

Functionmake-auto-save-file-name
This function returns the file name to use for auto-saving the current buffer. This is just
the file name with hash marks (‘#’) appended and prepended to it. This function does not
look at the variable auto-save-visited-file-name (described below); you should check
that before calling this function.

(make-auto-save-file-name)
⇒ "/xcssun/users/rms/lewis/#backup.texi#"

The standard definition of this function is as follows:
(defun make-auto-save-file-name ()

"Return file name to use for auto-saves \
of current buffer.
..."

(if buffer-file-name
(concat
(file-name-directory buffer-file-name)
"#"
(file-name-nondirectory buffer-file-name)
"#")

(expand-file-name
(concat "#%" (buffer-name) "#"))))

This exists as a separate function so that you can redefine it to customize the naming con-
vention for auto-save files. Be sure to change auto-save-file-name-p in a corresponding
way.

Variableauto-save-visited-file-name
If this variable is non-nil, XEmacs auto-saves buffers in the files they are visiting. That is,
the auto-save is done in the same file that you are editing. Normally, this variable is nil,
so auto-save files have distinct names that are created by make-auto-save-file-name.
When you change the value of this variable, the value does not take effect until the next
time auto-save mode is reenabled in any given buffer. If auto-save mode is already enabled,
auto-saves continue to go in the same file name until auto-save-mode is called again.

Functionrecent-auto-save-p
This function returns t if the current buffer has been auto-saved since the last time it was
read in or saved.

Functionset-buffer-auto-saved
This function marks the current buffer as auto-saved. The buffer will not be auto-saved
again until the buffer text is changed again. The function returns nil.

User Optionauto-save-interval
The value of this variable is the number of characters that XEmacs reads from the keyboard
between auto-saves. Each time this many more characters are read, auto-saving is done
for all buffers in which it is enabled.

User Optionauto-save-timeout
The value of this variable is the number of seconds of idle time that should cause auto-
saving. Each time the user pauses for this long, XEmacs auto-saves any buffers that need
it. (Actually, the specified timeout is multiplied by a factor depending on the size of the
current buffer.)

Chapter 29: Backups and Auto-Saving 389

Variableauto-save-hook
This normal hook is run whenever an auto-save is about to happen.

User Optionauto-save-default
If this variable is non-nil, buffers that are visiting files have auto-saving enabled by
default. Otherwise, they do not.

Commanddo-auto-save &optional no-message current-only
This function auto-saves all buffers that need to be auto-saved. It saves all buffers for
which auto-saving is enabled and that have been changed since the previous auto-save.

Normally, if any buffers are auto-saved, a message that says ‘Auto-saving...’ is displayed
in the echo area while auto-saving is going on. However, if no-message is non-nil, the
message is inhibited.

If current-only is non-nil, only the current buffer is auto-saved.

Functiondelete-auto-save-file-if-necessary
This function deletes the current buffer’s auto-save file if delete-auto-save-files is
non-nil. It is called every time a buffer is saved.

Variabledelete-auto-save-files
This variable is used by the function delete-auto-save-file-if-necessary. If it is
non-nil, Emacs deletes auto-save files when a true save is done (in the visited file). This
saves disk space and unclutters your directory.

Functionrename-auto-save-file
This function adjusts the current buffer’s auto-save file name if the visited file name has
changed. It also renames an existing auto-save file. If the visited file name has not changed,
this function does nothing.

Variablebuffer-saved-size
The value of this buffer-local variable is the length of the current buffer as of the last time
it was read in, saved, or auto-saved. This is used to detect a substantial decrease in size,
and turn off auto-saving in response.

If it is -1, that means auto-saving is temporarily shut off in this buffer due to a substantial
deletion. Explicitly saving the buffer stores a positive value in this variable, thus reenabling
auto-saving. Turning auto-save mode off or on also alters this variable.

Variableauto-save-list-file-name
This variable (if non-nil) specifies a file for recording the names of all the auto-save files.
Each time XEmacs does auto-saving, it writes two lines into this file for each buffer that
has auto-saving enabled. The first line gives the name of the visited file (it’s empty if the
buffer has none), and the second gives the name of the auto-save file.

If XEmacs exits normally, it deletes this file. If XEmacs crashes, you can look in the
file to find all the auto-save files that might contain work that was otherwise lost. The
recover-session command uses these files.

The default name for this file is in your home directory and starts with ‘.saves-’. It also
contains the XEmacs process id and the host name.

390 XEmacs Lisp Reference Manual

29.3 Reverting

If you have made extensive changes to a file and then change your mind about them, you can
get rid of them by reading in the previous version of the file with the revert-buffer command.
See section “Reverting a Buffer” in The XEmacs Reference Manual.

Commandrevert-buffer &optional check-auto-save noconfirm
This command replaces the buffer text with the text of the visited file on disk. This action
undoes all changes since the file was visited or saved.
If the argument check-auto-save is non-nil, and the latest auto-save file is more recent
than the visited file, revert-buffer asks the user whether to use that instead. Otherwise,
it always uses the text of the visited file itself. Interactively, check-auto-save is set if there
is a numeric prefix argument.
Normally, revert-buffer asks for confirmation before it changes the buffer; but if the
argument noconfirm is non-nil, revert-buffer does not ask for confirmation.
Reverting tries to preserve marker positions in the buffer by using the replacement feature
of insert-file-contents. If the buffer contents and the file contents are identical before
the revert operation, reverting preserves all the markers. If they are not identical, reverting
does change the buffer; then it preserves the markers in the unchanged text (if any)
at the beginning and end of the buffer. Preserving any additional markers would be
problematical.

You can customize how revert-buffer does its work by setting these variables—typically,
as buffer-local variables.

Variablerevert-buffer-function
The value of this variable is the function to use to revert this buffer. If non-nil, it is
called as a function with no arguments to do the work of reverting. If the value is nil,
reverting works the usual way.
Modes such as Dired mode, in which the text being edited does not consist of a file’s
contents but can be regenerated in some other fashion, give this variable a buffer-local
value that is a function to regenerate the contents.

Variablerevert-buffer-insert-file-contents-function
The value of this variable, if non-nil, is the function to use to insert the updated contents
when reverting this buffer. The function receives two arguments: first the file name to
use; second, t if the user has asked to read the auto-save file.

Variablebefore-revert-hook
This normal hook is run by revert-buffer before actually inserting the modified
contents—but only if revert-buffer-function is nil.
Font Lock mode uses this hook to record that the buffer contents are no longer fontified.

Variableafter-revert-hook
This normal hook is run by revert-buffer after actually inserting the modified contents—
but only if revert-buffer-function is nil.
Font Lock mode uses this hook to recompute the fonts for the updated buffer contents.

Chapter 30: Buffers 391

30 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the contents
of files that are being visited; there may also be buffers that are not visiting files. While several
buffers may exist at one time, exactly one buffer is designated the current buffer at any time.
Most editing commands act on the contents of the current buffer. Each buffer, including the
current buffer, may or may not be displayed in any windows.

30.1 Buffer Basics

Buffers in Emacs editing are objects that have distinct names and hold text that can be
edited. Buffers appear to Lisp programs as a special data type. You can think of the contents
of a buffer as an extendable string; insertions and deletions may occur in any part of the buffer.
See Chapter 36 [Text], page 463.

A Lisp buffer object contains numerous pieces of information. Some of this information is
directly accessible to the programmer through variables, while other information is accessible
only through special-purpose functions. For example, the visited file name is directly accessible
through a variable, while the value of point is accessible only through a primitive function.

Buffer-specific information that is directly accessible is stored in buffer-local variable bindings,
which are variable values that are effective only in a particular buffer. This feature allows each
buffer to override the values of certain variables. Most major modes override variables such as
fill-column or comment-column in this way. For more information about buffer-local variables
and functions related to them, see Section 10.9 [Buffer-Local Variables], page 141.

For functions and variables related to visiting files in buffers, see Section 28.1 [Visiting Files],
page 355 and Section 28.2 [Saving Buffers], page 357. For functions and variables related to the
display of buffers in windows, see Section 31.6 [Buffers and Windows], page 410.

Functionbufferp object
This function returns t if object is a buffer, nil otherwise.

30.2 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them is
designated as the current buffer. This is the buffer in which most editing takes place, because
most of the primitives for examining or changing text in a buffer operate implicitly on the current
buffer (see Chapter 36 [Text], page 463). Normally the buffer that is displayed on the screen in
the selected window is the current buffer, but this is not always so: a Lisp program can designate
any buffer as current temporarily in order to operate on its contents, without changing what is
displayed on the screen.

The way to designate a current buffer in a Lisp program is by calling set-buffer. The
specified buffer remains current until a new one is designated.

When an editing command returns to the editor command loop, the command loop designates
the buffer displayed in the selected window as current, to prevent confusion: the buffer that the
cursor is in when Emacs reads a command is the buffer that the command will apply to. (See
Chapter 19 [Command Loop], page 255.) Therefore, set-buffer is not the way to switch visibly
to a different buffer so that the user can edit it. For this, you must use the functions described
in Section 31.7 [Displaying Buffers], page 410.

However, Lisp functions that change to a different current buffer should not depend on the
command loop to set it back afterwards. Editing commands written in XEmacs Lisp can be

392 XEmacs Lisp Reference Manual

called from other programs as well as from the command loop. It is convenient for the caller if
the subroutine does not change which buffer is current (unless, of course, that is the subroutine’s
purpose). Therefore, you should normally use set-buffer within a save-excursion that will
restore the current buffer when your function is done (see Section 34.3 [Excursions], page 448).
Here is an example, the code for the command append-to-buffer (with the documentation
string abridged):

(defun append-to-buffer (buffer start end)
"Append to specified buffer the text of the region.

..."
(interactive "BAppend to buffer: \nr")
(let ((oldbuf (current-buffer)))

(save-excursion
(set-buffer (get-buffer-create buffer))
(insert-buffer-substring oldbuf start end))))

This function binds a local variable to the current buffer, and then save-excursion records
the values of point, the mark, and the original buffer. Next, set-buffer makes another buffer
current. Finally, insert-buffer-substring copies the string from the original current buffer
to the new current buffer.

If the buffer appended to happens to be displayed in some window, the next redisplay will
show how its text has changed. Otherwise, you will not see the change immediately on the
screen. The buffer becomes current temporarily during the execution of the command, but this
does not cause it to be displayed.

If you make local bindings (with let or function arguments) for a variable that may also
have buffer-local bindings, make sure that the same buffer is current at the beginning and at
the end of the local binding’s scope. Otherwise you might bind it in one buffer and unbind it in
another! There are two ways to do this. In simple cases, you may see that nothing ever changes
the current buffer within the scope of the binding. Otherwise, use save-excursion to make
sure that the buffer current at the beginning is current again whenever the variable is unbound.

It is not reliable to change the current buffer back with set-buffer, because that won’t do
the job if a quit happens while the wrong buffer is current. Here is what not to do:

(let (buffer-read-only
(obuf (current-buffer)))

(set-buffer ...)
...
(set-buffer obuf))

Using save-excursion, as shown below, handles quitting, errors, and throw, as well as ordinary
evaluation.

(let (buffer-read-only)
(save-excursion

(set-buffer ...)
...))

Functioncurrent-buffer
This function returns the current buffer.

(current-buffer)
⇒ #<buffer buffers.texi>

Functionset-buffer buffer-or-name
This function makes buffer-or-name the current buffer. It does not display the buffer in
the currently selected window or in any other window, so the user cannot necessarily see
the buffer. But Lisp programs can in any case work on it.

Chapter 30: Buffers 393

This function returns the buffer identified by buffer-or-name. An error is signaled if buffer-
or-name does not identify an existing buffer.

30.3 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work on buffers
accept either a buffer or a buffer name as an argument. Any argument called buffer-or-name is
of this sort, and an error is signaled if it is neither a string nor a buffer. Any argument called
buffer must be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names starting with
a space, so that the list-buffers and buffer-menu commands don’t mention them. A name
starting with space also initially disables recording undo information; see Section 36.9 [Undo],
page 474.

Functionbuffer-name &optional buffer
This function returns the name of buffer as a string. If buffer is not supplied, it defaults
to the current buffer.
If buffer-name returns nil, it means that buffer has been killed. See Section 30.10
[Killing Buffers], page 400.

(buffer-name)
⇒ "buffers.texi"

(setq foo (get-buffer "temp"))
⇒ #<buffer temp>

(kill-buffer foo)
⇒ nil

(buffer-name foo)
⇒ nil

foo
⇒ #<killed buffer>

Commandrename-buffer newname &optional unique
This function renames the current buffer to newname. An error is signaled if newname is
not a string, or if there is already a buffer with that name. The function returns nil.
Ordinarily, rename-buffer signals an error if newname is already in use. However, if
unique is non-nil, it modifies newname to make a name that is not in use. Interactively,
you can make unique non-nil with a numeric prefix argument.
One application of this command is to rename the ‘*shell*’ buffer to some other name,
thus making it possible to create a second shell buffer under the name ‘*shell*’.

Functionget-buffer buffer-or-name
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a string
and there is no buffer with that name, the value is nil. If buffer-or-name is a buffer, it
is returned as given. (That is not very useful, so the argument is usually a name.) For
example:

(setq b (get-buffer "lewis"))
⇒ #<buffer lewis>

(get-buffer b)
⇒ #<buffer lewis>

394 XEmacs Lisp Reference Manual

(get-buffer "Frazzle-nots")
⇒ nil

See also the function get-buffer-create in Section 30.9 [Creating Buffers], page 399.

Functiongenerate-new-buffer-name starting-name &optional ignore
This function returns a name that would be unique for a new buffer—but does not create
the buffer. It starts with starting-name, and produces a name not currently in use for any
buffer by appending a number inside of ‘<...>’.
If ignore is given, it specifies a name that is okay to use (if it is in the sequence to be
tried), even if a buffer with that name exists.
See the related function generate-new-buffer in Section 30.9 [Creating Buffers],
page 399.

30.4 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer is
not visiting a file, its buffer file name is nil. Most of the time, the buffer name is the same as
the nondirectory part of the buffer file name, but the buffer file name and the buffer name are
distinct and can be set independently. See Section 28.1 [Visiting Files], page 355.

Functionbuffer-file-name &optional buffer
This function returns the absolute file name of the file that buffer is visiting. If buffer is
not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it defaults
to the current buffer.

(buffer-file-name (other-buffer))
⇒ "/usr/user/lewis/manual/files.texi"

Variablebuffer-file-name
This buffer-local variable contains the name of the file being visited in the current buffer,
or nil if it is not visiting a file. It is a permanent local, unaffected by kill-local-
variables.

buffer-file-name
⇒ "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. See the
definition of set-visited-file-name in ‘files.el’; some of the things done there, such
as changing the buffer name, are not strictly necessary, but others are essential to avoid
confusing XEmacs.

Variablebuffer-file-truename
This buffer-local variable holds the truename of the file visited in the current buffer, or
nil if no file is visited. It is a permanent local, unaffected by kill-local-variables.
See Section 28.6.3 [Truenames], page 364.

Variablebuffer-file-number
This buffer-local variable holds the file number and directory device number of the file
visited in the current buffer, or nil if no file or a nonexistent file is visited. It is a
permanent local, unaffected by kill-local-variables. See Section 28.6.3 [Truenames],
page 364.
The value is normally a list of the form (filenum devnum). This pair of numbers uniquely
identifies the file among all files accessible on the system. See the function file-
attributes, in Section 28.6.4 [File Attributes], page 364, for more information about
them.

Chapter 30: Buffers 395

Functionget-file-buffer filename
This function returns the buffer visiting file filename. If there is no such buffer, it returns
nil. The argument filename, which must be a string, is expanded (see Section 28.8.4
[File Name Expansion], page 371), then compared against the visited file names of all live
buffers.

(get-file-buffer "buffers.texi")
⇒ #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file name.
In such cases, this function returns the first such buffer in the buffer list.

Commandset-visited-file-name filename
If filename is a non-empty string, this function changes the name of the file visited in
current buffer to filename. (If the buffer had no visited file, this gives it one.) The next
time the buffer is saved it will go in the newly-specified file. This command marks the
buffer as modified, since it does not (as far as XEmacs knows) match the contents of
filename, even if it matched the former visited file.
If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file.
When the function set-visited-file-name is called interactively, it prompts for filename
in the minibuffer.
See also clear-visited-file-modtime and verify-visited-file-modtime in Sec-
tion 30.5 [Buffer Modification], page 395.

Variablelist-buffers-directory
This buffer-local variable records a string to display in a buffer listing in place of the
visited file name, for buffers that don’t have a visited file name. Dired buffers use this
variable.

30.5 Buffer Modification

XEmacs keeps a flag called the modified flag for each buffer, to record whether you have
changed the text of the buffer. This flag is set to t whenever you alter the contents of the buffer,
and cleared to nil when you save it. Thus, the flag shows whether there are unsaved changes.
The flag value is normally shown in the modeline (see Section 26.3.2 [Modeline Variables],
page 339), and controls saving (see Section 28.2 [Saving Buffers], page 357) and auto-saving (see
Section 29.2 [Auto-Saving], page 387).

Some Lisp programs set the flag explicitly. For example, the function set-visited-file-
name sets the flag to t, because the text does not match the newly-visited file, even if it is
unchanged from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 36 [Text], page 463.

Functionbuffer-modified-p &optional buffer
This function returns t if the buffer buffer has been modified since it was last read in from
a file or saved, or nil otherwise. If buffer is not supplied, the current buffer is tested.

Functionset-buffer-modified-p flag
This function marks the current buffer as modified if flag is non-nil, or as unmodified if
the flag is nil.
Another effect of calling this function is to cause unconditional redisplay of the modeline
for the current buffer. In fact, the function redraw-modeline works by doing this:

(set-buffer-modified-p (buffer-modified-p))

396 XEmacs Lisp Reference Manual

Commandnot-modified &optional arg
This command marks the current buffer as unmodified, and not needing to be saved.
(If arg is non-nil, the buffer is instead marked as modified.) Don’t use this function in
programs, since it prints a message in the echo area; use set-buffer-modified-p (above)
instead.

Functionbuffer-modified-tick &optional buffer
This function returns buffer‘s modification-count. This is a counter that increments every
time the buffer is modified. If buffer is nil (or omitted), the current buffer is used.

30.6 Comparison of Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself
is changed on disk. At this point, saving the buffer would overwrite the changes in the file.
Occasionally this may be what you want, but usually it would lose valuable information. XEmacs
therefore checks the file’s modification time using the functions described below before saving
the file.

Functionverify-visited-file-modtime buffer
This function compares what buffer has recorded for the modification time of its visited
file against the actual modification time of the file as recorded by the operating system.
The two should be the same unless some other process has written the file since XEmacs
visited or saved it.
The function returns t if the last actual modification time and XEmacs’s recorded modi-
fication time are the same, nil otherwise.

Functionclear-visited-file-modtime
This function clears out the record of the last modification time of the file being visited
by the current buffer. As a result, the next attempt to save this buffer will not complain
of a discrepancy in file modification times.
This function is called in set-visited-file-name and other exceptional places where the
usual test to avoid overwriting a changed file should not be done.

Functionvisited-file-modtime
This function returns the buffer’s recorded last file modification time, as a list of the form
(high . low). (This is the same format that file-attributes uses to return time values;
see Section 28.6.4 [File Attributes], page 364.)

Functionset-visited-file-modtime &optional time
This function updates the buffer’s record of the last modification time of the visited file,
to the value specified by time if time is not nil, and otherwise to the last modification
time of the visited file.
If time is not nil, it should have the form (high . low) or (high low), in either case
containing two integers, each of which holds 16 bits of the time.
This function is useful if the buffer was not read from the file normally, or if the file itself
has been changed for some known benign reason.

Functionask-user-about-supersession-threat filename
This function is used to ask a user how to proceed after an attempt to modify an obsolete
buffer visiting file filename. An obsolete buffer is an unmodified buffer for which the

Chapter 30: Buffers 397

associated file on disk is newer than the last save-time of the buffer. This means some
other program has probably altered the file.
Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (filename), in which case the proposed buffer modification is not allowed.
This function is called automatically by XEmacs on the proper occasions. It exists so
you can customize XEmacs by redefining it. See the file ‘userlock.el’ for the standard
definition.
See also the file locking mechanism in Section 28.5 [File Locks], page 361.

30.7 Read-Only Buffers

If a buffer is read-only, then you cannot change its contents, although you may change your
view of the contents by scrolling and narrowing.

Read-only buffers are used in two kinds of situations:
• A buffer visiting a write-protected file is normally read-only.

Here, the purpose is to show the user that editing the buffer with the aim of saving it in
the file may be futile or undesirable. The user who wants to change the buffer text despite
this can do so after clearing the read-only flag with C-x C-q.

• Modes such as Dired and Rmail make buffers read-only when altering the contents with the
usual editing commands is probably a mistake.
The special commands of these modes bind buffer-read-only to nil (with let) or bind
inhibit-read-only to t around the places where they change the text.

Variablebuffer-read-only
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-only
if this variable is non-nil.

Variableinhibit-read-only
If this variable is non-nil, then read-only buffers and read-only characters may be mod-
ified. Read-only characters in a buffer are those that have non-nil read-only proper-
ties (either text properties or extent properties). See Section 40.6 [Extent Properties],
page 534, for more information about text properties and extent properties.
If inhibit-read-only is t, all read-only character properties have no effect. If inhibit-
read-only is a list, then read-only character properties have no effect if they are members
of the list (comparison is done with eq).

Commandtoggle-read-only
This command changes whether the current buffer is read-only. It is intended for inter-
active use; don’t use it in programs. At any given point in a program, you should know
whether you want the read-only flag on or off; so you can set buffer-read-only explicitly
to the proper value, t or nil.

Functionbarf-if-buffer-read-only
This function signals a buffer-read-only error if the current buffer is read-only. See
Section 19.3 [Interactive Call], page 260, for another way to signal an error if the current
buffer is read-only.

398 XEmacs Lisp Reference Manual

30.8 The Buffer List

The buffer list is a list of all live buffers. Creating a buffer adds it to this list, and killing
a buffer deletes it. The order of the buffers in the list is based primarily on how recently each
buffer has been displayed in the selected window. Buffers move to the front of the list when they
are selected and to the end when they are buried. Several functions, notably other-buffer, use
this ordering. A buffer list displayed for the user also follows this order.

Every frame has its own order for the buffer list. Switching to a new buffer inside of a
particular frame changes the buffer list order for that frame, but does not affect the buffer list
order of any other frames. In addition, there is a global, non-frame buffer list order that is
independent of the buffer list orders for any particular frame.

Note that the different buffer lists all contain the same elements. It is only the order of those
elements that is different.

Functionbuffer-list &optional frame
This function returns a list of all buffers, including those whose names begin with a space.
The elements are actual buffers, not their names. The order of the list is specific to
frame, which defaults to the current frame. If frame is t, the global, non-frame ordering
is returned instead.

(buffer-list)
⇒ (#<buffer buffers.texi>

#<buffer *Minibuf-1*> #<buffer buffer.c>
#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer
;; begins with a space!
(mapcar (function buffer-name) (buffer-list))

⇒ ("buffers.texi" " *Minibuf-1*"
"buffer.c" "*Help*" "TAGS")

Buffers appear earlier in the list if they were current more recently.
This list is a copy of a list used inside XEmacs; modifying it has no effect on the buffers.

Functionother-buffer &optional buffer-or-name frame visible-ok
This function returns the first buffer in the buffer list other than buffer-or-name, in frame’s
ordering for the buffer list. (frame defaults to the current frame. If frame is t, then the
global, non-frame ordering is used.) Usually this is the buffer most recently shown in the
selected window, aside from buffer-or-name. Buffers are moved to the front of the list
when they are selected and to the end when they are buried. Buffers whose names start
with a space are not considered.
If buffer-or-name is not supplied (or if it is not a buffer), then other-buffer returns the
first buffer on the buffer list that is not visible in any window in a visible frame.
If the selected frame has a non-nil buffer-predicate property, then other-buffer
uses that predicate to decide which buffers to consider. It calls the predicate once for
each buffer, and if the value is nil, that buffer is ignored. See Section 32.2.3 [X Frame
Properties], page 427.
If visible-ok is nil, other-buffer avoids returning a buffer visible in any window on any
visible frame, except as a last resort. If visible-ok is non-nil, then it does not matter
whether a buffer is displayed somewhere or not.
If no suitable buffer exists, the buffer ‘*scratch*’ is returned (and created, if necessary).
Note that in FSF Emacs 19, there is no frame argument, and visible-ok is the second
argument instead of the third. FSF Emacs 19.

Chapter 30: Buffers 399

Commandlist-buffers &optional files-only
This function displays a listing of the names of existing buffers. It clears the buffer
‘*Buffer List*’, then inserts the listing into that buffer and displays it in a window.
list-buffers is intended for interactive use, and is described fully in The XEmacs Ref-
erence Manual. It returns nil.

Commandbury-buffer &optional buffer-or-name
This function puts buffer-or-name at the end of the buffer list without changing the order
of any of the other buffers on the list. This buffer therefore becomes the least desirable
candidate for other-buffer to return.
If buffer-or-name is nil or omitted, this means to bury the current buffer. In addition, if
the buffer is displayed in the selected window, this switches to some other buffer (obtained
using other-buffer) in the selected window. But if the buffer is displayed in some other
window, it remains displayed there.
If you wish to replace a buffer in all the windows that display it, use replace-buffer-
in-windows. See Section 31.6 [Buffers and Windows], page 410.

30.9 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create creates
a buffer if it finds no existing buffer with the specified name; generate-new-buffer always
creates a new buffer and gives it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see
Section 45.8 [Temporary Displays], page 593) and create-file-buffer (see Section 28.1 [Vis-
iting Files], page 355). Starting a subprocess can also create a buffer (see Chapter 49 [Processes],
page 607).

Functionget-buffer-create name
This function returns a buffer named name. It returns an existing buffer with that name,
if one exists; otherwise, it creates a new buffer. The buffer does not become the current
buffer—this function does not change which buffer is current.
An error is signaled if name is not a string.

(get-buffer-create "foo")
⇒ #<buffer foo>

The major mode for the new buffer is set to Fundamental mode. The variable default-
major-mode is handled at a higher level. See Section 26.1.3 [Auto Major Mode], page 332.

Functiongenerate-new-buffer name
This function returns a newly created, empty buffer, but does not make it current. If
there is no buffer named name, then that is the name of the new buffer. If that name is
in use, this function adds suffixes of the form ‘<n>’ to name, where n is an integer. It tries
successive integers starting with 2 until it finds an available name.
An error is signaled if name is not a string.

(generate-new-buffer "bar")
⇒ #<buffer bar>

(generate-new-buffer "bar")
⇒ #<buffer bar<2>>

(generate-new-buffer "bar")
⇒ #<buffer bar<3>>

400 XEmacs Lisp Reference Manual

The major mode for the new buffer is set to Fundamental mode. The variable default-
major-mode is handled at a higher level. See Section 26.1.3 [Auto Major Mode], page 332.
See the related function generate-new-buffer-name in Section 30.3 [Buffer Names],
page 393.

30.10 Killing Buffers

Killing a buffer makes its name unknown to XEmacs and makes its text space available for
other use.

The buffer object for the buffer that has been killed remains in existence as long as anything
refers to it, but it is specially marked so that you cannot make it current or display it. Killed
buffers retain their identity, however; two distinct buffers, when killed, remain distinct according
to eq.

If you kill a buffer that is current or displayed in a window, XEmacs automatically selects or
displays some other buffer instead. This means that killing a buffer can in general change the
current buffer. Therefore, when you kill a buffer, you should also take the precautions associated
with changing the current buffer (unless you happen to know that the buffer being killed isn’t
current). See Section 30.2 [Current Buffer], page 391.

If you kill a buffer that is the base buffer of one or more indirect buffers, the indirect buffers
are automatically killed as well.

The buffer-name of a killed buffer is nil. To test whether a buffer has been killed, you can
either use this feature or the function buffer-live-p.

Functionbuffer-live-p buffer
This function returns nil if buffer is deleted, and t otherwise.

Commandkill-buffer buffer-or-name
This function kills the buffer buffer-or-name, freeing all its memory for use as space for
other buffers. (Emacs version 18 and older was unable to return the memory to the
operating system.) It returns nil.
Any processes that have this buffer as the process-buffer are sent the SIGHUP signal,
which normally causes them to terminate. (The basic meaning of SIGHUP is that a dialup
line has been disconnected.) See Section 49.5 [Deleting Processes], page 612.
If the buffer is visiting a file and contains unsaved changes, kill-buffer asks the user
to confirm before the buffer is killed. It does this even if not called interactively. To
prevent the request for confirmation, clear the modified flag before calling kill-buffer.
See Section 30.5 [Buffer Modification], page 395.
Killing a buffer that is already dead has no effect.

(kill-buffer "foo.unchanged")
⇒ nil

(kill-buffer "foo.changed")

---------- Buffer: Minibuffer ----------
Buffer foo.changed modified; kill anyway? (yes or no) yes
---------- Buffer: Minibuffer ----------

⇒ nil

Chapter 30: Buffers 401

Variablekill-buffer-query-functions
After confirming unsaved changes, kill-buffer calls the functions in the list kill-
buffer-query-functions, in order of appearance, with no arguments. The buffer being
killed is the current buffer when they are called. The idea is that these functions ask for
confirmation from the user for various nonstandard reasons. If any of them returns nil,
kill-buffer spares the buffer’s life.

Variablekill-buffer-hook
This is a normal hook run by kill-buffer after asking all the questions it is going to ask,
just before actually killing the buffer. The buffer to be killed is current when the hook
functions run. See Section 26.4 [Hooks], page 342.

Variablebuffer-offer-save
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and save-
some-buffers to offer to save that buffer, just as they offer to save file-visiting buffers.
The variable buffer-offer-save automatically becomes buffer-local when set for any
reason. See Section 10.9 [Buffer-Local Variables], page 141.

30.11 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of the
indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link among files. The
base buffer may not itself be an indirect buffer.

The text of the indirect buffer is always identical to the text of its base buffer; changes made
by editing either one are visible immediately in the other. This includes the text properties as
well as the characters themselves.

But in all other respects, the indirect buffer and its base buffer are completely separate.
They have different names, different values of point, different narrowing, different markers and
overlays (though inserting or deleting text in either buffer relocates the markers and overlays
for both), different major modes, and different local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect
buffer, that actually works by saving the base buffer.

Killing an indirect buffer has no effect on its base buffer. Killing the base buffer effectively
kills the indirect buffer in that it cannot ever again be the current buffer.

Commandmake-indirect-buffer base-buffer name
This creates an indirect buffer named name whose base buffer is base-buffer. The argument
base-buffer may be a buffer or a string.
If base-buffer is an indirect buffer, its base buffer is used as the base for the new buffer.

Functionbuffer-base-buffer buffer
This function returns the base buffer of buffer. If buffer is not indirect, the value is nil.
Otherwise, the value is another buffer, which is never an indirect buffer.

402 XEmacs Lisp Reference Manual

Chapter 31: Windows 403

31 Windows

This chapter describes most of the functions and variables related to Emacs windows. See
Chapter 45 [Display], page 585, for information on how text is displayed in windows.

31.1 Basic Concepts of Emacs Windows

A window in XEmacs is the physical area of the screen in which a buffer is displayed. The
term is also used to refer to a Lisp object that represents that screen area in XEmacs Lisp. It
should be clear from the context which is meant.

XEmacs groups windows into frames. A frame represents an area of screen available for
XEmacs to use. Each frame always contains at least one window, but you can subdivide it
vertically or horizontally into multiple nonoverlapping Emacs windows.

In each frame, at any time, one and only one window is designated as selected within the
frame. The frame’s cursor appears in that window. At ant time, one frame is the selected frame;
and the window selected within that frame is the selected window. The selected window’s buffer
is usually the current buffer (except when set-buffer has been used). See Section 30.2 [Current
Buffer], page 391.

For practical purposes, a window exists only while it is displayed in a frame. Once removed
from the frame, the window is effectively deleted and should not be used, even though there may
still be references to it from other Lisp objects. Restoring a saved window configuration is the
only way for a window no longer on the screen to come back to life. (See Section 31.3 [Deleting
Windows], page 406.)

Each window has the following attributes:
• containing frame
• window height
• window width
• window edges with respect to the frame or screen
• the buffer it displays
• position within the buffer at the upper left of the window
• amount of horizontal scrolling, in columns
• point
• the mark
• how recently the window was selected

Users create multiple windows so they can look at several buffers at once. Lisp libraries use
multiple windows for a variety of reasons, but most often to display related information. In
Rmail, for example, you can move through a summary buffer in one window while the other
window shows messages one at a time as they are reached.

The meaning of “window” in XEmacs is similar to what it means in the context of general-
purpose window systems such as X, but not identical. The X Window System places X windows
on the screen; XEmacs uses one or more X windows as frames, and subdivides them into Emacs
windows. When you use XEmacs on a character-only terminal, XEmacs treats the whole termi-
nal screen as one frame.

Most window systems support arbitrarily located overlapping windows. In contrast, Emacs
windows are tiled; they never overlap, and together they fill the whole screen or frame. Because
of the way in which XEmacs creates new windows and resizes them, you can’t create every

404 XEmacs Lisp Reference Manual

conceivable tiling of windows on an Emacs frame. See Section 31.2 [Splitting Windows], page 404,
and Section 31.13 [Size of Window], page 419.

See Chapter 45 [Display], page 585, for information on how the contents of the window’s
buffer are displayed in the window.

Functionwindowp object
This function returns t if object is a window.

31.2 Splitting Windows

The functions described here are the primitives used to split a window into two windows.
Two higher level functions sometimes split a window, but not always: pop-to-buffer and
display-buffer (see Section 31.7 [Displaying Buffers], page 410).

The functions described here do not accept a buffer as an argument. The two “halves” of the
split window initially display the same buffer previously visible in the window that was split.

Functionone-window-p &optional no-mini all-frames
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuffer
window is included, if active, in the total number of windows which is compared against
one.
The argument all-frame controls which set of windows are counted.
• If it is nil or omitted, then count only the selected frame, plus the minibuffer it uses

(which may be on another frame).
• If it is t, then windows on all frames that currently exist (including invisible and

iconified frames) are counted.
• If it is the symbol visible, then windows on all visible frames are counted.
• If it is the number 0, then windows on all visible and iconified frames are counted.
• If it is any other value, then precisely the windows in window ’s frame are counted,

excluding the minibuffer in use if it lies in some other frame.

Commandsplit-window &optional window size horizontal
This function splits window into two windows. The original window window remains the
selected window, but occupies only part of its former screen area. The rest is occupied by
a newly created window which is returned as the value of this function.
If horizontal is non-nil, then window splits into two side by side windows. The original
window window keeps the leftmost size columns, and gives the rest of the columns to the
new window. Otherwise, it splits into windows one above the other, and window keeps the
upper size lines and gives the rest of the lines to the new window. The original window
is therefore the left-hand or upper of the two, and the new window is the right-hand or
lower.
If window is omitted or nil, then the selected window is split. If size is omitted or nil,
then window is divided evenly into two parts. (If there is an odd line, it is allocated to
the new window.) When split-window is called interactively, all its arguments are nil.
The following example starts with one window on a frame that is 50 lines high by 80
columns wide; then the window is split.

Chapter 31: Windows 405

(setq w (selected-window))
⇒ #<window 8 on windows.texi>

(window-edges) ; Edges in order:
⇒ (0 0 80 50) ; left–top–right–bottom

;; Returns window created
(setq w2 (split-window w 15))

⇒ #<window 28 on windows.texi>
(window-edges w2)

⇒ (0 15 80 50) ; Bottom window;
; top is line 15

(window-edges w)
⇒ (0 0 80 15) ; Top window

The frame looks like this:

| | line 0
| w |
|__________|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Next, the top window is split horizontally:
(setq w3 (split-window w 35 t))

⇒ #<window 32 on windows.texi>
(window-edges w3)

⇒ (35 0 80 15) ; Left edge at column 35
(window-edges w)

⇒ (0 0 35 15) ; Right edge at column 35
(window-edges w2)

⇒ (0 15 80 50) ; Bottom window unchanged
Now, the screen looks like this:

column 35

| | | line 0
| w | w3 |
|___|______|
| | line 15
| w2 |
|__________|

line 50
column 0 column 80

Normally, Emacs indicates the border between two side-by-side windows with a scroll bar
(see Section 32.2.3 [X Frame Properties], page 427) or ‘|’ characters. The display table
can specify alternative border characters; see Section 45.11 [Display Tables], page 596.

Commandsplit-window-vertically &optional size
This function splits the selected window into two windows, one above the other, leaving
the selected window with size lines.

406 XEmacs Lisp Reference Manual

This function is simply an interface to split-windows. Here is the complete function
definition for it:

(defun split-window-vertically (&optional arg)
"Split current window into two windows, one above the other."
(interactive "P")
(split-window nil (and arg (prefix-numeric-value arg))))

Commandsplit-window-horizontally &optional size
This function splits the selected window into two windows side-by-side, leaving the selected
window with size columns.
This function is simply an interface to split-windows. Here is the complete definition
for split-window-horizontally (except for part of the documentation string):

(defun split-window-horizontally (&optional arg)
"Split selected window into two windows, side by side..."
(interactive "P")
(split-window nil (and arg (prefix-numeric-value arg)) t))

Functionone-window-p &optional no-mini all-frames
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuffer
window is included, if active, in the total number of windows, which is compared against
one.
The argument all-frames specifies which frames to consider. Here are the possible values
and their meanings:

nil Count the windows in the selected frame, plus the minibuffer used by that
frame even if it lies in some other frame.

t Count all windows in all existing frames.

visible Count all windows in all visible frames.

0 Count all windows in all visible or iconified frames.

anything else
Count precisely the windows in the selected frame, and no others.

31.3 Deleting Windows

A window remains visible on its frame unless you delete it by calling certain functions that
delete windows. A deleted window cannot appear on the screen, but continues to exist as a Lisp
object until there are no references to it. There is no way to cancel the deletion of a window
aside from restoring a saved window configuration (see Section 31.16 [Window Configurations],
page 423). Restoring a window configuration also deletes any windows that aren’t part of that
configuration.

When you delete a window, the space it took up is given to one adjacent sibling. (In Emacs
version 18, the space was divided evenly among all the siblings.)

Functionwindow-live-p window
This function returns nil if window is deleted, and t otherwise.
Warning: Erroneous information or fatal errors may result from using a deleted window
as if it were live.

Chapter 31: Windows 407

Commanddelete-window &optional window
This function removes window from the display. If window is omitted, then the selected
window is deleted. An error is signaled if there is only one window when delete-window
is called.
This function returns nil.
When delete-window is called interactively, window defaults to the selected window.

Commanddelete-other-windows &optional window
This function makes window the only window on its frame, by deleting the other windows
in that frame. If window is omitted or nil, then the selected window is used by default.
The result is nil.

Commanddelete-windows-on buffer &optional frame
This function deletes all windows showing buffer. If there are no windows showing buffer,
it does nothing.
delete-windows-on operates frame by frame. If a frame has several windows showing
different buffers, then those showing buffer are removed, and the others expand to fill the
space. If all windows in some frame are showing buffer (including the case where there
is only one window), then the frame reverts to having a single window showing another
buffer chosen with other-buffer. See Section 30.8 [The Buffer List], page 398.
The argument frame controls which frames to operate on:
• If it is nil, operate on the selected frame.
• If it is t, operate on all frames.
• If it is visible, operate on all visible frames.
• 0 If it is 0, operate on all visible or iconified frames.
• If it is a frame, operate on that frame.

This function always returns nil.

31.4 Selecting Windows

When a window is selected, the buffer in the window becomes the current buffer, and the
cursor will appear in it.

Functionselected-window &optional device
This function returns the selected window. This is the window in which the cursor appears
and to which many commands apply. Each separate device can have its own selected
window, which is remembered as focus changes from device to device. Optional argument
device specifies which device to return the selected window for, and defaults to the selected
device.

Functionselect-window window &optional norecord
This function makes window the selected window. The cursor then appears in window (on
redisplay). The buffer being displayed in window is immediately designated the current
buffer.
If optional argument norecord is non-nil then the global and per-frame buffer orderings
are not modified, as by the function record-buffer.
The return value is window.

(setq w (next-window))
(select-window w)

⇒ #<window 65 on windows.texi>

408 XEmacs Lisp Reference Manual

Macrosave-selected-window forms. . .
This macro records the selected window, executes forms in sequence, then restores the
earlier selected window. It does not save or restore anything about the sizes, arrangement
or contents of windows; therefore, if the forms change them, the changes are permanent.

The following functions choose one of the windows on the screen, offering various criteria for
the choice.

Functionget-lru-window &optional frame
This function returns the window least recently “used” (that is, selected). The selected
window is always the most recently used window.
The selected window can be the least recently used window if it is the only window. A
newly created window becomes the least recently used window until it is selected. A
minibuffer window is never a candidate.
The argument frame controls which windows are considered.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

Functionget-largest-window &optional frame
This function returns the window with the largest area (height times width). If there
are no side-by-side windows, then this is the window with the most lines. A minibuffer
window is never a candidate.
If there are two windows of the same size, then the function returns the window that is
first in the cyclic ordering of windows (see following section), starting from the selected
window.
The argument frame controls which set of windows are considered. See get-lru-window,
above.

31.5 Cyclic Ordering of Windows

When you use the command C-x o (other-window) to select the next window, it moves
through all the windows on the screen in a specific cyclic order. For any given configuration of
windows, this order never varies. It is called the cyclic ordering of windows.

This ordering generally goes from top to bottom, and from left to right. But it may go down
first or go right first, depending on the order in which the windows were split.

If the first split was vertical (into windows one above each other), and then the subwindows
were split horizontally, then the ordering is left to right in the top of the frame, and then left to
right in the next lower part of the frame, and so on. If the first split was horizontal, the ordering
is top to bottom in the left part, and so on. In general, within each set of siblings at any level
in the window tree, the order is left to right, or top to bottom.

Functionnext-window &optional window minibuf all-frames
This function returns the window following window in the cyclic ordering of windows.
This is the window that C-x o would select if typed when window is selected. If window
is the only window visible, then this function returns window. If omitted, window defaults
to the selected window.

Chapter 31: Windows 409

The value of the argument minibuf determines whether the minibuffer is included in the
window order. Normally, when minibuf is nil, the minibuffer is included if it is currently
active; this is the behavior of C-x o. (The minibuffer window is active while the minibuffer
is in use. See Chapter 18 [Minibuffers], page 237.)
If minibuf is t, then the cyclic ordering includes the minibuffer window even if it is not
active.
If minibuf is neither t nor nil, then the minibuffer window is not included even if it is
active.
The argument all-frames specifies which frames to consider. Here are the possible values
and their meanings:

nil Consider all the windows in window ’s frame, plus the minibuffer used by that
frame even if it lies in some other frame.

t Consider all windows in all existing frames.

visible Consider all windows in all visible frames. (To get useful results, you must
ensure window is in a visible frame.)

0 Consider all windows in all visible or iconified frames.

anything else
Consider precisely the windows in window ’s frame, and no others.

This example assumes there are two windows, both displaying the buffer ‘windows.texi’:
(selected-window)

⇒ #<window 56 on windows.texi>
(next-window (selected-window))

⇒ #<window 52 on windows.texi>
(next-window (next-window (selected-window)))

⇒ #<window 56 on windows.texi>

Functionprevious-window &optional window minibuf all-frames
This function returns the window preceding window in the cyclic ordering of windows.
The other arguments specify which windows to include in the cycle, as in next-window.

Commandother-window count &optional frame
This function selects the countth following window in the cyclic order. If count is negative,
then it selects the −countth preceding window. It returns nil.
In an interactive call, count is the numeric prefix argument.
The argument frame controls which set of windows are considered.
• If it is nil or omitted, then windows on the selected frame are considered.
• If it is a frame, then windows on that frame are considered.
• If it is t, then windows on all frames that currently exist (including invisible and

iconified frames) are considered.
• If it is the symbol visible, then windows on all visible frames are considered.
• If it is the number 0, then windows on all visible and iconified frames are considered.
• If it is any other value, then the behavior is undefined.

Functionwalk-windows proc &optional minibuf all-frames
This function cycles through all windows, calling proc once for each window with the
window as its sole argument.
The optional arguments minibuf and all-frames specify the set of windows to include in
the scan. See next-window, above, for details.

410 XEmacs Lisp Reference Manual

31.6 Buffers and Windows

This section describes low-level functions to examine windows or to display buffers in windows
in a precisely controlled fashion. See the following section for related functions that find a window
to use and specify a buffer for it. The functions described there are easier to use than these,
but they employ heuristics in choosing or creating a window; use these functions when you need
complete control.

Functionset-window-buffer window buffer-or-name
This function makes window display buffer-or-name as its contents. It returns nil.

(set-window-buffer (selected-window) "foo")
⇒ nil

Functionwindow-buffer &optional window
This function returns the buffer that window is displaying. If window is omitted, this
function returns the buffer for the selected window.

(window-buffer)
⇒ #<buffer windows.texi>

Functionget-buffer-window buffer-or-name &optional frame
This function returns a window currently displaying buffer-or-name, or nil if there is
none. If there are several such windows, then the function returns the first one in the
cyclic ordering of windows, starting from the selected window. See Section 31.5 [Cyclic
Window Ordering], page 408.
The argument all-frames controls which windows to consider.
• If it is nil, consider windows on the selected frame.
• If it is t, consider windows on all frames.
• If it is visible, consider windows on all visible frames.
• If it is 0, consider windows on all visible or iconified frames.
• If it is a frame, consider windows on that frame.

31.7 Displaying Buffers in Windows

In this section we describe convenient functions that choose a window automatically and use
it to display a specified buffer. These functions can also split an existing window in certain
circumstances. We also describe variables that parameterize the heuristics used for choosing a
window. See the preceding section for low-level functions that give you more precise control.

Do not use the functions in this section in order to make a buffer current so that a Lisp
program can access or modify it; they are too drastic for that purpose, since they change the
display of buffers in windows, which is gratuitous and will surprise the user. Instead, use set-
buffer (see Section 30.2 [Current Buffer], page 391) and save-excursion (see Section 34.3
[Excursions], page 448), which designate buffers as current for programmed access without
affecting the display of buffers in windows.

Commandswitch-to-buffer buffer-or-name &optional norecord
This function makes buffer-or-name the current buffer, and also displays the buffer in the
selected window. This means that a human can see the buffer and subsequent keyboard
commands will apply to it. Contrast this with set-buffer, which makes buffer-or-name

Chapter 31: Windows 411

the current buffer but does not display it in the selected window. See Section 30.2 [Current
Buffer], page 391.
If buffer-or-name does not identify an existing buffer, then a new buffer by that name is
created. The major mode for the new buffer is set according to the variable default-
major-mode. See Section 26.1.3 [Auto Major Mode], page 332.
Normally the specified buffer is put at the front of the buffer list. This affects the operation
of other-buffer. However, if norecord is non-nil, this is not done. See Section 30.8 [The
Buffer List], page 398.
The switch-to-buffer function is often used interactively, as the binding of C-x b. It is
also used frequently in programs. It always returns nil.

Commandswitch-to-buffer-other-window buffer-or-name
This function makes buffer-or-name the current buffer and displays it in a window not
currently selected. It then selects that window. The handling of the buffer is the same as
in switch-to-buffer.
The currently selected window is absolutely never used to do the job. If it is the only
window, then it is split to make a distinct window for this purpose. If the selected
window is already displaying the buffer, then it continues to do so, but another window
is nonetheless found to display it in as well.

Functionpop-to-buffer buffer-or-name &optional other-window on-frame
This function makes buffer-or-name the current buffer and switches to it in some window,
preferably not the window previously selected. The “popped-to” window becomes the
selected window within its frame.
If the variable pop-up-frames is non-nil, pop-to-buffer looks for a window in any
visible frame already displaying the buffer; if there is one, it returns that window and
makes it be selected within its frame. If there is none, it creates a new frame and displays
the buffer in it.
If pop-up-frames is nil, then pop-to-buffer operates entirely within the selected frame.
(If the selected frame has just a minibuffer, pop-to-buffer operates within the most
recently selected frame that was not just a minibuffer.)
If the variable pop-up-windows is non-nil, windows may be split to create a new window
that is different from the original window. For details, see Section 31.8 [Choosing Window],
page 412.
If other-window is non-nil, pop-to-buffer finds or creates another window even if buffer-
or-name is already visible in the selected window. Thus buffer-or-name could end up
displayed in two windows. On the other hand, if buffer-or-name is already displayed in
the selected window and other-window is nil, then the selected window is considered
sufficient display for buffer-or-name, so that nothing needs to be done.
All the variables that affect display-buffer affect pop-to-buffer as well. See Sec-
tion 31.8 [Choosing Window], page 412.
If buffer-or-name is a string that does not name an existing buffer, a buffer by that name
is created. The major mode for the new buffer is set according to the variable default-
major-mode. See Section 26.1.3 [Auto Major Mode], page 332.
If on-frame is non-nil, it is the frame to pop to this buffer on.
An example use of this function is found at the end of Section 49.9.2 [Filter Functions],
page 617.

Commandreplace-buffer-in-windows buffer
This function replaces buffer with some other buffer in all windows displaying it. The
other buffer used is chosen with other-buffer. In the usual applications of this function,

412 XEmacs Lisp Reference Manual

you don’t care which other buffer is used; you just want to make sure that buffer is no
longer displayed.
This function returns nil.

31.8 Choosing a Window for Display

This section describes the basic facility that chooses a window to display a buffer in—
display-buffer. All the higher-level functions and commands use this subroutine. Here we
describe how to use display-buffer and how to customize it.

Commanddisplay-buffer buffer-or-name &optional not-this-window
This command makes buffer-or-name appear in some window, like pop-to-buffer, but
it does not select that window and does not make the buffer current. The identity of the
selected window is unaltered by this function.
If not-this-window is non-nil, it means to display the specified buffer in a window other
than the selected one, even if it is already on display in the selected window. This can
cause the buffer to appear in two windows at once. Otherwise, if buffer-or-name is already
being displayed in any window, that is good enough, so this function does nothing.
display-buffer returns the window chosen to display buffer-or-name.
Precisely how display-buffer finds or creates a window depends on the variables de-
scribed below.

A window can be marked as “dedicated” to a particular buffer. Then XEmacs will not auto-
matically change which buffer appears in the window, such as display-buffer might normally
do.

Functionwindow-dedicated-p window
This function returns window ’s dedicated object, usually t or nil.

Functionset-window-buffer-dedicated window buffer
This function makes window display buffer and be dedicated to that buffer. Then XEmacs
will not automatically change which buffer appears in window. If buffer is nil, this
function makes window not be dedicated (but doesn’t change which buffer appears in it
currently).

User Optionpop-up-windows
This variable controls whether display-buffer makes new windows. If it is non-nil and
there is only one window, then that window is split. If it is nil, then display-buffer
does not split the single window, but uses it whole.

User Optionsplit-height-threshold
This variable determines when display-buffer may split a window, if there are multiple
windows. display-buffer always splits the largest window if it has at least this many
lines. If the largest window is not this tall, it is split only if it is the sole window and
pop-up-windows is non-nil.

User Optionpop-up-frames
This variable controls whether display-buffer makes new frames. If it is non-nil,
display-buffer looks for an existing window already displaying the desired buffer, on
any visible frame. If it finds one, it returns that window. Otherwise it makes a new

Chapter 31: Windows 413

frame. The variables pop-up-windows and split-height-threshold do not matter if
pop-up-frames is non-nil.
If pop-up-frames is nil, then display-buffer either splits a window or reuses one.
See Chapter 32 [Frames], page 425, for more information.

Variablepop-up-frame-function
This variable specifies how to make a new frame if pop-up-frames is non-nil.
Its value should be a function of no arguments. When display-buffer makes a new
frame, it does so by calling that function, which should return a frame. The default value
of the variable is a function that creates a frame using properties from pop-up-frame-
plist.

Variablepop-up-frame-plist
This variable holds a plist specifying frame properties used when display-buffer makes
a new frame. See Section 32.2 [Frame Properties], page 425, for more information about
frame properties.

Variablespecial-display-buffer-names
A list of buffer names for buffers that should be displayed specially. If the buffer’s name
is in this list, display-buffer handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the buffer name,
and the rest of the list says how to create the frame. There are two possibilities for the
rest of the list. It can be a plist, specifying frame properties, or it can contain a function
and arguments to give to it. (The function’s first argument is always the buffer to be
displayed; the arguments from the list come after that.)

Variablespecial-display-regexps
A list of regular expressions that specify buffers that should be displayed specially. If the
buffer’s name matches any of the regular expressions in this list, display-buffer handles
the buffer specially.
By default, special display means to give the buffer a dedicated frame.
If an element is a list, instead of a string, then the car of the list is the regular expression,
and the rest of the list says how to create the frame. See above, under special-display-
buffer-names.

Variablespecial-display-function
This variable holds the function to call to display a buffer specially. It receives the buffer
as an argument, and should return the window in which it is displayed.
The default value of this variable is special-display-popup-frame.

Functionspecial-display-popup-frame buffer
This function makes buffer visible in a frame of its own. If buffer is already displayed
in a window in some frame, it makes the frame visible and raises it, to use that window.
Otherwise, it creates a frame that will be dedicated to buffer.
This function uses an existing window displaying buffer whether or not it is in a frame of
its own; but if you set up the above variables in your init file, before buffer was created,
then presumably the window was previously made by this function.

414 XEmacs Lisp Reference Manual

User Optionspecial-display-frame-plist
This variable holds frame properties for special-display-popup-frame to use when it
creates a frame.

Variablesame-window-buffer-names
A list of buffer names for buffers that should be displayed in the selected window. If the
buffer’s name is in this list, display-buffer handles the buffer by switching to it in the
selected window.

Variablesame-window-regexps
A list of regular expressions that specify buffers that should be displayed in the selected
window. If the buffer’s name matches any of the regular expressions in this list, display-
buffer handles the buffer by switching to it in the selected window.

Variabledisplay-buffer-function
This variable is the most flexible way to customize the behavior of display-buffer. If it is
non-nil, it should be a function that display-buffer calls to do the work. The function
should accept two arguments, the same two arguments that display-buffer received.
It should choose or create a window, display the specified buffer, and then return the
window.
This hook takes precedence over all the other options and hooks described above.

A window can be marked as “dedicated” to its buffer. Then display-buffer does not try
to use that window.

Functionwindow-dedicated-p window
This function returns t if window is marked as dedicated; otherwise nil.

Functionset-window-dedicated-p window flag
This function marks window as dedicated if flag is non-nil, and nondedicated otherwise.

31.9 Windows and Point

Each window has its own value of point, independent of the value of point in other windows
displaying the same buffer. This makes it useful to have multiple windows showing one buffer.
• The window point is established when a window is first created; it is initialized from the

buffer’s point, or from the window point of another window opened on the buffer if such a
window exists.

• Selecting a window sets the value of point in its buffer to the window’s value of point.
Conversely, deselecting a window sets the window’s value of point from that of the buffer.
Thus, when you switch between windows that display a given buffer, the point value for the
selected window is in effect in the buffer, while the point values for the other windows are
stored in those windows.

• As long as the selected window displays the current buffer, the window’s point and the
buffer’s point always move together; they remain equal.

• See Chapter 34 [Positions], page 441, for more details on buffer positions.

As far as the user is concerned, point is where the cursor is, and when the user switches to
another buffer, the cursor jumps to the position of point in that buffer.

Chapter 31: Windows 415

Functionwindow-point window
This function returns the current position of point in window. For a nonselected window,
this is the value point would have (in that window’s buffer) if that window were selected.
When window is the selected window and its buffer is also the current buffer, the value
returned is the same as point in that buffer.
Strictly speaking, it would be more correct to return the “top-level” value of point, outside
of any save-excursion forms. But that value is hard to find.

Functionset-window-point window position
This function positions point in window at position position in window ’s buffer.

31.10 The Window Start Position

Each window contains a marker used to keep track of a buffer position that specifies where in
the buffer display should start. This position is called the display-start position of the window
(or just the start). The character after this position is the one that appears at the upper left
corner of the window. It is usually, but not inevitably, at the beginning of a text line.

Functionwindow-start &optional window
This function returns the display-start position of window window. If window is nil, the
selected window is used. For example,

(window-start)
⇒ 7058

When you create a window, or display a different buffer in it, the display-start position is
set to a display-start position recently used for the same buffer, or 1 if the buffer doesn’t
have any.
For a realistic example, see the description of count-lines in Section 34.2.4 [Text Lines],
page 444.

Functionwindow-end &optional window
This function returns the position of the end of the display in window window. If window
is nil, the selected window is used.
Simply changing the buffer text or moving point does not update the value that window-
end returns. The value is updated only when Emacs redisplays and redisplay actually
finishes.
If the last redisplay of window was preempted, and did not finish, Emacs does not know
the position of the end of display in that window. In that case, this function returns a
value that is not correct. In a future version, window-end will return nil in that case.

Functionset-window-start window position &optional noforce
This function sets the display-start position of window to position in window ’s buffer. It
returns position.
The display routines insist that the position of point be visible when a buffer is displayed.
Normally, they change the display-start position (that is, scroll the window) whenever
necessary to make point visible. However, if you specify the start position with this
function using nil for noforce, it means you want display to start at position even if that
would put the location of point off the screen. If this does place point off screen, the
display routines move point to the left margin on the middle line in the window.
For example, if point is 1 and you set the start of the window to 2, then point would be
“above” the top of the window. The display routines will automatically move point if it
is still 1 when redisplay occurs. Here is an example:

416 XEmacs Lisp Reference Manual

;; Here is what ‘foo’ looks like before executing
;; the set-window-start expression.

---------- Buffer: foo ----------
?This is the contents of buffer foo.
2
3
4
5
6
---------- Buffer: foo ----------

(set-window-start
(selected-window)
(1+ (window-start)))
⇒ 2

;; Here is what ‘foo’ looks like after executing
;; the set-window-start expression.
---------- Buffer: foo ----------
his is the contents of buffer foo.
2
3
?4
5
6
---------- Buffer: foo ----------

If noforce is non-nil, and position would place point off screen at the next redisplay, then
redisplay computes a new window-start position that works well with point, and thus
position is not used.

Functionpos-visible-in-window-p &optional position window
This function returns t if position is within the range of text currently visible on the screen
in window. It returns nil if position is scrolled vertically out of view. The argument
position defaults to the current position of point; window, to the selected window. Here
is an example:

(or (pos-visible-in-window-p
(point) (selected-window))
(recenter 0))

The pos-visible-in-window-p function considers only vertical scrolling. If position is
out of view only because window has been scrolled horizontally, pos-visible-in-window-
p returns t. See Section 31.12 [Horizontal Scrolling], page 418.

31.11 Vertical Scrolling

Vertical scrolling means moving the text up or down in a window. It works by changing the
value of the window’s display-start location. It may also change the value of window-point to
keep it on the screen.

In the commands scroll-up and scroll-down, the directions “up” and “down” refer to the
motion of the text in the buffer at which you are looking through the window. Imagine that
the text is written on a long roll of paper and that the scrolling commands move the paper

Chapter 31: Windows 417

up and down. Thus, if you are looking at text in the middle of a buffer and repeatedly call
scroll-down, you will eventually see the beginning of the buffer.

Some people have urged that the opposite convention be used: they imagine that the window
moves over text that remains in place. Then “down” commands would take you to the end of
the buffer. This view is more consistent with the actual relationship between windows and the
text in the buffer, but it is less like what the user sees. The position of a window on the terminal
does not move, and short scrolling commands clearly move the text up or down on the screen.
We have chosen names that fit the user’s point of view.

The scrolling functions (aside from scroll-other-window) have unpredictable results if the
current buffer is different from the buffer that is displayed in the selected window. See Sec-
tion 30.2 [Current Buffer], page 391.

Commandscroll-up &optional count
This function scrolls the text in the selected window upward count lines. If count is
negative, scrolling is actually downward.
If count is nil (or omitted), then the length of scroll is next-screen-context-lines
lines less than the usable height of the window (not counting its modeline).
scroll-up returns nil.

Commandscroll-down &optional count
This function scrolls the text in the selected window downward count lines. If count is
negative, scrolling is actually upward.
If count is omitted or nil, then the length of the scroll is next-screen-context-lines
lines less than the usable height of the window (not counting its mode line).
scroll-down returns nil.

Commandscroll-other-window &optional count
This function scrolls the text in another window upward count lines. Negative values of
count, or nil, are handled as in scroll-up.
You can specify a buffer to scroll with the variable other-window-scroll-buffer. When
the selected window is the minibuffer, the next window is normally the one at the top
left corner. You can specify a different window to scroll with the variable minibuffer-
scroll-window. This variable has no effect when any other window is selected. See
Section 18.8 [Minibuffer Misc], page 252.
When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll the
minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to, so the line
reappears after the echo area momentarily displays the message “Beginning of buffer”.

Variableother-window-scroll-buffer
If this variable is non-nil, it tells scroll-other-window which buffer to scroll.

User Optionscroll-step
This variable controls how scrolling is done automatically when point moves off the screen.
If the value is zero, then redisplay scrolls the text to center point vertically in the window.
If the value is a positive integer n, then redisplay brings point back on screen by scrolling
n lines in either direction, if possible; otherwise, it centers point. The default value is zero.

User Optionscroll-conservatively
This variable controls how many lines Emacs tries to scroll before recentering. If you set
it to a small number, then when you move point a short distance off the screen, XEmacs
will scroll the screen just far enough to bring point back on screen, provided that does not
exceed scroll-conservatively lines. This variable overrides the redisplay preemption.

418 XEmacs Lisp Reference Manual

User Optionnext-screen-context-lines
The value of this variable is the number of lines of continuity to retain when scrolling by
full screens. For example, scroll-up with an argument of nil scrolls so that this many
lines at the bottom of the window appear instead at the top. The default value is 2.

Commandrecenter &optional count
This function scrolls the selected window to put the text where point is located at a
specified vertical position within the window.
If count is a nonnegative number, it puts the line containing point count lines down from
the top of the window. If count is a negative number, then it counts upward from the
bottom of the window, so that −1 stands for the last usable line in the window. If count
is a non-nil list, then it stands for the line in the middle of the window.
If count is nil, recenter puts the line containing point in the middle of the window, then
clears and redisplays the entire selected frame.
When recenter is called interactively, count is the raw prefix argument. Thus, typing
C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets count to 4, which
positions the current line four lines from the top.
With an argument of zero, recenter positions the current line at the top of the window.
This action is so handy that some people make a separate key binding to do this. For
example,

(defun line-to-top-of-window ()
"Scroll current line to top of window.

Replaces three keystroke sequence C-u 0 C-l."
(interactive)
(recenter 0))

(global-set-key [kp-multiply] ’line-to-top-of-window)

31.12 Horizontal Scrolling

Because we read English first from top to bottom and second from left to right, horizontal
scrolling is not like vertical scrolling. Vertical scrolling involves selection of a contiguous portion
of text to display. Horizontal scrolling causes part of each line to go off screen. The amount of
horizontal scrolling is therefore specified as a number of columns rather than as a position in
the buffer. It has nothing to do with the display-start position returned by window-start.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge of the
window. In this state, scrolling to the right is meaningless, since there is no data to the left of
the screen to be revealed by it; so this is not allowed. Scrolling to the left is allowed; it scrolls
the first columns of text off the edge of the window and can reveal additional columns on the
right that were truncated before. Once a window has a nonzero amount of leftward horizontal
scrolling, you can scroll it back to the right, but only so far as to reduce the net horizontal scroll
to zero. There is no limit to how far left you can scroll, but eventually all the text will disappear
off the left edge.

Commandscroll-left count
This function scrolls the selected window count columns to the left (or to the right if count
is negative). The return value is the total amount of leftward horizontal scrolling in effect
after the change—just like the value returned by window-hscroll (below).

Chapter 31: Windows 419

Commandscroll-right count
This function scrolls the selected window count columns to the right (or to the left if count
is negative). The return value is the total amount of leftward horizontal scrolling in effect
after the change—just like the value returned by window-hscroll (below).
Once you scroll a window as far right as it can go, back to its normal position where the
total leftward scrolling is zero, attempts to scroll any farther right have no effect.

Functionwindow-hscroll &optional window
This function returns the total leftward horizontal scrolling of window—the number of
columns by which the text in window is scrolled left past the left margin.
The value is never negative. It is zero when no horizontal scrolling has been done in
window (which is usually the case).
If window is nil, the selected window is used.

(window-hscroll)
⇒ 0

(scroll-left 5)
⇒ 5

(window-hscroll)
⇒ 5

Functionset-window-hscroll window columns
This function sets the number of columns from the left margin that window is scrolled to
the value of columns. The argument columns should be zero or positive; if not, it is taken
as zero.
The value returned is columns.

(set-window-hscroll (selected-window) 10)
⇒ 10

Here is how you can determine whether a given position position is off the screen due to
horizontal scrolling:

(defun hscroll-on-screen (window position)
(save-excursion

(goto-char position)
(and
(>= (- (current-column) (window-hscroll window)) 0)
(< (- (current-column) (window-hscroll window))

(window-width window)))))

31.13 The Size of a Window

An Emacs window is rectangular, and its size information consists of the height (in lines or
pixels) and the width (in character positions or pixels). The modeline is included in the height.
The pixel width and height values include scrollbars and margins, while the line/character-
position values do not.

Note that the height in lines, and the width in characters, are determined by dividing the
corresponding pixel value by the height or width of the default font in that window (if this is a
variable-width font, the average width is used). The resulting values may or may not represent
the actual number of lines in the window, or the actual number of character positions in any
particular line, esp. if there are pixmaps or various different fonts in the window.

The following functions return size information about a window:

420 XEmacs Lisp Reference Manual

Functionwindow-height &optional window
This function returns the number of lines in window, including its modeline but not
including the horizontal scrollbar, if any (this is different from window-pixel-height). If
window is nil, the function uses the selected window.

(window-height)
⇒ 40

(split-window-vertically)
⇒ #<window on "windows.texi" 0x679b>

(window-height)
⇒ 20

Functionwindow-width &optional window
This function returns the number of columns in window, not including any left margin,
right margin, or vertical scrollbar (this is different from window-pixel-width). If window
is nil, the function uses the selected window.

(window-width)
⇒ 80

(window-height)
⇒ 40

(split-window-horizontally)
⇒ #<window on "windows.texi" 0x7538>

(window-width)
⇒ 39

Note that after splitting the window into two side-by-side windows, the width of each window
is less the half the width of the original window because a vertical scrollbar appeared between
the windows, occupying two columns worth of space. Also, the height shrunk by one because
horizontal scrollbars appeared that weren’t there before. (Horizontal scrollbars appear only when
lines are truncated, not when they wrap. This is usually the case for horizontally split windows
but not for full-frame windows. You can change this using the variables truncate-lines and
truncate-partial-width-windows.)

Functionwindow-pixel-height &optional window
This function returns the height of window in pixels, including its modeline and horizontal
scrollbar, if any. If window is nil, the function uses the selected window.

(window-pixel-height)
⇒ 600

(split-window-vertically)
⇒ #<window on "windows.texi" 0x68a6>

(window-pixel-height)
⇒ 300

Functionwindow-pixel-width &optional window
This function returns the width of window in pixels, including any left margin, right
margin, or vertical scrollbar that may be displayed alongside it. If window is nil, the
function uses the selected window.

(window-pixel-width)
⇒ 735

(window-pixel-height)
⇒ 600

Chapter 31: Windows 421

(split-window-horizontally)
⇒ #<window on "windows.texi" 0x7538>

(window-pixel-width)
⇒ 367

(window-pixel-height)
⇒ 600

Functionwindow-text-area-pixel-height &optional window
This function returns the height in pixels of the text displaying portion of window, which
defaults to the selected window. Unlike window-pixel-height, the space occupied by the
modeline and horizontal scrollbar, if any, is not counted.

Functionwindow-text-area-pixel-width &optional window
This function returns the width in pixels of the text displaying portion of window, which
defaults to the selected window. Unlike window-pixel-width, the space occupied by the
vertical scrollbar and divider, if any, is not counted.

Functionwindow-displayed-text-pixel-height &optional window noclipped
This function returns the height in pixels of the text displayed in window, which defaults
to the selected window. Unlike window-text-area-pixel-height, any blank space below
the end of the buffer is not included. If optional argument noclipped is non-nil, any space
occupied by clipped lines will not be included.

31.14 The Position of a Window

XEmacs provides functions to determine the absolute location of windows within a frame,
and the relative location of a window in comparison to other windows in the same frame.

Functionwindow-pixel-edges &optional window
This function returns a list of the pixel edge coordinates of window. If window is nil, the
selected window is used.
The order of the list is (left top right bottom), all elements relative to 0, 0 at the top
left corner of the frame. The element right of the value is one more than the rightmost
pixel used by window (including any left margin, right margin, or vertical scrollbar dis-
played alongside it), and bottom is one more than the bottommost pixel used by window
(including any modeline or horizontal scrollbar displayed above or below it). The frame
area does not include any frame menubars or toolbars that may be displayed; thus, for
example, if there is only one window on the frame, the values for left and top will always
be 0.
If window is at the upper left corner of its frame, right and bottom are the same as
the values returned by (window-pixel-width) and (window-pixel-height) respectively,
and top and bottom are zero.

There is no longer a function window-edges because it does not make sense in a world with
variable-width and variable-height lines, as are allowed in XEmacs.

Functionwindow-highest-p window
This function returns non-nil if window is along the top of its frame.

Functionwindow-lowest-p window
This function returns non-nil if window is along the bottom of its frame.

422 XEmacs Lisp Reference Manual

Functionwindow-text-area-pixel-edges &optional window
This function allows one to determine the location of the text-displaying portion of window,
which defaults to the selected window, with respect to the top left corner of the window.
It returns a list of integer pixel positions (left top right bottom), all relative to (0,0)
at the top left corner of the window.

31.15 Changing the Size of a Window

The window size functions fall into two classes: high-level commands that change the size of
windows and low-level functions that access window size. XEmacs does not permit overlapping
windows or gaps between windows, so resizing one window affects other windows.

Commandenlarge-window size &optional horizontal window
This function makes the selected window size lines taller, stealing lines from neighboring
windows. It takes the lines from one window at a time until that window is used up, then
takes from another. If a window from which lines are stolen shrinks below window-min-
height lines, that window disappears.
If horizontal is non-nil, this function makes window wider by size columns, stealing
columns instead of lines. If a window from which columns are stolen shrinks below window-
min-width columns, that window disappears.
If the requested size would exceed that of the window’s frame, then the function makes
the window occupy the entire height (or width) of the frame.
If size is negative, this function shrinks the window by −size lines or columns. If that
makes the window smaller than the minimum size (window-min-height and window-min-
width), enlarge-window deletes the window.
If window is non-nil, it specifies a window to change instead of the selected window.
enlarge-window returns nil.

Commandenlarge-window-horizontally columns
This function makes the selected window columns wider. It could be defined as follows:

(defun enlarge-window-horizontally (columns)
(enlarge-window columns t))

Commandenlarge-window-pixels count &optional side window
This function makes the selected window count pixels larger. When called from Lisp,
optional second argument side non-nil means to grow sideways count pixels, and optional
third argument window specifies the window to change instead of the selected window.

Commandshrink-window size &optional horizontal window
This function is like enlarge-window but negates the argument size, making the selected
window smaller by giving lines (or columns) to the other windows. If the window shrinks
below window-min-height or window-min-width, then it disappears.
If size is negative, the window is enlarged by −size lines or columns.
If window is non-nil, it specifies a window to change instead of the selected window.

Commandshrink-window-horizontally columns
This function makes the selected window columns narrower. It could be defined as follows:

(defun shrink-window-horizontally (columns)
(shrink-window columns t))

Chapter 31: Windows 423

Commandshrink-window-pixels count &optional side window
This function makes the selected window count pixels smaller. When called from Lisp, op-
tional second argument side non-nil means to shrink sideways count pixels, and optional
third argument window specifies the window to change instead of the selected window.

The following two variables constrain the window-size-changing functions to a minimum
height and width.

User Optionwindow-min-height
The value of this variable determines how short a window may become before it is au-
tomatically deleted. Making a window smaller than window-min-height automatically
deletes it, and no window may be created shorter than this. The absolute minimum height
is two (allowing one line for the mode line, and one line for the buffer display). Actions
that change window sizes reset this variable to two if it is less than two. The default value
is 4.

User Optionwindow-min-width
The value of this variable determines how narrow a window may become before it au-
tomatically deleted. Making a window smaller than window-min-width automatically
deletes it, and no window may be created narrower than this. The absolute minimum
width is one; any value below that is ignored. The default value is 10.

Variablewindow-size-change-functions
This variable holds a list of functions to be called if the size of any window changes for
any reason. The functions are called just once per redisplay, and just once for each frame
on which size changes have occurred.
Each function receives the frame as its sole argument. There is no direct way to find out
which windows changed size, or precisely how; however, if your size-change function keeps
track, after each change, of the windows that interest you, you can figure out what has
changed by comparing the old size data with the new.
Creating or deleting windows counts as a size change, and therefore causes these functions
to be called. Changing the frame size also counts, because it changes the sizes of the
existing windows.
It is not a good idea to use save-window-excursion in these functions, because that
always counts as a size change, and it would cause these functions to be called over and
over. In most cases, save-selected-window is what you need here.

31.16 Window Configurations

A window configuration records the entire layout of a frame—all windows, their sizes, which
buffers they contain, what part of each buffer is displayed, and the values of point and the mark.
You can bring back an entire previous layout by restoring a window configuration previously
saved.

If you want to record all frames instead of just one, use a frame configuration instead of a
window configuration. See Section 32.11 [Frame Configurations], page 434.

Functioncurrent-window-configuration
This function returns a new object representing XEmacs’s current window configuration,
namely the number of windows, their sizes and current buffers, which window is the
selected window, and for each window the displayed buffer, the display-start position, and
the positions of point and the mark. An exception is made for point in the current buffer,
whose value is not saved.

424 XEmacs Lisp Reference Manual

Functionset-window-configuration configuration
This function restores the configuration of XEmacs’s windows and buffers to the state
specified by configuration. The argument configuration must be a value that was previ-
ously returned by current-window-configuration.
This function always counts as a window size change and triggers execution of the window-
size-change-functions. (It doesn’t know how to tell whether the new configuration
actually differs from the old one.)
Here is a way of using this function to get the same effect as save-window-excursion:

(let ((config (current-window-configuration)))
(unwind-protect

(progn (split-window-vertically nil)
...)

(set-window-configuration config)))

Special Formsave-window-excursion forms. . .
This special form records the window configuration, executes forms in sequence, then
restores the earlier window configuration. The window configuration includes the value of
point and the portion of the buffer that is visible. It also includes the choice of selected
window. However, it does not include the value of point in the current buffer; use save-
excursion if you wish to preserve that.
Don’t use this construct when save-selected-window is all you need.
Exit from save-window-excursion always triggers execution of the window-size-
change-functions. (It doesn’t know how to tell whether the restored configuration
actually differs from the one in effect at the end of the forms.)
The return value is the value of the final form in forms. For example:

(split-window)
⇒ #<window 25 on control.texi>

(setq w (selected-window))
⇒ #<window 19 on control.texi>

(save-window-excursion
(delete-other-windows w)
(switch-to-buffer "foo")
’do-something)
⇒ do-something
;; The frame is now split again.

Functionwindow-configuration-p object
This function returns t if object is a window configuration.

Primitives to look inside of window configurations would make sense, but none are imple-
mented. It is not clear they are useful enough to be worth implementing.

Chapter 32: Frames 425

32 Frames

A frame is a rectangle on the screen that contains one or more XEmacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window), which you can
subdivide vertically or horizontally into smaller windows.

When XEmacs runs on a text-only terminal, it starts with one TTY frame. If you create
additional ones, XEmacs displays one and only one at any given time—on the terminal screen,
of course.

When XEmacs communicates directly with an X server, it does not have a TTY frame;
instead, it starts with a single X window frame. It can display multiple X window frames at the
same time, each in its own X window.

Functionframep object
This predicate returns t if object is a frame, and nil otherwise.

See Chapter 45 [Display], page 585, for related information.

32.1 Creating Frames

To create a new frame, call the function make-frame.

Functionmake-frame &optional props device
This function creates a new frame on device, if device permits creation of frames. (An X
server does; an ordinary terminal does not (yet).) device defaults to the selected device if
omitted. See Chapter 33 [Consoles and Devices], page 437.

The argument props is a property list (a list of alternating keyword-value specifications)
of properties for the new frame. (An alist is accepted for backward compatibility but
should not be passed in.) Any properties not mentioned in props default according to the
value of the variable default-frame-plist. For X devices, properties not specified in
default-frame-plist default in turn from default-x-frame-plist and, if not specified
there, from the X resources. For TTY devices, default-tty-frame-plist is consulted
as well as default-frame-plist.

The set of possible properties depends in principle on what kind of window system XEmacs
uses to display its frames. See Section 32.2.3 [X Frame Properties], page 427, for docu-
mentation of individual properties you can specify when creating an X window frame.

32.2 Frame Properties

A frame has many properties that control its appearance and behavior. Just what properties
a frame has depends on which display mechanism it uses.

Frame properties exist for the sake of window systems. A terminal frame has few properties,
mostly for compatibility’s sake; only the height, width and buffer-predicate properties really
do something.

426 XEmacs Lisp Reference Manual

32.2.1 Access to Frame Properties

These functions let you read and change the properties of a frame.

Functionframe-properties &optional frame
This function returns a plist listing all the properties of frame and their values.

Functionframe-property frame property &optional default
This function returns frame’s value for the property property.

Functionset-frame-properties frame plist
This function alters the properties of frame frame based on the elements of property list
plist. If you don’t mention a property in plist, its value doesn’t change.

Functionset-frame-property frame prop val
This function sets the property prop of frame frame to the value val.

32.2.2 Initial Frame Properties

You can specify the properties for the initial startup frame by setting initial-frame-plist
in your ‘.emacs’ file.

Variableinitial-frame-plist
This variable’s value is a plist of alternating property-value pairs used when creating the
initial X window frame.
XEmacs creates the initial frame before it reads your ‘~/.emacs’ file. After reading that
file, XEmacs checks initial-frame-plist, and applies the property settings in the al-
tered value to the already created initial frame.
If these settings affect the frame geometry and appearance, you’ll see the frame appear
with the wrong ones and then change to the specified ones. If that bothers you, you can
specify the same geometry and appearance with X resources; those do take affect before
the frame is created. See section “X Resources” in The XEmacs User’s Manual.
X resource settings typically apply to all frames. If you want to specify some X resources
solely for the sake of the initial frame, and you don’t want them to apply to subsequent
frames, here’s how to achieve this: specify properties in default-frame-plist to override
the X resources for subsequent frames; then, to prevent these from affecting the initial
frame, specify the same properties in initial-frame-plist with values that match the
X resources.

If these properties specify a separate minibuffer-only frame via a minibuffer property of
nil, and you have not yet created one, XEmacs creates one for you.

Variableminibuffer-frame-plist
This variable’s value is a plist of properties used when creating an initial minibuffer-only
frame—if such a frame is needed, according to the properties for the main initial frame.

Variabledefault-frame-plist
This is a plist specifying default values of frame properties for subsequent XEmacs frames
(not the initial ones).

Chapter 32: Frames 427

See also special-display-frame-plist, in Section 31.8 [Choosing Window], page 412.
If you use options that specify window appearance when you invoke XEmacs, they take effect

by adding elements to default-frame-plist. One exception is ‘-geometry’, which adds the
specified position to initial-frame-plist instead. See section “Command Arguments” in The
XEmacs User’s Manual.

32.2.3 X Window Frame Properties

Just what properties a frame has depends on what display mechanism it uses. Here is a table
of the properties of an X window frame; of these, name, height, width, and buffer-predicate
provide meaningful information in non-X frames.

name The name of the frame. Most window managers display the frame’s name in the
frame’s border, at the top of the frame. If you don’t specify a name, and you have
more than one frame, XEmacs sets the frame name based on the buffer displayed
in the frame’s selected window.
If you specify the frame name explicitly when you create the frame, the name is also
used (instead of the name of the XEmacs executable) when looking up X resources
for the frame.

display The display on which to open this frame. It should be a string of the form
"host:dpy.screen", just like the DISPLAY environment variable.

left The screen position of the left edge, in pixels, with respect to the left edge of the
screen. The value may be a positive number pos, or a list of the form (+ pos) which
permits specifying a negative pos value.
A negative number −pos, or a list of the form (- pos), actually specifies the position
of the right edge of the window with respect to the right edge of the screen. A
positive value of pos counts toward the left. If the property is a negative integer
−pos then pos is positive!

top The screen position of the top edge, in pixels, with respect to the top edge of the
screen. The value may be a positive number pos, or a list of the form (+ pos) which
permits specifying a negative pos value.
A negative number −pos, or a list of the form (- pos), actually specifies the position
of the bottom edge of the window with respect to the bottom edge of the screen.
A positive value of pos counts toward the top. If the property is a negative integer
−pos then pos is positive!

icon-left
The screen position of the left edge of the frame’s icon, in pixels, counting from the
left edge of the screen. This takes effect if and when the frame is iconified.

icon-top The screen position of the top edge of the frame’s icon, in pixels, counting from the
top edge of the screen. This takes effect if and when the frame is iconified.

user-position
Non-nil if the screen position of the frame was explicitly requested by the user (for
example, with the ‘-geometry’ option). Nothing automatically makes this property
non-nil; it is up to Lisp programs that call make-frame to specify this property as
well as specifying the left and top properties.

height The height of the frame contents, in characters. (To get the height in pixels, call
frame-pixel-height; see Section 32.2.4 [Size and Position], page 428.)

width The width of the frame contents, in characters. (To get the height in pixels, call
frame-pixel-width; see Section 32.2.4 [Size and Position], page 428.)

428 XEmacs Lisp Reference Manual

window-id
The number of the X window for the frame.

minibuffer
Whether this frame has its own minibuffer. The value t means yes, nil means no,
only means this frame is just a minibuffer. If the value is a minibuffer window
(in some other frame), the new frame uses that minibuffer. (Minibuffer-only and
minibuffer-less frames are not yet implemented in XEmacs.)

buffer-predicate
The buffer-predicate function for this frame. The function other-buffer uses this
predicate (from the selected frame) to decide which buffers it should consider, if the
predicate is not nil. It calls the predicate with one arg, a buffer, once for each
buffer; if the predicate returns a non-nil value, it considers that buffer.

scroll-bar-width
The width of the vertical scroll bar, in pixels.

cursor-color
The color for the cursor that shows point.

border-color
The color for the border of the frame.

border-width
The width in pixels of the window border.

internal-border-width
The distance in pixels between text and border.

unsplittable
If non-nil, this frame’s window is never split automatically.

inter-line-space
The space in pixels between adjacent lines of text. (Not currently implemented.)

modeline Whether the frame has a modeline.

32.2.4 Frame Size And Position

You can read or change the size and position of a frame using the frame properties left,
top, height, and width. Whatever geometry properties you don’t specify are chosen by the
window manager in its usual fashion.

Here are some special features for working with sizes and positions:

Functionset-frame-position frame left top
This function sets the position of the top left corner of frame to left and top. These argu-
ments are measured in pixels, and count from the top left corner of the screen. Negative
property values count up or rightward from the top left corner of the screen.

Functionframe-height &optional frame
Functionframe-width &optional frame

These functions return the height and width of frame, measured in lines and columns. If
you don’t supply frame, they use the selected frame.

Functionframe-pixel-height &optional frame
Functionframe-pixel-width &optional frame

These functions return the height and width of frame, measured in pixels. If you don’t
supply frame, they use the selected frame.

Chapter 32: Frames 429

Functionset-frame-size frame cols rows &optional pretend
This function sets the size of frame, measured in characters; cols and rows specify the
new width and height. (If pretend is non-nil, it means that redisplay should act as if the
frame’s size is cols by rows, but the actual size of the frame should not be changed. You
should not normally use this option.)

You can also use the functions set-frame-height and set-frame-width to set the height
and width individually. The frame is the first argument and the size (in rows or columns) is
the second. (There is an optional third argument, pretend, which has the same purpose as the
corresponding argument in set-frame-size.)

32.2.5 The Name of a Frame (As Opposed to Its Title)

Under X, every frame has a name, which is not the same as the title of the frame. A frame’s
name is used to look up its resources and does not normally change over the lifetime of a frame.
It is perfectly allowable, and quite common, for multiple frames to have the same name.

Functionframe-name &optional frame
This function returns the name of frame, which defaults to the selected frame if not
specified. The name of a frame can also be obtained from the frame’s properties. See
Section 32.2 [Frame Properties], page 425.

Variabledefault-frame-name
This variable holds the default name to assign to newly-created frames. This can be
overridden by arguments to make-frame. This must be a string.

32.3 Frame Titles

Every frame has a title; most window managers display the frame title at the top of the
frame. You can specify an explicit title with the name frame property. But normally you don’t
specify this explicitly, and XEmacs computes the title automatically.

XEmacs computes the frame title based on a template stored in the variable frame-title-
format.

Variableframe-title-format
This variable specifies how to compute a title for a frame when you have not explicitly
specified one.
The variable’s value is actually a modeline construct, just like modeline-format. See
Section 26.3.1 [Modeline Data], page 337.

Variableframe-icon-title-format
This variable specifies how to compute the title for an iconified frame, when you have not
explicitly specified the frame title. This title appears in the icon itself.

Functionx-set-frame-icon-pixmap frame pixmap &optional mask
This function sets the icon of the given frame to the given image instance, which should
be an image instance object (as returned by make-image-instance), a glyph object (as
returned by make-glyph), or nil. If a glyph object is given, the glyph will be instantiated
on the frame to produce an image instance object.

430 XEmacs Lisp Reference Manual

If the given image instance has a mask, that will be used as the icon mask; however, not
all window managers support this.
The window manager is also not required to support color pixmaps, only bitmaps (one
plane deep).
If the image instance does not have a mask, then the optional third argument may be the
image instance to use as the mask (it must be one plane deep). See Chapter 43 [Glyphs],
page 565.

32.4 Deleting Frames

Frames remain potentially visible until you explicitly delete them. A deleted frame cannot
appear on the screen, but continues to exist as a Lisp object until there are no references to it.

Commanddelete-frame &optional frame
This function deletes the frame frame. By default, frame is the selected frame.

Functionframe-live-p frame
The function frame-live-p returns non-nil if the frame frame has not been deleted.

32.5 Finding All Frames

Functionframe-list
The function frame-list returns a list of all the frames that have not been deleted. It is
analogous to buffer-list for buffers. The list that you get is newly created, so modifying
the list doesn’t have any effect on the internals of XEmacs.

Functiondevice-frame-list &optional device
This function returns a list of all frames on device. If device is nil, the selected device
will be used.

Functionvisible-frame-list &optional device
This function returns a list of just the currently visible frames. If device is specified only
frames on that device will be returned. See Section 32.9 [Visibility of Frames], page 433.
(TTY frames always count as “visible”, even though only the selected one is actually
displayed.)

Functionnext-frame &optional frame minibuf
The function next-frame lets you cycle conveniently through all the frames from an
arbitrary starting point. It returns the “next” frame after frame in the cycle. If frame is
omitted or nil, it defaults to the selected frame.
The second argument, minibuf, says which frames to consider:

nil Exclude minibuffer-only frames.

visible Consider all visible frames.

0 Consider all visible or iconified frames.

a window Consider only the frames using that particular window as their minibuffer.

Chapter 32: Frames 431

the symbol visible
Include all visible frames.

0 Include all visible and iconified frames.

anything else
Consider all frames.

Functionprevious-frame &optional frame minibuf
Like next-frame, but cycles through all frames in the opposite direction.

See also next-window and previous-window, in Section 31.5 [Cyclic Window Ordering],
page 408.

32.6 Frames and Windows

Each window is part of one and only one frame; you can get the frame with window-frame.

Functionframe-root-window &optional frame
This returns the root window of frame frame. frame defaults to the selected frame if not
specified.

Functionwindow-frame &optional window
This function returns the frame that window is on. window defaults to the selected
window if omitted.

All the non-minibuffer windows in a frame are arranged in a cyclic order. The order runs
from the frame’s top window, which is at the upper left corner, down and to the right, until it
reaches the window at the lower right corner (always the minibuffer window, if the frame has
one), and then it moves back to the top.

Functionframe-top-window frame
This returns the topmost, leftmost window of frame frame.

At any time, exactly one window on any frame is selected within the frame. The significance
of this designation is that selecting the frame also selects this window. You can get the frame’s
current selected window with frame-selected-window.

Functionframe-selected-window &optional frame
This function returns the window on frame that is selected within frame. frame defaults
to the selected frame if not specified.

Conversely, selecting a window for XEmacs with select-window also makes that window
selected within its frame. See Section 31.4 [Selecting Windows], page 407.

Another function that (usually) returns one of the windows in a frame is minibuffer-window.
See Section 18.8 [Minibuffer Misc], page 252.

432 XEmacs Lisp Reference Manual

32.7 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used whenever
that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-window
(see Section 18.8 [Minibuffer Misc], page 252).

However, you can also create a frame with no minibuffer. Such a frame must use the mini-
buffer window of some other frame. When you create the frame, you can specify explicitly the
minibuffer window to use (in some other frame). If you don’t, then the minibuffer is found in
the frame which is the value of the variable default-minibuffer-frame. Its value should be a
frame which does have a minibuffer.

Variabledefault-minibuffer-frame
This variable specifies the frame to use for the minibuffer window, by default.

32.8 Input Focus

At any time, one frame in XEmacs is the selected frame. The selected window always resides
on the selected frame. As the focus moves from device to device, the selected frame on each
device is remembered and restored when the focus moves back to that device.

Functionselected-frame &optional device
This function returns the selected frame on device. If device is not specified, the selected
device will be used. If no frames exist on the device, nil is returned.

The X server normally directs keyboard input to the X window that the mouse is in. Some
window managers use mouse clicks or keyboard events to shift the focus to various X windows,
overriding the normal behavior of the server.

Lisp programs can switch frames “temporarily” by calling the function select-frame. This
does not override the window manager; rather, it escapes from the window manager’s control
until that control is somehow reasserted.

When using a text-only terminal, there is no window manager; therefore, select-frame is the
only way to switch frames, and the effect lasts until overridden by a subsequent call to select-
frame. Only the selected terminal frame is actually displayed on the terminal. Each terminal
screen except for the initial one has a number, and the number of the selected frame appears in
the mode line after the word ‘XEmacs’ (see Section 26.3.2 [Modeline Variables], page 339).

Functionselect-frame frame
This function selects frame frame, temporarily disregarding the focus of the X server if
any. The selection of frame lasts until the next time the user does something to select a
different frame, or until the next time this function is called.
Note that select-frame does not actually cause the window-system focus to be set to
this frame, or the select-frame-hook or deselect-frame-hook to be run, until the next
time that XEmacs is waiting for an event.
Also note that when the variable focus-follows-mouse is non-nil, the frame selection
is temporary and is reverted when the current command terminates, much like the buffer
selected by set-buffer. In order to effect a permanent focus change use focus-frame.

Functionfocus-frame frame
This function selects frame and gives it the window system focus. The operation of
focus-frame is not affected by the value of focus-follows-mouse.

Chapter 32: Frames 433

Macrosave-selected-frame forms. . .
This macro records the selected frame, executes forms in sequence, then restores the earlier
selected frame. The value returned is the value of the last form.

Macrowith-selected-frame frame forms. . .
This macro records the selected frame, then selects frame and executes forms in sequence.
After the last form is finished, the earlier selected frame is restored. The value returned
is the value of the last form.

32.9 Visibility of Frames

An X window frame may be visible, invisible, or iconified. If it is visible, you can see its
contents. If it is iconified, the frame’s contents do not appear on the screen, but an icon does.
If the frame is invisible, it doesn’t show on the screen, not even as an icon.

Visibility is meaningless for TTY frames, since only the selected one is actually displayed in
any case.

Commandmake-frame-visible &optional frame
This function makes frame frame visible. If you omit frame, it makes the selected frame
visible.

Commandmake-frame-invisible &optional frame
This function makes frame frame invisible.

Commandiconify-frame &optional frame
This function iconifies frame frame.

Commanddeiconify-frame &optional frame
This function de-iconifies frame frame. Under X, this is equivalent to make-frame-
visible.

Functionframe-visible-p frame
This returns whether frame is currently “visible” (actually in use for display). A frame
that is not visible is not updated, and, if it works through a window system, may not
show at all.

Functionframe-iconified-p frame
This returns whether frame is iconified. Not all window managers use icons; some merely
unmap the window, so this function is not the inverse of frame-visible-p. It is possible
for a frame to not be visible and not be iconified either. However, if the frame is iconified,
it will not be visible. (Under FSF Emacs, the functionality of this function is obtained
through frame-visible-p.)

Functionframe-totally-visible-p frame
This returns whether frame is not obscured by any other X windows. On TTY frames,
this is the same as frame-visible-p.

434 XEmacs Lisp Reference Manual

32.10 Raising and Lowering Frames

The X Window System uses a desktop metaphor. Part of this metaphor is the idea that
windows are stacked in a notional third dimension perpendicular to the screen surface, and thus
ordered from “highest” to “lowest”. Where two windows overlap, the one higher up covers the
one underneath. Even a window at the bottom of the stack can be seen if no other window
overlaps it.

A window’s place in this ordering is not fixed; in fact, users tend to change the order fre-
quently. Raising a window means moving it “up”, to the top of the stack. Lowering a window
means moving it to the bottom of the stack. This motion is in the notional third dimension
only, and does not change the position of the window on the screen.

You can raise and lower XEmacs’s X windows with these functions:

Commandraise-frame &optional frame
This function raises frame frame.

Commandlower-frame &optional frame
This function lowers frame frame.

You can also specify auto-raise (raising automatically when a frame is selected) or auto-
lower (lowering automatically when it is deselected). Under X, most ICCCM-compliant window
managers will have an option to do this for you, but the following variables are provided in case
you’re using a broken WM. (Under FSF Emacs, the same functionality is provided through the
auto-raise and auto-lower frame properties.)

Variableauto-raise-frame
This variable’s value is t if frames will be raised to the top when selected.

Variableauto-lower-frame
This variable’s value is t if frames will be lowered to the bottom when no longer selected.

Auto-raising and auto-lowering is implemented through functions attached to select-frame-
hook and deselect-frame-hook (see Section 32.12 [Frame Hooks], page 435). Under normal
circumstances, you should not call these functions directly.

Functiondefault-select-frame-hook
This hook function implements the auto-raise-frame variable; it is for use as the value
of select-frame-hook.

Functiondefault-deselect-frame-hook
This hook function implements the auto-lower-frame variable; it is for use as the value
of deselect-frame-hook.

32.11 Frame Configurations

A frame configuration records the current arrangement of frames, all their properties, and
the window configuration of each one.

Functioncurrent-frame-configuration
This function returns a frame configuration list that describes the current arrangement of
frames and their contents.

Chapter 32: Frames 435

Functionset-frame-configuration configuration
This function restores the state of frames described in configuration.

32.12 Hooks for Customizing Frame Behavior

XEmacs provides many hooks that are called at various times during a frame’s lifetime. See
Section 26.4 [Hooks], page 342.

Variablecreate-frame-hook
This hook is called each time a frame is created. The functions are called with one
argument, the newly-created frame.

Variabledelete-frame-hook
This hook is called each time a frame is deleted. The functions are called with one
argument, the about-to-be-deleted frame.

Variableselect-frame-hook
This is a normal hook that is run just after a frame is selected. The function default-
select-frame-hook, which implements auto-raising (see Section 32.10 [Raising and Low-
ering], page 434), is normally attached to this hook.
Note that calling select-frame does not necessarily set the focus: The actual window-
system focus will not be changed until the next time that XEmacs is waiting for an event,
and even then, the window manager may refuse the focus-change request.

Variabledeselect-frame-hook
This is a normal hook that is run just before a frame is deselected (and another frame is
selected). The function default-deselect-frame-hook, which implements auto-lowering
(see Section 32.10 [Raising and Lowering], page 434), is normally attached to this hook.

Variablemap-frame-hook
This hook is called each time a frame is mapped (i.e. made visible). The functions are
called with one argument, the newly mapped frame.

Variableunmap-frame-hook
This hook is called each time a frame is unmapped (i.e. made invisible or iconified). The
functions are called with one argument, the newly unmapped frame.

436 XEmacs Lisp Reference Manual

Chapter 33: Consoles and Devices 437

33 Consoles and Devices

A console is an object representing a single input connection to XEmacs, such as an X display
or a TTY connection. It is possible for XEmacs to have frames on multiple consoles at once
(even on heterogeneous types – you can simultaneously have a frame on an X display and a
TTY connection). Normally, there is only one console in existence.

A device is an object representing a single output device, such as a particular screen on an X
display. (Usually there is exactly one device per X console connection, but there may be more
than one if you have a multi-headed X display. For TTY connections, there is always exactly
one device per console.)

Each device has one or more frames in which text can be displayed. For X displays and
the like, a frame corresponds to the normal window-system concept of a window. Frames can
overlap, be displayed at various locations within the display, be resized, etc. For TTY, only one
frame can be displayed at a time, and it occupies the entire TTY display area.

However, you can still define multiple frames and switch between them. Their contents are
entirely separate from each other. These sorts of frames resemble the “virtual console” capability
provided under Linux or the multiple screens provided by the multiplexing program ‘screen’
under Unix.

When you start up XEmacs, an initial console and device are created to receive input and
display frames on. This will either be an X display or a TTY connection, depending on what
mode you started XEmacs in (this is determined by the ‘DISPLAY’ environment variable, the
‘-nw’, ‘-t’ and ‘-display’ command-line options, etc.).

You can connect to other X displays and TTY connections by creating new console objects,
and to other X screens on an existing display by creating new device objects, as described below.
Many functions (for example the frame-creation functions) take an optional device argument
specifying which device the function pertains to. If the argument is omitted, it defaults to the
selected device (see below).

Functionconsolep object
This returns non-nil if object is a console.

Functiondevicep object
This returns non-nil if object is a device.

33.1 Basic Console Functions

Functionconsole-list
This function returns a list of all existing consoles.

Functionconsole-device-list &optional console
This function returns a list of all devices on console. If console is nil, the selected console
will be used.

438 XEmacs Lisp Reference Manual

33.2 Basic Device Functions

Functiondevice-list
This function returns a list of all existing devices.

Functiondevice-or-frame-p object
This function returns non-nil if object is a device or frame. This function is useful because
devices and frames are similar in many respects and many functions can operate on either
one.

Functiondevice-frame-list device
This function returns a list of all frames on device.

Functionframe-device frame
This function returns the device that frame is on.

33.3 Console Types and Device Classes

Every device is of a particular type, which describes how the connection to that device is
made and how the device operates, and a particular class, which describes other characteristics
of the device (currently, the color capabilities of the device).

The currently-defined device types are

x A connection to an X display (such as ‘willow:0’).

tty A connection to a tty (such as ‘/dev/ttyp3’).

stream A stdio connection. This describes a device for which input and output is only
possible in a stream-like fashion, such as when XEmacs in running in batch mode.
The very first device created by XEmacs is a terminal device and is used to print out
messages of various sorts (for example, the help message when you use the ‘-help’
command-line option).

The currently-defined device classes are

color A color device.

grayscale
A grayscale device (a device that can display multiple shades of gray, but no color).

mono A device that can only display two colors (e.g. black and white).

Functiondevice-type device
This function returns the type of device. This is a symbol whose name is one of the device
types mentioned above.

Functiondevice-or-frame-type device-or-frame
This function returns the type of device-or-frame.

Functiondevice-class device
This function returns the class (color behavior) of device. This is a symbol whose name
is one of the device classes mentioned above.

Chapter 33: Consoles and Devices 439

Functionvalid-device-type-p device-type
This function returns whether device-type (which should be a symbol) species a valid
device type.

Functionvalid-device-class-p device-class
This function returns whether device-class (which should be a symbol) species a valid
device class.

Variableterminal-device
This variable holds the initial terminal device object, which represents XEmacs’s stdout.

33.4 Connecting to a Console or Device

Functionmake-device &optional type device-data
This function creates a new device.

The following two functions create devices of specific types and are written in terms of make-
device.

Functionmake-tty-device &optional tty terminal-type
This function creates a new tty device on tty. This also creates the tty’s first frame. tty
should be a string giving the name of a tty device file (e.g. ‘/dev/ttyp3’ under SunOS et
al.), as returned by the ‘tty’ command issued from the Unix shell. A value of nil means
use the stdin and stdout as passed to XEmacs from the shell. If terminal-type is non-nil,
it should be a string specifying the type of the terminal attached to the specified tty. If it
is nil, the terminal type will be inferred from the ‘TERM’ environment variable.

Functionmake-x-device &optional display argv-list
This function creates a new device connected to display. Optional argument argv-list is a
list of strings describing command line options.

Functiondelete-device device
This function deletes device, permanently eliminating it from use. This disconnects
XEmacs’s connection to the device.

Variablecreate-device-hook
This variable, if non-nil, should contain a list of functions, which are called when a device
is created.

Variabledelete-device-hook
This variable, if non-nil, should contain a list of functions, which are called when a device
is deleted.

Functionconsole-live-p object
This function returns non-nil if object is a console that has not been deleted.

Functiondevice-live-p object
This function returns non-nil if object is a device that has not been deleted.

Functiondevice-x-display device
This function returns the X display which device is connected to, if device is an X device.

440 XEmacs Lisp Reference Manual

33.5 The Selected Console and Device

Functionselect-console console
This function selects the console console. Subsequent editing commands apply to its
selected device, selected frame, and selected window. The selection of console lasts until
the next time the user does something to select a different console, or until the next time
this function is called.

Functionselected-console
This function returns the console which is currently active.

Functionselect-device device
This function selects the device device.

Functionselected-device &optional console
This function returns the device which is currently active. If optional console is non-nil,
this function returns the device that would be currently active if console were the selected
console.

33.6 Console and Device I/O

Functionconsole-disable-input console
This function disables input on console console.

Functionconsole-enable-input console
This function enables input on console console.

Each device has a baud rate value associated with it. On most systems, changing this value
will affect the amount of padding and other strategic decisions made during redisplay.

Functiondevice-baud-rate &optional device
This function returns the output baud rate of device.

Functionset-device-baud-rate device rate
This function sets the output baud rate of device to rate.

Chapter 34: Positions 441

34 Positions

A position is the index of a character in the text of a buffer. More precisely, a position iden-
tifies the place between two characters (or before the first character, or after the last character),
so we can speak of the character before or after a given position. However, we often speak of
the character “at” a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented as
markers—special objects that relocate automatically when text is inserted or deleted so they
stay with the surrounding characters. See Chapter 35 [Markers], page 453.

34.1 Point

Point is a special buffer position used by many editing commands, including the self-inserting
typed characters and text insertion functions. Other commands move point through the text to
allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first
character, or after the last character), rather than a particular character. Usually terminals
display the cursor over the character that immediately follows point; point is actually before the
character on which the cursor sits.

The value of point is a number between 1 and the buffer size plus 1. If narrowing is in effect
(see Section 34.4 [Narrowing], page 449), then point is constrained to fall within the accessible
portion of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in other
buffers. Each window also has a value of point, which is independent of the value of point in
other windows on the same buffer. This is why point can have different values in various windows
that display the same buffer. When a buffer appears in only one window, the buffer’s point and
the window’s point normally have the same value, so the distinction is rarely important. See
Section 31.9 [Window Point], page 414, for more details.

Functionpoint &optional buffer
This function returns the value of point in buffer, as an integer. buffer defaults to the
current buffer if omitted.

(point)
⇒ 175

Functionpoint-min &optional buffer
This function returns the minimum accessible value of point in buffer. This is normally 1,
but if narrowing is in effect, it is the position of the start of the region that you narrowed
to. (See Section 34.4 [Narrowing], page 449.) buffer defaults to the current buffer if
omitted.

Functionpoint-max &optional buffer
This function returns the maximum accessible value of point in buffer. This is (1+
(buffer-size buffer)), unless narrowing is in effect, in which case it is the position
of the end of the region that you narrowed to. (see Section 34.4 [Narrowing], page 449).
buffer defaults to the current buffer if omitted.

Functionbuffer-end flag &optional buffer
This function returns (point-min buffer) if flag is less than 1, (point-max buffer)
otherwise. The argument flag must be a number. buffer defaults to the current buffer if
omitted.

442 XEmacs Lisp Reference Manual

Functionbuffer-size &optional buffer
This function returns the total number of characters in buffer. In the absence of any
narrowing (see Section 34.4 [Narrowing], page 449), point-max returns a value one larger
than this. buffer defaults to the current buffer if omitted.

(buffer-size)
⇒ 35

(point-max)
⇒ 36

Variablebuffer-saved-size
The value of this buffer-local variable is the former length of the current buffer, as of the
last time it was read in, saved or auto-saved.

34.2 Motion

Motion functions change the value of point, either relative to the current value of point,
relative to the beginning or end of the buffer, or relative to the edges of the selected window.
See Section 34.1 [Point], page 441.

34.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is the fundamental
primitive; the other functions use that.

Commandgoto-char position &optional buffer
This function sets point in buffer to the value position. If position is less than 1, it moves
point to the beginning of the buffer. If position is greater than the length of the buffer, it
moves point to the end. buffer defaults to the current buffer if omitted.
If narrowing is in effect, position still counts from the beginning of the buffer, but point
cannot go outside the accessible portion. If position is out of range, goto-char moves
point to the beginning or the end of the accessible portion.
When this function is called interactively, position is the numeric prefix argument, if
provided; otherwise it is read from the minibuffer.
goto-char returns position.

Commandforward-char &optional count buffer
This function moves point count characters forward, towards the end of the buffer (or back-
ward, towards the beginning of the buffer, if count is negative). If the function attempts to
move point past the beginning or end of the buffer (or the limits of the accessible portion,
when narrowing is in effect), an error is signaled with error code beginning-of-buffer
or end-of-buffer. buffer defaults to the current buffer if omitted.
In an interactive call, count is the numeric prefix argument.

Commandbackward-char &optional count buffer
This function moves point count characters backward, towards the beginning of the buffer
(or forward, towards the end of the buffer, if count is negative). If the function attempts to
move point past the beginning or end of the buffer (or the limits of the accessible portion,
when narrowing is in effect), an error is signaled with error code beginning-of-buffer
or end-of-buffer. buffer defaults to the current buffer if omitted.
In an interactive call, count is the numeric prefix argument.

Chapter 34: Positions 443

34.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given character
is part of a word. See Chapter 38 [Syntax Tables], page 513.

Commandforward-word count &optional buffer
This function moves point forward count words (or backward if count is negative). Nor-
mally it returns t. If this motion encounters the beginning or end of the buffer, or the
limits of the accessible portion when narrowing is in effect, point stops there and the value
is nil. buffer defaults to the current buffer if omitted.
In an interactive call, count is set to the numeric prefix argument.

Commandbackward-word count &optional buffer
This function is just like forward-word, except that it moves backward until encountering
the front of a word, rather than forward. buffer defaults to the current buffer if omitted.
In an interactive call, count is set to the numeric prefix argument.
This function is rarely used in programs, as it is more efficient to call forward-word with
a negative argument.

Variablewords-include-escapes
This variable affects the behavior of forward-word and everything that uses it. If it is
non-nil, then characters in the “escape” and “character quote” syntax classes count as
part of words. Otherwise, they do not.

34.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:
(goto-char (point-min))

Likewise, to move to the end of the buffer, use:
(goto-char (point-max))

Here are two commands that users use to do these things. They are documented here to
warn you not to use them in Lisp programs, because they set the mark and display messages in
the echo area.

Commandbeginning-of-buffer &optional n
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n is
non-nil, then it puts point n tenths of the way from the beginning of the buffer.
In an interactive call, n is the numeric prefix argument, if provided; otherwise n defaults
to nil.
Don’t use this function in Lisp programs!

Commandend-of-buffer &optional n
This function moves point to the end of the buffer (or the limits of the accessible portion,
when narrowing is in effect), setting the mark at the previous position. If n is non-nil,
then it puts point n tenths of the way from the end of the buffer.
In an interactive call, n is the numeric prefix argument, if provided; otherwise n defaults
to nil.
Don’t use this function in Lisp programs!

444 XEmacs Lisp Reference Manual

34.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded as
part of the previous line. The first text line begins at the beginning of the buffer, and the last
text line ends at the end of the buffer whether or not the last character is a newline. The division
of the buffer into text lines is not affected by the width of the window, by line continuation in
display, or by how tabs and control characters are displayed.

Commandgoto-line line
This function moves point to the front of the lineth line, counting from line 1 at beginning
of the buffer. If line is less than 1, it moves point to the beginning of the buffer. If line is
greater than the number of lines in the buffer, it moves point to the end of the buffer—that
is, the end of the last line of the buffer. This is the only case in which goto-line does
not necessarily move to the beginning of a line.
If narrowing is in effect, then line still counts from the beginning of the buffer, but point
cannot go outside the accessible portion. So goto-line moves point to the beginning or
end of the accessible portion, if the line number specifies an inaccessible position.
The return value of goto-line is the difference between line and the line number of the
line to which point actually was able to move (in the full buffer, before taking account of
narrowing). Thus, the value is positive if the scan encounters the real end of the buffer.
The value is zero if scan encounters the end of the accessible portion but not the real end
of the buffer.
In an interactive call, line is the numeric prefix argument if one has been provided. Oth-
erwise line is read in the minibuffer.

Commandbeginning-of-line &optional count buffer
This function moves point to the beginning of the current line. With an argument count
not nil or 1, it moves forward count−1 lines and then to the beginning of the line. buffer
defaults to the current buffer if omitted.
If this function reaches the end of the buffer (or of the accessible portion, if narrowing is
in effect), it positions point there. No error is signaled.

Commandend-of-line &optional count buffer
This function moves point to the end of the current line. With an argument count not
nil or 1, it moves forward count−1 lines and then to the end of the line. buffer defaults
to the current buffer if omitted.
If this function reaches the end of the buffer (or of the accessible portion, if narrowing is
in effect), it positions point there. No error is signaled.

Commandforward-line &optional count buffer
This function moves point forward count lines, to the beginning of the line. If count is
negative, it moves point −count lines backward, to the beginning of a line. If count is
zero, it moves point to the beginning of the current line. buffer defaults to the current
buffer if omitted.
If forward-line encounters the beginning or end of the buffer (or of the accessible portion)
before finding that many lines, it sets point there. No error is signaled.
forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that has
only three lines, point stops at the end of the last line, and the value will be 2.
In an interactive call, count is the numeric prefix argument.

Chapter 34: Positions 445

Functioncount-lines start end
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at least
1, even if start and end are on the same line. This is because the text between them,
considered in isolation, must contain at least one line unless it is empty.
Here is an example of using count-lines:

(defun current-line ()
"Return the vertical position of point..."
(+ (count-lines (window-start) (point))

(if (= (current-column) 0) 1 0)
-1))

Also see the functions bolp and eolp in Section 36.1 [Near Point], page 463. These functions
do not move point, but test whether it is already at the beginning or end of a line.

34.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline char-
acters. By contrast, these functions count screen lines, which are defined by the way the text
appears on the screen. A text line is a single screen line if it is short enough to fit the width of
the selected window, but otherwise it may occupy several screen lines.

In some cases, text lines are truncated on the screen rather than continued onto additional
screen lines. In these cases, vertical-motion moves point much like forward-line. See
Section 45.2 [Truncation], page 586.

Because the width of a given string depends on the flags that control the appearance of
certain characters, vertical-motion behaves differently, for a given piece of text, depending on
the buffer it is in, and even on the selected window (because the width, the truncation flag, and
display table may vary between windows). See Section 45.10 [Usual Display], page 595.

These functions scan text to determine where screen lines break, and thus take time propor-
tional to the distance scanned. If you intend to use them heavily, Emacs provides caches which
may improve the performance of your code. See Section 34.2.4 [Text Lines], page 444.

Functionvertical-motion count &optional window pixels
This function moves point to the start of the frame line count frame lines down from the
frame line containing point. If count is negative, it moves up instead. The optional second
argument window may be used to specify a window other than the selected window in
which to perform the motion.
Normally, vertical-motion returns the number of lines moved. The value may be less
in absolute value than count if the beginning or end of the buffer was reached. If the
optional third argument, pixels is non-nil, the vertical pixel height of the motion which
took place is returned instead of the actual number of lines moved. A motion of zero lines
returns the height of the current line.
Note that vertical-motion sets window ’s buffer’s point, not window ’s point. (This
differs from FSF Emacs, which buggily always sets current buffer’s point, regardless of
window.)

Functionvertical-motion-pixels count &optional window how
This function moves point to the start of the frame line pixels vertical pixels down from
the frame line containing point, or up if pixels is negative. The optional second argument
window is the window to move in, and defaults to the selected window. The optional

446 XEmacs Lisp Reference Manual

third argument how specifies the stopping condition. A negative integer indicates that
the motion should be no more than pixels. A positive value indicates that the motion
should be at least pixels. Any other value indicates that the motion should be as close as
possible to pixels.

Commandmove-to-window-line count &optional window
This function moves point with respect to the text currently displayed in window, which
defaults to the selected window. It moves point to the beginning of the screen line count
screen lines from the top of the window. If count is negative, that specifies a position
−count lines from the bottom (or the last line of the buffer, if the buffer ends above the
specified screen position).
If count is nil, then point moves to the beginning of the line in the middle of the window.
If the absolute value of count is greater than the size of the window, then point moves to
the place that would appear on that screen line if the window were tall enough. This will
probably cause the next redisplay to scroll to bring that location onto the screen.
In an interactive call, count is the numeric prefix argument.
The value returned is the window line number point has moved to, with the top line in
the window numbered 0.

34.2.6 Moving over Balanced Expressions

Here are several functions concerned with balanced-parenthesis expressions (also called sexps
in connection with moving across them in XEmacs). The syntax table controls how these
functions interpret various characters; see Chapter 38 [Syntax Tables], page 513. See Section 38.5
[Parsing Expressions], page 519, for lower-level primitives for scanning sexps or parts of sexps.
For user-level commands, see section “Lists and Sexps” in XEmacs Reference Manual.

Commandforward-list &optional arg
This function moves forward across arg balanced groups of parentheses. (Other syntactic
entities such as words or paired string quotes are ignored.) arg defaults to 1 if omitted.
If arg is negative, move backward across that many groups of parentheses.

Commandbackward-list &optional arg
This function moves backward across arg balanced groups of parentheses. (Other syntactic
entities such as words or paired string quotes are ignored.) arg defaults to 1 if omitted.
If arg is negative, move forward across that many groups of parentheses.

Commandup-list arg
This function moves forward out of arg levels of parentheses. A negative argument means
move backward but still to a less deep spot.

Commanddown-list arg
This function moves forward into arg levels of parentheses. A negative argument means
move backward but still go deeper in parentheses (−arg levels).

Commandforward-sexp &optional arg
This function moves forward across arg balanced expressions. Balanced expressions in-
clude both those delimited by parentheses and other kinds, such as words and string
constants. arg defaults to 1 if omitted. If arg is negative, move backward across that
many balanced expressions. For example,

Chapter 34: Positions 447

---------- Buffer: foo ----------
(concat? "foo " (car x) y z)
---------- Buffer: foo ----------

(forward-sexp 3)
⇒ nil

---------- Buffer: foo ----------
(concat "foo " (car x) y? z)
---------- Buffer: foo ----------

Commandbackward-sexp &optional arg
This function moves backward across arg balanced expressions. arg defaults to 1 if omit-
ted. If arg is negative, move forward across that many balanced expressions.

Commandbeginning-of-defun &optional arg
This function moves back to the argth beginning of a defun. If arg is negative, this
actually moves forward, but it still moves to the beginning of a defun, not to the end of
one. arg defaults to 1 if omitted.

Commandend-of-defun &optional arg
This function moves forward to the argth end of a defun. If arg is negative, this actually
moves backward, but it still moves to the end of a defun, not to the beginning of one. arg
defaults to 1 if omitted.

User Optiondefun-prompt-regexp
If non-nil, this variable holds a regular expression that specifies what text can appear
before the open-parenthesis that starts a defun. That is to say, a defun begins on a
line that starts with a match for this regular expression, followed by a character with
open-parenthesis syntax.

34.2.7 Skipping Characters

The following two functions move point over a specified set of characters. For example, they
are often used to skip whitespace. For related functions, see Section 38.4 [Motion and Syntax],
page 518.

Functionskip-chars-forward character-set &optional limit buffer
This function moves point in buffer forward, skipping over a given set of characters. It
examines the character following point, then advances point if the character matches
character-set. This continues until it reaches a character that does not match. The
function returns nil. buffer defaults to the current buffer if omitted.
The argument character-set is like the inside of a ‘[...]’ in a regular expression except
that ‘]’ is never special and ‘\’ quotes ‘^’, ‘-’ or ‘\’. Thus, "a-zA-Z" skips over all letters,
stopping before the first non-letter, and "^a-zA-Z" skips non-letters stopping before the
first letter. See Section 37.2 [Regular Expressions], page 496.
If limit is supplied (it must be a number or a marker), it specifies the maximum position
in the buffer that point can be skipped to. Point will stop at or before limit.
In the following example, point is initially located directly before the ‘T’. After the form
is evaluated, point is located at the end of that line (between the ‘t’ of ‘hat’ and the
newline). The function skips all letters and spaces, but not newlines.

448 XEmacs Lisp Reference Manual

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(skip-chars-forward "a-zA-Z ")
⇒ nil

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Functionskip-chars-backward character-set &optional limit buffer
This function moves point backward, skipping characters that match character-set, until
limit. It just like skip-chars-forward except for the direction of motion.

34.3 Excursions

It is often useful to move point “temporarily” within a localized portion of the program, or to
switch buffers temporarily. This is called an excursion, and it is done with the save-excursion
special form. This construct saves the current buffer and its values of point and the mark so
they can be restored after the completion of the excursion.

The forms for saving and restoring the configuration of windows are described elsewhere (see
Section 31.16 [Window Configurations], page 423 and see Section 32.11 [Frame Configurations],
page 434).

Special Formsave-excursion forms. . .
The save-excursion special form saves the identity of the current buffer and the values
of point and the mark in it, evaluates forms, and finally restores the buffer and its saved
values of point and the mark. All three saved values are restored even in case of an
abnormal exit via throw or error (see Section 9.5 [Nonlocal Exits], page 121).

The save-excursion special form is the standard way to switch buffers or move point
within one part of a program and avoid affecting the rest of the program. It is used more
than 500 times in the Lisp sources of XEmacs.

save-excursion does not save the values of point and the mark for other buffers, so
changes in other buffers remain in effect after save-excursion exits.

Likewise, save-excursion does not restore window-buffer correspondences altered by
functions such as switch-to-buffer. One way to restore these correspondences, and
the selected window, is to use save-window-excursion inside save-excursion (see Sec-
tion 31.16 [Window Configurations], page 423).

The value returned by save-excursion is the result of the last of forms, or nil if no
forms are given.

Chapter 34: Positions 449

(save-excursion
forms)
≡
(let ((old-buf (current-buffer))

(old-pnt (point-marker))
(old-mark (copy-marker (mark-marker))))

(unwind-protect
(progn forms)

(set-buffer old-buf)
(goto-char old-pnt)
(set-marker (mark-marker) old-mark)))

Special Formsave-current-buffer forms. . .
This special form is similar to save-excursion but it only saves and restores the current
buffer. Beginning with XEmacs 20.3, save-current-buffer is a primitive.

Special Formwith-current-buffer buffer forms. . .
This special form evaluates forms with buffer as the current buffer. It returns the value
of the last form.

Special Formwith-temp-file file forms. . .
This special form creates a new buffer, evaluates forms there, and writes the buffer to file.
It returns the value of the last form evaluated.

Special Formsave-selected-window forms. . .
This special form is similar to save-excursion but it saves and restores the selected
window and nothing else.

34.4 Narrowing

Narrowing means limiting the text addressable by XEmacs editing commands to a limited
range of characters in a buffer. The text that remains addressable is called the accessible portion
of the buffer.

Narrowing is specified with two buffer positions which become the beginning and end of the
accessible portion. For most editing commands and most Emacs primitives, these positions
replace the values of the beginning and end of the buffer. While narrowing is in effect, no text
outside the accessible portion is displayed, and point cannot move outside the accessible portion.

Values such as positions or line numbers, which usually count from the beginning of the
buffer, do so despite narrowing, but the functions which use them refuse to operate on text that
is inaccessible.

The commands for saving buffers are unaffected by narrowing; they save the entire buffer
regardless of any narrowing.

Commandnarrow-to-region start end &optional buffer
This function sets the accessible portion of buffer to start at start and end at end. Both
arguments should be character positions. buffer defaults to the current buffer if omitted.
In an interactive call, start and end are set to the bounds of the current region (point and
the mark, with the smallest first).

450 XEmacs Lisp Reference Manual

Commandnarrow-to-page &optional move-count
This function sets the accessible portion of the current buffer to include just the current
page. An optional first argument move-count non-nil means to move forward or backward
by move-count pages and then narrow. The variable page-delimiter specifies where
pages start and end (see Section 37.8 [Standard Regexps], page 510).
In an interactive call, move-count is set to the numeric prefix argument.

Commandwiden &optional buffer
This function cancels any narrowing in buffer, so that the entire contents are accessible.
This is called widening. It is equivalent to the following expression:

(narrow-to-region 1 (1+ (buffer-size)))

buffer defaults to the current buffer if omitted.

Special Formsave-restriction body. . .
This special form saves the current bounds of the accessible portion, evaluates the body
forms, and finally restores the saved bounds, thus restoring the same state of narrowing
(or absence thereof) formerly in effect. The state of narrowing is restored even in the
event of an abnormal exit via throw or error (see Section 9.5 [Nonlocal Exits], page 121).
Therefore, this construct is a clean way to narrow a buffer temporarily.
The value returned by save-restriction is that returned by the last form in body, or
nil if no body forms were given.
Caution: it is easy to make a mistake when using the save-restriction construct. Read
the entire description here before you try it.
If body changes the current buffer, save-restriction still restores the restrictions on
the original buffer (the buffer whose restrictions it saved from), but it does not restore the
identity of the current buffer.
save-restriction does not restore point and the mark; use save-excursion for that. If
you use both save-restriction and save-excursion together, save-excursion should
come first (on the outside). Otherwise, the old point value would be restored with tempo-
rary narrowing still in effect. If the old point value were outside the limits of the temporary
narrowing, this would fail to restore it accurately.
The save-restriction special form records the values of the beginning and end of the
accessible portion as distances from the beginning and end of the buffer. In other words,
it records the amount of inaccessible text before and after the accessible portion.
This method yields correct results if body does further narrowing. However, save-
restriction can become confused if the body widens and then make changes outside
the range of the saved narrowing. When this is what you want to do, save-restriction
is not the right tool for the job. Here is what you must use instead:

(let ((beg (point-min-marker))
(end (point-max-marker)))

(unwind-protect
(progn body)

(save-excursion
(set-buffer (marker-buffer beg))
(narrow-to-region beg end))))

Here is a simple example of correct use of save-restriction:
---------- Buffer: foo ----------
This is the contents of foo
This is the contents of foo
This is the contents of foo?
---------- Buffer: foo ----------

Chapter 34: Positions 451

(save-excursion
(save-restriction
(goto-char 1)
(forward-line 2)
(narrow-to-region 1 (point))
(goto-char (point-min))
(replace-string "foo" "bar")))

---------- Buffer: foo ----------
This is the contents of bar
This is the contents of bar
This is the contents of foo?
---------- Buffer: foo ----------

452 XEmacs Lisp Reference Manual

Chapter 35: Markers 453

35 Markers

A marker is a Lisp object used to specify a position in a buffer relative to the surrounding
text. A marker changes its offset from the beginning of the buffer automatically whenever text
is inserted or deleted, so that it stays with the two characters on either side of it.

35.1 Overview of Markers

A marker specifies a buffer and a position in that buffer. The marker can be used to represent
a position in the functions that require one, just as an integer could be used. See Chapter 34
[Positions], page 441, for a complete description of positions.

A marker has two attributes: the marker position, and the marker buffer. The marker
position is an integer that is equivalent (at a given time) to the marker as a position in that
buffer. But the marker’s position value can change often during the life of the marker. Insertion
and deletion of text in the buffer relocate the marker. The idea is that a marker positioned
between two characters remains between those two characters despite insertion and deletion
elsewhere in the buffer. Relocation changes the integer equivalent of the marker.

Deleting text around a marker’s position leaves the marker between the characters imme-
diately before and after the deleted text. Inserting text at the position of a marker normally
leaves the marker in front of the new text—unless it is inserted with insert-before-markers
(see Section 36.4 [Insertion], page 465).

Insertion and deletion in a buffer must check all the markers and relocate them if necessary.
This slows processing in a buffer with a large number of markers. For this reason, it is a good
idea to make a marker point nowhere if you are sure you don’t need it any more. Unreferenced
markers are garbage collected eventually, but until then will continue to use time if they do
point somewhere.

Because it is common to perform arithmetic operations on a marker position, most of the
arithmetic operations (including + and -) accept markers as arguments. In such cases, the
marker stands for its current position.

Note that you can use extents to achieve the same functionality, and more, as markers.
(Markers were defined before extents, which is why they both continue to exist.) A zero-length
extent with the detachable property removed is almost identical to a marker. (See Section 40.3
[Extent Endpoints], page 530, for more information on zero-length extents.)

In particular:
• In order to get marker-like behavior in a zero-length extent, the detachable property must

be removed (otherwise, the extent will disappear when text near it is deleted) and exactly
one endpoint must be closed (if both endpoints are closed, the extent will expand to contain
text inserted where it is located).

• If a zero-length extent has the end-open property but not the start-open property (this is
the default), text inserted at the extent’s location causes the extent to move forward, just
like a marker.

• If a zero-length extent has the start-open property but not the end-open property, text
inserted at the extent’s location causes the extent to remain before the text, like what
happens to markers when insert-before-markers is used.

• Markers end up after or before inserted text depending on whether insert or insert-
before-markers was called. These functions do not affect zero-length extents differently;
instead, the presence or absence of the start-open and end-open extent properties deter-
mines this, as just described.

454 XEmacs Lisp Reference Manual

• Markers are automatically removed from a buffer when they are no longer in use. Extents
remain around until explicitly removed from a buffer.

• Many functions are provided for listing the extents in a buffer or in a region of a buffer. No
such functions exist for markers.

Here are examples of creating markers, setting markers, and moving point to markers:
;; Make a new marker that initially does not point anywhere:
(setq m1 (make-marker))

⇒ #<marker in no buffer>

;; Set m1 to point between the 99th and 100th characters
;; in the current buffer:
(set-marker m1 100)

⇒ #<marker at 100 in markers.texi>

;; Now insert one character at the beginning of the buffer:
(goto-char (point-min))

⇒ 1
(insert "Q")

⇒ nil

;; m1 is updated appropriately.
m1

⇒ #<marker at 101 in markers.texi>

;; Two markers that point to the same position
;; are not eq, but they are equal.
(setq m2 (copy-marker m1))

⇒ #<marker at 101 in markers.texi>
(eq m1 m2)

⇒ nil
(equal m1 m2)

⇒ t

;; When you are finished using a marker, make it point nowhere.
(set-marker m1 nil)

⇒ #<marker in no buffer>

35.2 Predicates on Markers

You can test an object to see whether it is a marker, or whether it is either an integer or a
marker or either an integer, a character, or a marker. The latter tests are useful in connection
with the arithmetic functions that work with any of markers, integers, or characters.

Functionmarkerp object
This function returns t if object is a marker, nil otherwise. Note that integers are not
markers, even though many functions will accept either a marker or an integer.

Functioninteger-or-marker-p object
This function returns t if object is an integer or a marker, nil otherwise.

Functioninteger-char-or-marker-p object
This function returns t if object is an integer, a character, or a marker, nil otherwise.

Chapter 35: Markers 455

Functionnumber-or-marker-p object
This function returns t if object is a number (either kind) or a marker, nil otherwise.

Functionnumber-char-or-marker-p object
This function returns t if object is a number (either kind), a character, or a marker, nil
otherwise.

35.3 Functions That Create Markers

When you create a new marker, you can make it point nowhere, or point to the present
position of point, or to the beginning or end of the accessible portion of the buffer, or to the
same place as another given marker.

Functionmake-marker
This functions returns a newly created marker that does not point anywhere.

(make-marker)
⇒ #<marker in no buffer>

Functionpoint-marker &optional dont-copy-p buffer
This function returns a marker that points to the present position of point in buffer, which
defaults to the current buffer. See Section 34.1 [Point], page 441. For an example, see
copy-marker, below.
Internally, a marker corresponding to point is always maintained. Normally the marker
returned by point-marker is a copy; you may modify it with reckless abandon. However,
if optional argument dont-copy-p is non-nil, then the real point-marker is returned; mod-
ifying the position of this marker will move point. It is illegal to change the buffer of it,
or make it point nowhere.

Functionpoint-min-marker &optional buffer
This function returns a new marker that points to the beginning of the accessible portion
of buffer, which defaults to the current buffer. This will be the beginning of the buffer
unless narrowing is in effect. See Section 34.4 [Narrowing], page 449.

Functionpoint-max-marker &optional buffer
This function returns a new marker that points to the end of the accessible portion of
buffer, which defaults to the current buffer. This will be the end of the buffer unless
narrowing is in effect. See Section 34.4 [Narrowing], page 449.
Here are examples of this function and point-min-marker, shown in a buffer containing
a version of the source file for the text of this chapter.

(point-min-marker)
⇒ #<marker at 1 in markers.texi>

(point-max-marker)
⇒ #<marker at 15573 in markers.texi>

(narrow-to-region 100 200)
⇒ nil

(point-min-marker)
⇒ #<marker at 100 in markers.texi>

(point-max-marker)
⇒ #<marker at 200 in markers.texi>

456 XEmacs Lisp Reference Manual

Functioncopy-marker marker-or-integer
If passed a marker as its argument, copy-marker returns a new marker that points to
the same place and the same buffer as does marker-or-integer. If passed an integer as its
argument, copy-marker returns a new marker that points to position marker-or-integer
in the current buffer.
If passed an integer argument less than 1, copy-marker returns a new marker that points
to the beginning of the current buffer. If passed an integer argument greater than the
length of the buffer, copy-marker returns a new marker that points to the end of the
buffer.
An error is signaled if marker is neither a marker nor an integer.

(setq p (point-marker))
⇒ #<marker at 2139 in markers.texi>

(setq q (copy-marker p))
⇒ #<marker at 2139 in markers.texi>

(eq p q)
⇒ nil

(equal p q)
⇒ t

(point)
⇒ 2139

(set-marker p 3000)
⇒ #<marker at 3000 in markers.texi>

(point)
⇒ 2139

(setq p (point-marker t))
⇒ #<marker at 2139 in markers.texi>

(set-marker p 3000)
⇒ #<marker at 3000 in markers.texi>

(point)
⇒ 3000

(copy-marker 0)
⇒ #<marker at 1 in markers.texi>

(copy-marker 20000)
⇒ #<marker at 7572 in markers.texi>

35.4 Information from Markers

This section describes the functions for accessing the components of a marker object.

Functionmarker-position marker
This function returns the position that marker points to, or nil if it points nowhere.

Functionmarker-buffer marker
This function returns the buffer that marker points into, or nil if it points nowhere.

(setq m (make-marker))
⇒ #<marker in no buffer>

Chapter 35: Markers 457

(marker-position m)
⇒ nil

(marker-buffer m)
⇒ nil

(set-marker m 3770 (current-buffer))
⇒ #<marker at 3770 in markers.texi>

(marker-buffer m)
⇒ #<buffer markers.texi>

(marker-position m)
⇒ 3770

Two distinct markers are considered equal (even though not eq) to each other if they have
the same position and buffer, or if they both point nowhere.

35.5 Changing Marker Positions

This section describes how to change the position of an existing marker. When you do this,
be sure you know whether the marker is used outside of your program, and, if so, what effects
will result from moving it—otherwise, confusing things may happen in other parts of Emacs.

Functionset-marker marker position &optional buffer
This function moves marker to position in buffer. If buffer is not provided, it defaults to
the current buffer.
If position is less than 1, set-marker moves marker to the beginning of the buffer. If
position is greater than the size of the buffer, set-marker moves marker to the end of the
buffer. If position is nil or a marker that points nowhere, then marker is set to point
nowhere.
The value returned is marker.

(setq m (point-marker))
⇒ #<marker at 4714 in markers.texi>

(set-marker m 55)
⇒ #<marker at 55 in markers.texi>

(setq b (get-buffer "foo"))
⇒ #<buffer foo>

(set-marker m 0 b)
⇒ #<marker at 1 in foo>

Functionmove-marker marker position &optional buffer
This is another name for set-marker.

35.6 The Mark

One special marker in each buffer is designated the mark. It records a position for the user
for the sake of commands such as C-w and C-x 〈TAB〉. Lisp programs should set the mark only
to values that have a potential use to the user, and never for their own internal purposes. For
example, the replace-regexp command sets the mark to the value of point before doing any
replacements, because this enables the user to move back there conveniently after the replace is
finished.

458 XEmacs Lisp Reference Manual

Once the mark “exists” in a buffer, it normally never ceases to exist. However, it may
become inactive, and usually does so after each command (other than simple motion commands
and some commands that explicitly activate the mark). When the mark is active, the region
between point and the mark is called the active region and is highlighted specially.

Many commands are designed so that when called interactively they operate on the text
between point and the mark. Such commands work only when an active region exists, i.e. when
the mark is active. (The reason for this is to prevent you from accidentally deleting or changing
large chunks of your text.) If you are writing such a command, don’t examine the mark directly;
instead, use interactive with the ‘r’ specification. This provides the values of point and the
mark as arguments to the command in an interactive call, but permits other Lisp programs
to specify arguments explicitly, and automatically signals an error if the command is called
interactively when no active region exists. See Section 19.2.2 [Interactive Codes], page 257.

Each buffer has its own value of the mark that is independent of the value of the mark in
other buffers. (When a buffer is created, the mark exists but does not point anywhere. We
consider this state as “the absence of a mark in that buffer.”) However, only one active region
can exist at a time. Activating the mark in one buffer automatically deactivates an active mark
in any other buffer. Note that the user can explicitly activate a mark at any time by using the
command activate-region (normally bound to M-C-z) or by using the command exchange-
point-and-mark (normally bound to C-x C-x), which has the side effect of activating the mark.

Some people do not like active regions, so they disable this behavior by setting the variable
zmacs-regions to nil. This makes the mark always active (except when a buffer is just created
and the mark points nowhere), and turns off the highlighting of the region between point and
the mark. Commands that explicitly retrieve the value of the mark should make sure that they
behave correctly and consistently irrespective of the setting of zmacs-regions; some primitives
are provided to ensure this behavior.

In addition to the mark, each buffer has a mark ring which is a list of markers containing
previous values of the mark. When editing commands change the mark, they should normally
save the old value of the mark on the mark ring. The variable mark-ring-max specifies the
maximum number of entries in the mark ring; once the list becomes this long, adding a new
element deletes the last element.

Functionmark &optional force buffer
This function returns buffer’s mark position as an integer. buffer defaults to the current
buffer if omitted.
If the mark is inactive, mark normally returns nil. However, if force is non-nil, then
mark returns the mark position anyway—or nil, if the mark is not yet set for the buffer.
(Remember that if zmacs-regions is nil, the mark is always active as long as it exists,
and the force argument will have no effect.)
If you are using this in an editing command, you are most likely making a mistake; see
the documentation of set-mark below.

Functionmark-marker inactive-p buffer
This function returns buffer’s mark. buffer defaults to the current buffer if omitted. This
is the very marker that records the mark location inside XEmacs, not a copy. Therefore,
changing this marker’s position will directly affect the position of the mark. Don’t do it
unless that is the effect you want.
If the mark is inactive, mark-marker normally returns nil. However, if force is non-nil,
then mark-marker returns the mark anyway.

(setq m (mark-marker))
⇒ #<marker at 3420 in markers.texi>

Chapter 35: Markers 459

(set-marker m 100)
⇒ #<marker at 100 in markers.texi>

(mark-marker)
⇒ #<marker at 100 in markers.texi>

Like any marker, this marker can be set to point at any buffer you like. We don’t recom-
mend that you make it point at any buffer other than the one of which it is the mark. If
you do, it will yield perfectly consistent, but rather odd, results.

Functionset-mark position &optional buffer
This function sets buffer’s mark to position, and activates the mark. buffer defaults to
the current buffer if omitted. The old value of the mark is not pushed onto the mark ring.
Please note: Use this function only if you want the user to see that the mark has moved,
and you want the previous mark position to be lost. Normally, when a new mark is set,
the old one should go on the mark-ring. For this reason, most applications should use
push-mark and pop-mark, not set-mark.
Novice XEmacs Lisp programmers often try to use the mark for the wrong purposes. The
mark saves a location for the user’s convenience. An editing command should not alter
the mark unless altering the mark is part of the user-level functionality of the command.
(And, in that case, this effect should be documented.) To remember a location for internal
use in the Lisp program, store it in a Lisp variable. For example:

(let ((beg (point)))
(forward-line 1)
(delete-region beg (point))).

Commandexchange-point-and-mark &optional dont-activate-region
This function exchanges the positions of point and the mark. It is intended for interactive
use. The mark is also activated unless dont-activate-region is non-nil.

Functionpush-mark &optional position nomsg activate buffer
This function sets buffer’s mark to position, and pushes a copy of the previous mark onto
mark-ring. buffer defaults to the current buffer if omitted. If position is nil, then the
value of point is used. push-mark returns nil.
If the last global mark pushed was not in buffer, also push position on the global mark
ring (see below).
The function push-mark normally does not activate the mark. To do that, specify t for
the argument activate.
A ‘Mark set’ message is displayed unless nomsg is non-nil.

Functionpop-mark
This function pops off the top element of mark-ring and makes that mark become the
buffer’s actual mark. This does not move point in the buffer, and it does nothing if
mark-ring is empty. It deactivates the mark.
The return value is not meaningful.

Variablemark-ring
The value of this buffer-local variable is the list of saved former marks of the current
buffer, most recent first.

mark-ring
⇒ (#<marker at 11050 in markers.texi>

#<marker at 10832 in markers.texi>
...)

460 XEmacs Lisp Reference Manual

User Optionmark-ring-max
The value of this variable is the maximum size of mark-ring. If more marks than this are
pushed onto the mark-ring, push-mark discards an old mark when it adds a new one.

In additional to a per-buffer mark ring, there is a global mark ring. Marks are pushed onto
the global mark ring the first time you set a mark after switching buffers.

Variableglobal-mark-ring
The value of this variable is the list of saved former global marks, most recent first.

User Optionmark-ring-max
The value of this variable is the maximum size of global-mark-ring. If more marks than
this are pushed onto the global-mark-ring, push-mark discards an old mark when it
adds a new one.

Commandpop-global-mark
This function pops a mark off the global mark ring and jumps to that location.

35.7 The Region

The text between point and the mark is known as the region. Various functions operate on
text delimited by point and the mark, but only those functions specifically related to the region
itself are described here.

When zmacs-regions is non-nil (this is the default), the concept of an active region exists.
The region is active when the corresponding mark is active. Note that only one active region at
a time can exist – i.e. only one buffer’s region is active at a time. See Section 35.6 [The Mark],
page 457, for more information about active regions.

User Optionzmacs-regions
If non-nil (the default), active regions are used. See Section 35.6 [The Mark], page 457,
for a detailed explanation of what this means.

A number of functions are provided for explicitly determining the bounds of the region and
whether it is active. Few programs need to use these functions, however. A command designed
to operate on a region should normally use interactive with the ‘r’ specification to find the
beginning and end of the region. This lets other Lisp programs specify the bounds explicitly as
arguments and automatically respects the user’s setting for zmacs-regions. (See Section 19.2.2
[Interactive Codes], page 257.)

Functionregion-beginning &optional buffer
This function returns the position of the beginning of buffer’s region (as an integer). This
is the position of either point or the mark, whichever is smaller. buffer defaults to the
current buffer if omitted.
If the mark does not point anywhere, an error is signaled. Note that this function ignores
whether the region is active.

Functionregion-end &optional buffer
This function returns the position of the end of buffer’s region (as an integer). This is the
position of either point or the mark, whichever is larger. buffer defaults to the current
buffer if omitted.
If the mark does not point anywhere, an error is signaled. Note that this function ignores
whether the region is active.

Chapter 35: Markers 461

Functionregion-exists-p
This function is non-nil if the region exists. If active regions are in use (i.e. zmacs-
regions is true), this means that the region is active. Otherwise, this means that the
user has pushed a mark in this buffer at some point in the past. If this function returns
nil, a function that uses the ‘r’ interactive specification will cause an error when called
interactively.

Functionregion-active-p
If zmacs-regions is true, this is equivalent to region-exists-p. Otherwise, this function
always returns false. This function is used by commands such as fill-paragraph-or-
region and capitalize-region-or-word, which operate either on the active region or
on something else (e.g. the word or paragraph at point).

Variablezmacs-region-stays
If a command sets this variable to true, the currently active region will remain activated
when the command finishes. (Normally the region is deactivated when each command
terminates.) If zmacs-regions is false, however, this has no effect. Under normal circum-
stances, you do not need to set this; use the interactive specification ‘_’ instead, if you
want the region to remain active.

Functionzmacs-activate-region
This function activates the region in the current buffer (this is equivalent to activating
the current buffer’s mark). This will normally also highlight the text in the active region
and set zmacs-region-stays to t. (If zmacs-regions is false, however, this function has no
effect.)

Functionzmacs-deactivate-region
This function deactivates the region in the current buffer (this is equivalent to deactivating
the current buffer’s mark). This will normally also unhighlight the text in the active region
and set zmacs-region-stays to nil. (If zmacs-regions is false, however, this function has
no effect.)

Functionzmacs-update-region
This function updates the active region, if it’s currently active. (If there is no active
region, this function does nothing.) This has the effect of updating the highlighting on
the text in the region; but you should never need to call this except under rather strange
circumstances. The command loop automatically calls it when appropriate. Calling this
function will call the hook zmacs-update-region-hook, if the region is active.

Variablezmacs-activate-region-hook
This normal hook is called when a region becomes active. (Usually this happens as a result
of a command that activates the region, such as set-mark-command, activate-region,
or exchange-point-and-mark.) Note that calling ‘zmacs-activate-region’ will call this
hook, even if the region is already active. If zmacs-regions is false, however, this hook will
never get called under any circumstances.

Variablezmacs-deactivate-region-hook
This normal hook is called when an active region becomes inactive. (Calling
‘zmacs-deactivate-region’ when the region is inactive will not cause this hook to be
called.) If zmacs-regions is false, this hook will never get called.

462 XEmacs Lisp Reference Manual

Variablezmacs-update-region-hook
This normal hook is called when an active region is "updated" by zmacs-update-region.
This normally gets called at the end of each command that sets zmacs-region-stays to t,
indicating that the region should remain activated. The motion commands do this.

Chapter 36: Text 463

36 Text

This chapter describes the functions that deal with the text in a buffer. Most examine, insert,
or delete text in the current buffer, often in the vicinity of point. Many are interactive. All
the functions that change the text provide for undoing the changes (see Section 36.9 [Undo],
page 474).

Many text-related functions operate on a region of text defined by two buffer positions passed
in arguments named start and end. These arguments should be either markers (see Chapter 35
[Markers], page 453) or numeric character positions (see Chapter 34 [Positions], page 441).
The order of these arguments does not matter; it is all right for start to be the end of the
region and end the beginning. For example, (delete-region 1 10) and (delete-region 10
1) are equivalent. An args-out-of-range error is signaled if either start or end is outside the
accessible portion of the buffer. In an interactive call, point and the mark are used for these
arguments.

Throughout this chapter, “text” refers to the characters in the buffer, together with their
properties (when relevant).

36.1 Examining Text Near Point

Many functions are provided to look at the characters around point. Several simple functions
are described here. See also looking-at in Section 37.3 [Regexp Search], page 502.

Many of these functions take an optional buffer argument. In all such cases, the current
buffer will be used if this argument is omitted. (In FSF Emacs, and earlier versions of XEmacs,
these functions usually did not have these optional buffer arguments and always operated on
the current buffer.)

Functionchar-after position &optional buffer
This function returns the character in the buffer at (i.e., immediately after) position
position. If position is out of range for this purpose, either before the beginning of the
buffer, or at or beyond the end, then the value is nil. If optional argument buffer is nil,
the current buffer is assumed.
In the following example, assume that the first character in the buffer is ‘@’:

(char-to-string (char-after 1))
⇒ "@"

Functionfollowing-char &optional buffer
This function returns the character following point in the buffer. This is similar to
(char-after (point)). However, if point is at the end of the buffer, then the result
of following-char is 0. If optional argument buffer is nil, the current buffer is assumed.
Remember that point is always between characters, and the terminal cursor normally ap-
pears over the character following point. Therefore, the character returned by following-
char is the character the cursor is over.
In this example, point is between the ‘a’ and the ‘c’.

---------- Buffer: foo ----------
Gentlemen may cry ‘‘Pea?ce! Peace!,’’
but there is no peace.
---------- Buffer: foo ----------

464 XEmacs Lisp Reference Manual

(char-to-string (preceding-char))
⇒ "a"

(char-to-string (following-char))
⇒ "c"

Functionpreceding-char &optional buffer
This function returns the character preceding point in the buffer. See above, under
following-char, for an example. If point is at the beginning of the buffer, preceding-
char returns 0. If optional argument buffer is nil, the current buffer is assumed.

Functionbobp &optional buffer
This function returns t if point is at the beginning of the buffer. If narrowing is in effect,
this means the beginning of the accessible portion of the text. If optional argument buffer
is nil, the current buffer is assumed. See also point-min in Section 34.1 [Point], page 441.

Functioneobp &optional buffer
This function returns t if point is at the end of the buffer. If narrowing is in effect, this
means the end of accessible portion of the text. If optional argument buffer is nil, the
current buffer is assumed. See also point-max in See Section 34.1 [Point], page 441.

Functionbolp &optional buffer
This function returns t if point is at the beginning of a line. If optional argument buffer
is nil, the current buffer is assumed. See Section 34.2.4 [Text Lines], page 444. The
beginning of the buffer (or its accessible portion) always counts as the beginning of a line.

Functioneolp &optional buffer
This function returns t if point is at the end of a line. The end of the buffer is always
considered the end of a line. If optional argument buffer is nil, the current buffer is
assumed. The end of the buffer (or of its accessible portion) is always considered the end
of a line.

36.2 Examining Buffer Contents

This section describes two functions that allow a Lisp program to convert any portion of the
text in the buffer into a string.

Functionbuffer-substring start end &optional buffer
Functionbuffer-string start end &optional buffer

These functions are equivalent and return a string containing a copy of the text of the
region defined by positions start and end in the buffer. If the arguments are not positions
in the accessible portion of the buffer, buffer-substring signals an args-out-of-range
error. If optional argument buffer is nil, the current buffer is assumed.
If the region delineated by start and end contains duplicable extents, they will be remem-
bered in the string. See Section 40.9 [Duplicable Extents], page 539.
It is not necessary for start to be less than end; the arguments can be given in either
order. But most often the smaller argument is written first.

---------- Buffer: foo ----------
This is the contents of buffer foo

---------- Buffer: foo ----------

Chapter 36: Text 465

(buffer-substring 1 10)
⇒ "This is t"
(buffer-substring (point-max) 10)
⇒ "he contents of buffer foo
"

36.3 Comparing Text

This function lets you compare portions of the text in a buffer, without copying them into
strings first.

Functioncompare-buffer-substrings buffer1 start1 end1 buffer2 start2 end2
This function lets you compare two substrings of the same buffer or two different buffers.
The first three arguments specify one substring, giving a buffer and two positions within
the buffer. The last three arguments specify the other substring in the same way. You
can use nil for buffer1, buffer2, or both to stand for the current buffer.
The value is negative if the first substring is less, positive if the first is greater, and zero if
they are equal. The absolute value of the result is one plus the index of the first differing
characters within the substrings.
This function ignores case when comparing characters if case-fold-search is non-nil.
It always ignores text properties.
Suppose the current buffer contains the text ‘foobarbar haha!rara!’; then in this exam-
ple the two substrings are ‘rbar ’ and ‘rara!’. The value is 2 because the first substring
is greater at the second character.

(compare-buffer-substring nil 6 11 nil 16 21)
⇒ 2

36.4 Inserting Text

Insertion means adding new text to a buffer. The inserted text goes at point—between the
character before point and the character after point.

Insertion relocates markers that point at positions after the insertion point, so that they
stay with the surrounding text (see Chapter 35 [Markers], page 453). When a marker points
at the place of insertion, insertion normally doesn’t relocate the marker, so that it points to
the beginning of the inserted text; however, certain special functions such as insert-before-
markers relocate such markers to point after the inserted text.

Some insertion functions leave point before the inserted text, while other functions leave it
after. We call the former insertion after point and the latter insertion before point.

If a string with non-nil extent data is inserted, the remembered extents will also be inserted.
See Section 40.9 [Duplicable Extents], page 539.

Insertion functions signal an error if the current buffer is read-only.
These functions copy text characters from strings and buffers along with their properties.

The inserted characters have exactly the same properties as the characters they were copied
from. By contrast, characters specified as separate arguments, not part of a string or buffer,
inherit their text properties from the neighboring text.

466 XEmacs Lisp Reference Manual

Functioninsert &rest args
This function inserts the strings and/or characters args into the current buffer, at point,
moving point forward. In other words, it inserts the text before point. An error is signaled
unless all args are either strings or characters. The value is nil.

Functioninsert-before-markers &rest args
This function inserts the strings and/or characters args into the current buffer, at point,
moving point forward. An error is signaled unless all args are either strings or characters.
The value is nil.
This function is unlike the other insertion functions in that it relocates markers initially
pointing at the insertion point, to point after the inserted text.

Functioninsert-string string &optional buffer
This function inserts string into buffer before point. buffer defaults to the current buffer
if omitted. This function is chiefly useful if you want to insert a string in a buffer other
than the current one (otherwise you could just use insert).

Functioninsert-char character count &optional buffer
This function inserts count instances of character into buffer before point. count must
be a number, and character must be a character. The value is nil. If optional argument
buffer is nil, the current buffer is assumed. (In FSF Emacs, the third argument is called
inherit and refers to text properties.)

Functioninsert-buffer-substring from-buffer-or-name &optional start end
This function inserts a portion of buffer from-buffer-or-name (which must already exist)
into the current buffer before point. The text inserted is the region from start and end.
(These arguments default to the beginning and end of the accessible portion of that buffer.)
This function returns nil.
In this example, the form is executed with buffer ‘bar’ as the current buffer. We assume
that buffer ‘bar’ is initially empty.

---------- Buffer: foo ----------
We hold these truths to be self-evident, that all
---------- Buffer: foo ----------

(insert-buffer-substring "foo" 1 20)
⇒ nil

---------- Buffer: bar ----------
We hold these truth?
---------- Buffer: bar ----------

36.5 User-Level Insertion Commands

This section describes higher-level commands for inserting text, commands intended primarily
for the user but useful also in Lisp programs.

Commandinsert-buffer from-buffer-or-name
This command inserts the entire contents of from-buffer-or-name (which must exist) into
the current buffer after point. It leaves the mark after the inserted text. The value is nil.

Chapter 36: Text 467

Commandself-insert-command count
This command inserts the last character typed; it does so count times, before point, and
returns nil. Most printing characters are bound to this command. In routine use, self-
insert-command is the most frequently called function in XEmacs, but programs rarely
use it except to install it on a keymap.
In an interactive call, count is the numeric prefix argument.
This command calls auto-fill-function whenever that is non-nil and the character
inserted is a space or a newline (see Section 36.13 [Auto Filling], page 479).
This command performs abbrev expansion if Abbrev mode is enabled and the inserted
character does not have word-constituent syntax. (See Chapter 39 [Abbrevs], page 523,
and Section 38.2.1 [Syntax Class Table], page 514.)
This is also responsible for calling blink-paren-function when the inserted character
has close parenthesis syntax (see Section 45.9 [Blinking], page 594).

Commandnewline &optional number-of-newlines
This command inserts newlines into the current buffer before point. If number-of-newlines
is supplied, that many newline characters are inserted.
This function calls auto-fill-function if the current column number is greater than
the value of fill-column and number-of-newlines is nil. Typically what auto-fill-
function does is insert a newline; thus, the overall result in this case is to insert two
newlines at different places: one at point, and another earlier in the line. newline does
not auto-fill if number-of-newlines is non-nil.
This command indents to the left margin if that is not zero. See Section 36.12 [Margins],
page 478.
The value returned is nil. In an interactive call, count is the numeric prefix argument.

Commandsplit-line
This command splits the current line, moving the portion of the line after point down
vertically so that it is on the next line directly below where it was before. Whitespace
is inserted as needed at the beginning of the lower line, using the indent-to function.
split-line returns the position of point.
Programs hardly ever use this function.

Variableoverwrite-mode
This variable controls whether overwrite mode is in effect: a non-nil value enables the
mode. It is automatically made buffer-local when set in any fashion.

36.6 Deleting Text

Deletion means removing part of the text in a buffer, without saving it in the kill ring (see
Section 36.8 [The Kill Ring], page 470). Deleted text can’t be yanked, but can be reinserted
using the undo mechanism (see Section 36.9 [Undo], page 474). Some deletion functions do save
text in the kill ring in some special cases.

All of the deletion functions operate on the current buffer, and all return a value of nil.

Functionerase-buffer &optional buffer
This function deletes the entire text of buffer, leaving it empty. If the buffer is read-only,
it signals a buffer-read-only error. Otherwise, it deletes the text without asking for
any confirmation. It returns nil. buffer defaults to the current buffer if omitted.

468 XEmacs Lisp Reference Manual

Normally, deleting a large amount of text from a buffer inhibits further auto-saving of
that buffer “because it has shrunk”. However, erase-buffer does not do this, the idea
being that the future text is not really related to the former text, and its size should not
be compared with that of the former text.

Commanddelete-region start end &optional buffer
This command deletes the text in buffer in the region defined by start and end. The value
is nil. If optional argument buffer is nil, the current buffer is assumed.

Commanddelete-char count &optional killp
This command deletes count characters directly after point, or before point if count is
negative. If killp is non-nil, then it saves the deleted characters in the kill ring.
In an interactive call, count is the numeric prefix argument, and killp is the unprocessed
prefix argument. Therefore, if a prefix argument is supplied, the text is saved in the kill
ring. If no prefix argument is supplied, then one character is deleted, but not saved in the
kill ring.
The value returned is always nil.

Commanddelete-backward-char count &optional killp
This command deletes count characters directly before point, or after point if count is
negative. If killp is non-nil, then it saves the deleted characters in the kill ring.
In an interactive call, count is the numeric prefix argument, and killp is the unprocessed
prefix argument. Therefore, if a prefix argument is supplied, the text is saved in the kill
ring. If no prefix argument is supplied, then one character is deleted, but not saved in the
kill ring.
The value returned is always nil.

Commandbackward-delete-char-untabify count &optional killp
This command deletes count characters backward, changing tabs into spaces. When the
next character to be deleted is a tab, it is first replaced with the proper number of spaces
to preserve alignment and then one of those spaces is deleted instead of the tab. If killp
is non-nil, then the command saves the deleted characters in the kill ring.
Conversion of tabs to spaces happens only if count is positive. If it is negative, exactly
−count characters after point are deleted.
In an interactive call, count is the numeric prefix argument, and killp is the unprocessed
prefix argument. Therefore, if a prefix argument is supplied, the text is saved in the kill
ring. If no prefix argument is supplied, then one character is deleted, but not saved in the
kill ring.
The value returned is always nil.

36.7 User-Level Deletion Commands

This section describes higher-level commands for deleting text, commands intended primarily
for the user but useful also in Lisp programs.

Commanddelete-horizontal-space
This function deletes all spaces and tabs around point. It returns nil.
In the following examples, we call delete-horizontal-space four times, once on each
line, with point between the second and third characters on the line each time.

Chapter 36: Text 469

---------- Buffer: foo ----------
I ?thought
I ? thought
We? thought
Yo?u thought
---------- Buffer: foo ----------

(delete-horizontal-space) ; Four times.
⇒ nil

---------- Buffer: foo ----------
Ithought
Ithought
Wethought
You thought
---------- Buffer: foo ----------

Commanddelete-indentation &optional join-following-p
This function joins the line point is on to the previous line, deleting any whitespace at
the join and in some cases replacing it with one space. If join-following-p is non-nil,
delete-indentation joins this line to the following line instead. The value is nil.
If there is a fill prefix, and the second of the lines being joined starts with the prefix, then
delete-indentation deletes the fill prefix before joining the lines. See Section 36.12
[Margins], page 478.
In the example below, point is located on the line starting ‘events’, and it makes no
difference if there are trailing spaces in the preceding line.

---------- Buffer: foo ----------
When in the course of human
? events, it becomes necessary
---------- Buffer: foo ----------

(delete-indentation)
⇒ nil

---------- Buffer: foo ----------
When in the course of human? events, it becomes necessary
---------- Buffer: foo ----------

After the lines are joined, the function fixup-whitespace is responsible for deciding
whether to leave a space at the junction.

Functionfixup-whitespace
This function replaces all the white space surrounding point with either one space or no
space, according to the context. It returns nil.
At the beginning or end of a line, the appropriate amount of space is none. Before
a character with close parenthesis syntax, or after a character with open parenthesis or
expression-prefix syntax, no space is also appropriate. Otherwise, one space is appropriate.
See Section 38.2.1 [Syntax Class Table], page 514.
In the example below, fixup-whitespace is called the first time with point before the
word ‘spaces’ in the first line. For the second invocation, point is directly after the ‘(’.

---------- Buffer: foo ----------
This has too many ?spaces
This has too many spaces at the start of (? this list)
---------- Buffer: foo ----------

470 XEmacs Lisp Reference Manual

(fixup-whitespace)
⇒ nil

(fixup-whitespace)
⇒ nil

---------- Buffer: foo ----------
This has too many spaces
This has too many spaces at the start of (this list)
---------- Buffer: foo ----------

Commandjust-one-space
This command replaces any spaces and tabs around point with a single space. It returns
nil.

Commanddelete-blank-lines
This function deletes blank lines surrounding point. If point is on a blank line with one or
more blank lines before or after it, then all but one of them are deleted. If point is on an
isolated blank line, then it is deleted. If point is on a nonblank line, the command deletes
all blank lines following it.
A blank line is defined as a line containing only tabs and spaces.
delete-blank-lines returns nil.

36.8 The Kill Ring

Kill functions delete text like the deletion functions, but save it so that the user can reinsert
it by yanking. Most of these functions have ‘kill-’ in their name. By contrast, the functions
whose names start with ‘delete-’ normally do not save text for yanking (though they can still
be undone); these are “deletion” functions.

Most of the kill commands are primarily for interactive use, and are not described here.
What we do describe are the functions provided for use in writing such commands. You can use
these functions to write commands for killing text. When you need to delete text for internal
purposes within a Lisp function, you should normally use deletion functions, so as not to disturb
the kill ring contents. See Section 36.6 [Deletion], page 467.

Killed text is saved for later yanking in the kill ring. This is a list that holds a number of
recent kills, not just the last text kill. We call this a “ring” because yanking treats it as having
elements in a cyclic order. The list is kept in the variable kill-ring, and can be operated on
with the usual functions for lists; there are also specialized functions, described in this section,
that treat it as a ring.

Some people think this use of the word “kill” is unfortunate, since it refers to operations
that specifically do not destroy the entities “killed”. This is in sharp contrast to ordinary life,
in which death is permanent and “killed” entities do not come back to life. Therefore, other
metaphors have been proposed. For example, the term “cut ring” makes sense to people who,
in pre-computer days, used scissors and paste to cut up and rearrange manuscripts. However,
it would be difficult to change the terminology now.

36.8.1 Kill Ring Concepts

The kill ring records killed text as strings in a list, most recent first. A short kill ring, for
example, might look like this:

Chapter 36: Text 471

("some text" "a different piece of text" "even older text")

When the list reaches kill-ring-max entries in length, adding a new entry automatically deletes
the last entry.

When kill commands are interwoven with other commands, each kill command makes a new
entry in the kill ring. Multiple kill commands in succession build up a single entry in the kill
ring, which would be yanked as a unit; the second and subsequent consecutive kill commands
add text to the entry made by the first one.

For yanking, one entry in the kill ring is designated the “front” of the ring. Some yank
commands “rotate” the ring by designating a different element as the “front.” But this virtual
rotation doesn’t change the list itself—the most recent entry always comes first in the list.

36.8.2 Functions for Killing

kill-region is the usual subroutine for killing text. Any command that calls this function
is a “kill command” (and should probably have ‘kill’ in its name). kill-region puts the
newly killed text in a new element at the beginning of the kill ring or adds it to the most recent
element. It uses the last-command variable to determine whether the previous command was a
kill command, and if so appends the killed text to the most recent entry.

Commandkill-region start end
This function kills the text in the region defined by start and end. The text is deleted but
saved in the kill ring, along with its text properties. The value is always nil.
In an interactive call, start and end are point and the mark.
If the buffer is read-only, kill-region modifies the kill ring just the same, then signals
an error without modifying the buffer. This is convenient because it lets the user use all
the kill commands to copy text into the kill ring from a read-only buffer.

Commandcopy-region-as-kill start end
This command saves the region defined by start and end on the kill ring (including text
properties), but does not delete the text from the buffer. It returns nil. It also indicates
the extent of the text copied by moving the cursor momentarily, or by displaying a message
in the echo area.
The command does not set this-command to kill-region, so a subsequent kill command
does not append to the same kill ring entry.
Don’t call copy-region-as-kill in Lisp programs unless you aim to support Emacs 18.
For Emacs 19, it is better to use kill-new or kill-append instead. See Section 36.8.4
[Low-Level Kill Ring], page 472.

36.8.3 Functions for Yanking

Yanking means reinserting an entry of previously killed text from the kill ring. The text
properties are copied too.

Commandyank &optional arg
This command inserts before point the text in the first entry in the kill ring. It positions
the mark at the beginning of that text, and point at the end.
If arg is a list (which occurs interactively when the user types C-u with no digits), then
yank inserts the text as described above, but puts point before the yanked text and puts
the mark after it.

472 XEmacs Lisp Reference Manual

If arg is a number, then yank inserts the argth most recently killed text—the argth
element of the kill ring list.
yank does not alter the contents of the kill ring or rotate it. It returns nil.

Commandyank-pop arg
This command replaces the just-yanked entry from the kill ring with a different entry from
the kill ring.
This is allowed only immediately after a yank or another yank-pop. At such a time, the
region contains text that was just inserted by yanking. yank-pop deletes that text and
inserts in its place a different piece of killed text. It does not add the deleted text to the
kill ring, since it is already in the kill ring somewhere.
If arg is nil, then the replacement text is the previous element of the kill ring. If arg is
numeric, the replacement is the argth previous kill. If arg is negative, a more recent kill
is the replacement.
The sequence of kills in the kill ring wraps around, so that after the oldest one comes the
newest one, and before the newest one goes the oldest.
The value is always nil.

36.8.4 Low-Level Kill Ring

These functions and variables provide access to the kill ring at a lower level, but still conve-
nient for use in Lisp programs. They take care of interaction with X Window selections. They
do not exist in Emacs version 18.

Functioncurrent-kill n &optional do-not-move
The function current-kill rotates the yanking pointer which designates the “front” of
the kill ring by n places (from newer kills to older ones), and returns the text at that place
in the ring.
If the optional second argument do-not-move is non-nil, then current-kill doesn’t alter
the yanking pointer; it just returns the nth kill, counting from the current yanking pointer.
If n is zero, indicating a request for the latest kill, current-kill calls the value of
interprogram-paste-function (documented below) before consulting the kill ring.

Functionkill-new string
This function puts the text string into the kill ring as a new entry at the front of the ring.
It discards the oldest entry if appropriate. It also invokes the value of interprogram-
cut-function (see below).

Functionkill-append string before-p
This function appends the text string to the first entry in the kill ring. Normally string
goes at the end of the entry, but if before-p is non-nil, it goes at the beginning. This
function also invokes the value of interprogram-cut-function (see below).

Variableinterprogram-paste-function
This variable provides a way of transferring killed text from other programs, when you
are using a window system. Its value should be nil or a function of no arguments.
If the value is a function, current-kill calls it to get the “most recent kill”. If the
function returns a non-nil value, then that value is used as the “most recent kill”. If it
returns nil, then the first element of kill-ring is used.
The normal use of this hook is to get the X server’s primary selection as the most recent
kill, even if the selection belongs to another X client. See Section 51.1 [X Selections],
page 643.

Chapter 36: Text 473

Variableinterprogram-cut-function
This variable provides a way of communicating killed text to other programs, when you
are using a window system. Its value should be nil or a function of one argument.
If the value is a function, kill-new and kill-append call it with the new first element of
the kill ring as an argument.
The normal use of this hook is to set the X server’s primary selection to the newly killed
text.

36.8.5 Internals of the Kill Ring

The variable kill-ring holds the kill ring contents, in the form of a list of strings. The most
recent kill is always at the front of the list.

The kill-ring-yank-pointer variable points to a link in the kill ring list, whose car is
the text to yank next. We say it identifies the “front” of the ring. Moving kill-ring-yank-
pointer to a different link is called rotating the kill ring. We call the kill ring a “ring” because
the functions that move the yank pointer wrap around from the end of the list to the beginning,
or vice-versa. Rotation of the kill ring is virtual; it does not change the value of kill-ring.

Both kill-ring and kill-ring-yank-pointer are Lisp variables whose values are normally
lists. The word “pointer” in the name of the kill-ring-yank-pointer indicates that the
variable’s purpose is to identify one element of the list for use by the next yank command.

The value of kill-ring-yank-pointer is always eq to one of the links in the kill ring list.
The element it identifies is the car of that link. Kill commands, which change the kill ring, also
set this variable to the value of kill-ring. The effect is to rotate the ring so that the newly
killed text is at the front.

Here is a diagram that shows the variable kill-ring-yank-pointer pointing to the second
entry in the kill ring ("some text" "a different piece of text" "yet older text").

kill-ring kill-ring-yank-pointer
| |
| ___ ___ ---> ___ ___ ___ ___
--> |___|___|------> |___|___|--> |___|___|--> nil

| | |
| | |
| | -->"yet older text"
| |
| --> "a different piece of text"
|
--> "some text"

This state of affairs might occur after C-y (yank) immediately followed by M-y (yank-pop).

Variablekill-ring
This variable holds the list of killed text sequences, most recently killed first.

Variablekill-ring-yank-pointer
This variable’s value indicates which element of the kill ring is at the “front” of the ring
for yanking. More precisely, the value is a tail of the value of kill-ring, and its car is
the kill string that C-y should yank.

User Optionkill-ring-max
The value of this variable is the maximum length to which the kill ring can grow, before
elements are thrown away at the end. The default value for kill-ring-max is 30.

474 XEmacs Lisp Reference Manual

36.9 Undo

Most buffers have an undo list, which records all changes made to the buffer’s text so that
they can be undone. (The buffers that don’t have one are usually special-purpose buffers for
which XEmacs assumes that undoing is not useful.) All the primitives that modify the text
in the buffer automatically add elements to the front of the undo list, which is in the variable
buffer-undo-list.

Variablebuffer-undo-list
This variable’s value is the undo list of the current buffer. A value of t disables the
recording of undo information.

Here are the kinds of elements an undo list can have:

integer This kind of element records a previous value of point. Ordinary cursor motion does
not get any sort of undo record, but deletion commands use these entries to record
where point was before the command.

(beg . end)
This kind of element indicates how to delete text that was inserted. Upon insertion,
the text occupied the range beg–end in the buffer.

(text . position)
This kind of element indicates how to reinsert text that was deleted. The deleted
text itself is the string text. The place to reinsert it is (abs position).

(t high . low)
This kind of element indicates that an unmodified buffer became modified. The
elements high and low are two integers, each recording 16 bits of the visited file’s
modification time as of when it was previously visited or saved. primitive-undo
uses those values to determine whether to mark the buffer as unmodified once again;
it does so only if the file’s modification time matches those numbers.

(nil property value beg . end)
This kind of element records a change in a text property. Here’s how you might
undo the change:

(put-text-property beg end property value)

position This element indicates where point was at an earlier time. Undoing this element
sets point to position. Deletion normally creates an element of this kind as well as
a reinsertion element.

nil This element is a boundary. The elements between two boundaries are called a
change group; normally, each change group corresponds to one keyboard command,
and undo commands normally undo an entire group as a unit.

Functionundo-boundary
This function places a boundary element in the undo list. The undo command stops at
such a boundary, and successive undo commands undo to earlier and earlier boundaries.
This function returns nil.
The editor command loop automatically creates an undo boundary before each key se-
quence is executed. Thus, each undo normally undoes the effects of one command. Self-
inserting input characters are an exception. The command loop makes a boundary for the
first such character; the next 19 consecutive self-inserting input characters do not make
boundaries, and then the 20th does, and so on as long as self-inserting characters continue.

Chapter 36: Text 475

All buffer modifications add a boundary whenever the previous undoable change was made
in some other buffer. This way, a command that modifies several buffers makes a boundary
in each buffer it changes.
Calling this function explicitly is useful for splitting the effects of a command into more
than one unit. For example, query-replace calls undo-boundary after each replacement,
so that the user can undo individual replacements one by one.

Functionprimitive-undo count list
This is the basic function for undoing elements of an undo list. It undoes the first count
elements of list, returning the rest of list. You could write this function in Lisp, but it is
convenient to have it in C.
primitive-undo adds elements to the buffer’s undo list when it changes the buffer. Undo
commands avoid confusion by saving the undo list value at the beginning of a sequence
of undo operations. Then the undo operations use and update the saved value. The new
elements added by undoing are not part of this saved value, so they don’t interfere with
continuing to undo.

36.10 Maintaining Undo Lists

This section describes how to enable and disable undo information for a given buffer. It also
explains how the undo list is truncated automatically so it doesn’t get too big.

Recording of undo information in a newly created buffer is normally enabled to start with; but
if the buffer name starts with a space, the undo recording is initially disabled. You can explicitly
enable or disable undo recording with the following two functions, or by setting buffer-undo-
list yourself.

Commandbuffer-enable-undo &optional buffer-or-name
This command enables recording undo information for buffer buffer-or-name, so that sub-
sequent changes can be undone. If no argument is supplied, then the current buffer is
used. This function does nothing if undo recording is already enabled in the buffer. It
returns nil.
In an interactive call, buffer-or-name is the current buffer. You cannot specify any other
buffer.

Functionbuffer-disable-undo &optional buffer
Functionbuffer-flush-undo &optional buffer

This function discards the undo list of buffer, and disables further recording of undo
information. As a result, it is no longer possible to undo either previous changes or any
subsequent changes. If the undo list of buffer is already disabled, this function has no
effect.
This function returns nil. It cannot be called interactively.
The name buffer-flush-undo is not considered obsolete, but the preferred name buffer-
disable-undo is new as of Emacs versions 19.

As editing continues, undo lists get longer and longer. To prevent them from using up all
available memory space, garbage collection trims them back to size limits you can set. (For
this purpose, the “size” of an undo list measures the cons cells that make up the list, plus the
strings of deleted text.) Two variables control the range of acceptable sizes: undo-limit and
undo-strong-limit.

476 XEmacs Lisp Reference Manual

Variableundo-limit
This is the soft limit for the acceptable size of an undo list. The change group at which
this size is exceeded is the last one kept.

Variableundo-strong-limit
This is the upper limit for the acceptable size of an undo list. The change group at which
this size is exceeded is discarded itself (along with all older change groups). There is one
exception: the very latest change group is never discarded no matter how big it is.

36.11 Filling

Filling means adjusting the lengths of lines (by moving the line breaks) so that they are
nearly (but no greater than) a specified maximum width. Additionally, lines can be justified,
which means inserting spaces to make the left and/or right margins line up precisely. The width
is controlled by the variable fill-column. For ease of reading, lines should be no longer than
70 or so columns.

You can use Auto Fill mode (see Section 36.13 [Auto Filling], page 479) to fill text automati-
cally as you insert it, but changes to existing text may leave it improperly filled. Then you must
fill the text explicitly.

Most of the commands in this section return values that are not meaningful. All the functions
that do filling take note of the current left margin, current right margin, and current justification
style (see Section 36.12 [Margins], page 478). If the current justification style is none, the filling
functions don’t actually do anything.

Several of the filling functions have an argument justify. If it is non-nil, that requests some
kind of justification. It can be left, right, full, or center, to request a specific style of
justification. If it is t, that means to use the current justification style for this part of the text
(see current-justification, below).

When you call the filling functions interactively, using a prefix argument implies the value
full for justify.

Commandfill-paragraph justify
This command fills the paragraph at or after point. If justify is non-nil, each line is
justified as well. It uses the ordinary paragraph motion commands to find paragraph
boundaries. See section “Paragraphs” in The XEmacs User’s Manual.

Commandfill-region start end &optional justify
This command fills each of the paragraphs in the region from start to end. It justifies as
well if justify is non-nil.
The variable paragraph-separate controls how to distinguish paragraphs. See Sec-
tion 37.8 [Standard Regexps], page 510.

Commandfill-individual-paragraphs start end &optional justify mail-flag
This command fills each paragraph in the region according to its individual fill prefix.
Thus, if the lines of a paragraph were indented with spaces, the filled paragraph will
remain indented in the same fashion.
The first two arguments, start and end, are the beginning and end of the region to be
filled. The third and fourth arguments, justify and mail-flag, are optional. If justify is
non-nil, the paragraphs are justified as well as filled. If mail-flag is non-nil, it means
the function is operating on a mail message and therefore should not fill the header lines.

Chapter 36: Text 477

Ordinarily, fill-individual-paragraphs regards each change in indentation as starting
a new paragraph. If fill-individual-varying-indent is non-nil, then only separator
lines separate paragraphs. That mode can handle indented paragraphs with additional
indentation on the first line.

User Optionfill-individual-varying-indent
This variable alters the action of fill-individual-paragraphs as described above.

Commandfill-region-as-paragraph start end &optional justify
This command considers a region of text as a paragraph and fills it. If the region was made
up of many paragraphs, the blank lines between paragraphs are removed. This function
justifies as well as filling when justify is non-nil.
In an interactive call, any prefix argument requests justification.
In Adaptive Fill mode, which is enabled by default, fill-region-as-paragraph on an
indented paragraph when there is no fill prefix uses the indentation of the second line of
the paragraph as the fill prefix.

Commandjustify-current-line how eop nosqueeze
This command inserts spaces between the words of the current line so that the line ends
exactly at fill-column. It returns nil.
The argument how, if non-nil specifies explicitly the style of justification. It can be left,
right, full, center, or none. If it is t, that means to do follow specified justification
style (see current-justification, below). nil means to do full justification.
If eop is non-nil, that means do left-justification when current-justification specifies
full justification. This is used for the last line of a paragraph; even if the paragraph as a
whole is fully justified, the last line should not be.
If nosqueeze is non-nil, that means do not change interior whitespace.

User Optiondefault-justification
This variable’s value specifies the style of justification to use for text that doesn’t specify
a style with a text property. The possible values are left, right, full, center, or none.
The default value is left.

Functioncurrent-justification
This function returns the proper justification style to use for filling the text around point.

Variablefill-paragraph-function
This variable provides a way for major modes to override the filling of paragraphs. If the
value is non-nil, fill-paragraph calls this function to do the work. If the function re-
turns a non-nil value, fill-paragraph assumes the job is done, and immediately returns
that value.
The usual use of this feature is to fill comments in programming language modes. If the
function needs to fill a paragraph in the usual way, it can do so as follows:

(let ((fill-paragraph-function nil))
(fill-paragraph arg))

Variableuse-hard-newlines
If this variable is non-nil, the filling functions do not delete newlines that have the hard
text property. These “hard newlines” act as paragraph separators.

478 XEmacs Lisp Reference Manual

36.12 Margins for Filling

User Optionfill-prefix
This variable specifies a string of text that appears at the beginning of normal text lines
and should be disregarded when filling them. Any line that fails to start with the fill
prefix is considered the start of a paragraph; so is any line that starts with the fill prefix
followed by additional whitespace. Lines that start with the fill prefix but no additional
whitespace are ordinary text lines that can be filled together. The resulting filled lines
also start with the fill prefix.
The fill prefix follows the left margin whitespace, if any.

User Optionfill-column
This buffer-local variable specifies the maximum width of filled lines. Its value should
be an integer, which is a number of columns. All the filling, justification and centering
commands are affected by this variable, including Auto Fill mode (see Section 36.13 [Auto
Filling], page 479).
As a practical matter, if you are writing text for other people to read, you should set
fill-column to no more than 70. Otherwise the line will be too long for people to read
comfortably, and this can make the text seem clumsy.

Variabledefault-fill-column
The value of this variable is the default value for fill-column in buffers that do not
override it. This is the same as (default-value ’fill-column).
The default value for default-fill-column is 70.

Commandset-left-margin from to margin
This sets the left-margin property on the text from from to to to the value margin. If
Auto Fill mode is enabled, this command also refills the region to fit the new margin.

Commandset-right-margin from to margin
This sets the right-margin property on the text from from to to to the value margin. If
Auto Fill mode is enabled, this command also refills the region to fit the new margin.

Functioncurrent-left-margin
This function returns the proper left margin value to use for filling the text around point.
The value is the sum of the left-margin property of the character at the start of the
current line (or zero if none), and the value of the variable left-margin.

Functioncurrent-fill-column
This function returns the proper fill column value to use for filling the text around point.
The value is the value of the fill-column variable, minus the value of the right-margin
property of the character after point.

Commandmove-to-left-margin &optional n force
This function moves point to the left margin of the current line. The column moved to is
determined by calling the function current-left-margin. If the argument n is non-nil,
move-to-left-margin moves forward n−1 lines first.
If force is non-nil, that says to fix the line’s indentation if that doesn’t match the left
margin value.

Chapter 36: Text 479

Functiondelete-to-left-margin from to
This function removes left margin indentation from the text between from and to. The
amount of indentation to delete is determined by calling current-left-margin. In no
case does this function delete non-whitespace.

Functionindent-to-left-margin
This is the default indent-line-function, used in Fundamental mode, Text mode, etc.
Its effect is to adjust the indentation at the beginning of the current line to the value
specified by the variable left-margin. This may involve either inserting or deleting
whitespace.

Variableleft-margin
This variable specifies the base left margin column. In Fundamental mode, 〈LFD〉 indents
to this column. This variable automatically becomes buffer-local when set in any fashion.

36.13 Auto Filling

Auto Fill mode is a minor mode that fills lines automatically as text is inserted. This section
describes the hook used by Auto Fill mode. For a description of functions that you can call
explicitly to fill and justify existing text, see Section 36.11 [Filling], page 476.

Auto Fill mode also enables the functions that change the margins and justification style to
refill portions of the text. See Section 36.12 [Margins], page 478.

Variableauto-fill-function
The value of this variable should be a function (of no arguments) to be called after self-
inserting a space or a newline. It may be nil, in which case nothing special is done in
that case.
The value of auto-fill-function is do-auto-fill when Auto-Fill mode is enabled.
That is a function whose sole purpose is to implement the usual strategy for breaking a
line.

In older Emacs versions, this variable was named auto-fill-hook, but since
it is not called with the standard convention for hooks, it was renamed to
auto-fill-function in version 19.

36.14 Sorting Text

The sorting functions described in this section all rearrange text in a buffer. This is in contrast
to the function sort, which rearranges the order of the elements of a list (see Section 5.6.3
[Rearrangement], page 81). The values returned by these functions are not meaningful.

Functionsort-subr reverse nextrecfun endrecfun &optional startkeyfun endkeyfun
This function is the general text-sorting routine that divides a buffer into records and
sorts them. Most of the commands in this section use this function.
To understand how sort-subr works, consider the whole accessible portion of the buffer
as being divided into disjoint pieces called sort records. The records may or may not be
contiguous; they may not overlap. A portion of each sort record (perhaps all of it) is
designated as the sort key. Sorting rearranges the records in order by their sort keys.

480 XEmacs Lisp Reference Manual

Usually, the records are rearranged in order of ascending sort key. If the first argument
to the sort-subr function, reverse, is non-nil, the sort records are rearranged in order
of descending sort key.
The next four arguments to sort-subr are functions that are called to move point across
a sort record. They are called many times from within sort-subr.
1. nextrecfun is called with point at the end of a record. This function moves point to

the start of the next record. The first record is assumed to start at the position of
point when sort-subr is called. Therefore, you should usually move point to the
beginning of the buffer before calling sort-subr.
This function can indicate there are no more sort records by leaving point at the end
of the buffer.

2. endrecfun is called with point within a record. It moves point to the end of the record.
3. startkeyfun is called to move point from the start of a record to the start of the sort

key. This argument is optional; if it is omitted, the whole record is the sort key. If
supplied, the function should either return a non-nil value to be used as the sort key,
or return nil to indicate that the sort key is in the buffer starting at point. In the
latter case, endkeyfun is called to find the end of the sort key.

4. endkeyfun is called to move point from the start of the sort key to the end of the
sort key. This argument is optional. If startkeyfun returns nil and this argument
is omitted (or nil), then the sort key extends to the end of the record. There is no
need for endkeyfun if startkeyfun returns a non-nil value.

As an example of sort-subr, here is the complete function definition for sort-lines:
;; Note that the first two lines of doc string
;; are effectively one line when viewed by a user.
(defun sort-lines (reverse beg end)

"Sort lines in region alphabetically.
Called from a program, there are three arguments:
REVERSE (non-nil means reverse order),
and BEG and END (the region to sort)."

(interactive "P\nr")
(save-restriction
(narrow-to-region beg end)
(goto-char (point-min))
(sort-subr reverse

’forward-line
’end-of-line)))

Here forward-line moves point to the start of the next record, and end-of-line moves
point to the end of record. We do not pass the arguments startkeyfun and endkeyfun,
because the entire record is used as the sort key.
The sort-paragraphs function is very much the same, except that its sort-subr call
looks like this:

(sort-subr reverse
(function
(lambda ()

(skip-chars-forward "\n \t\f")))
’forward-paragraph)

Commandsort-regexp-fields reverse record-regexp key-regexp start end
This command sorts the region between start and end alphabetically as specified by record-
regexp and key-regexp. If reverse is a negative integer, then sorting is in reverse order.

Chapter 36: Text 481

Alphabetical sorting means that two sort keys are compared by comparing the first char-
acters of each, the second characters of each, and so on. If a mismatch is found, it means
that the sort keys are unequal; the sort key whose character is less at the point of first
mismatch is the lesser sort key. The individual characters are compared according to their
numerical values. Since Emacs uses the ASCII character set, the ordering in that set
determines alphabetical order.
The value of the record-regexp argument specifies how to divide the buffer into sort records.
At the end of each record, a search is done for this regular expression, and the text that
matches it is the next record. For example, the regular expression ‘^.+$’, which matches
lines with at least one character besides a newline, would make each such line into a sort
record. See Section 37.2 [Regular Expressions], page 496, for a description of the syntax
and meaning of regular expressions.
The value of the key-regexp argument specifies what part of each record is the sort key.
The key-regexp could match the whole record, or only a part. In the latter case, the rest
of the record has no effect on the sorted order of records, but it is carried along when the
record moves to its new position.
The key-regexp argument can refer to the text matched by a subexpression of record-
regexp, or it can be a regular expression on its own.
If key-regexp is:

‘\digit’ then the text matched by the digitth ‘\(...\)’ parenthesis grouping in record-
regexp is the sort key.

‘\&’ then the whole record is the sort key.

a regular expression
then sort-regexp-fields searches for a match for the regular expression
within the record. If such a match is found, it is the sort key. If there is
no match for key-regexp within a record then that record is ignored, which
means its position in the buffer is not changed. (The other records may move
around it.)

For example, if you plan to sort all the lines in the region by the first word on each line
starting with the letter ‘f’, you should set record-regexp to ‘^.*$’ and set key-regexp to
‘\<f\w*\>’. The resulting expression looks like this:

(sort-regexp-fields nil "^.*$" "\\<f\\w*\\>"
(region-beginning)
(region-end))

If you call sort-regexp-fields interactively, it prompts for record-regexp and key-regexp
in the minibuffer.

Commandsort-lines reverse start end
This command alphabetically sorts lines in the region between start and end. If reverse
is non-nil, the sort is in reverse order.

Commandsort-paragraphs reverse start end
This command alphabetically sorts paragraphs in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

Commandsort-pages reverse start end
This command alphabetically sorts pages in the region between start and end. If reverse
is non-nil, the sort is in reverse order.

482 XEmacs Lisp Reference Manual

Commandsort-fields field start end
This command sorts lines in the region between start and end, comparing them alphabet-
ically by the fieldth field of each line. Fields are separated by whitespace and numbered
starting from 1. If field is negative, sorting is by the −fieldth field from the end of the
line. This command is useful for sorting tables.

Commandsort-numeric-fields field start end
This command sorts lines in the region between start and end, comparing them numerically
by the fieldth field of each line. The specified field must contain a number in each line of
the region. Fields are separated by whitespace and numbered starting from 1. If field is
negative, sorting is by the −fieldth field from the end of the line. This command is useful
for sorting tables.

Commandsort-columns reverse &optional beg end
This command sorts the lines in the region between beg and end, comparing them alpha-
betically by a certain range of columns. The column positions of beg and end bound the
range of columns to sort on.
If reverse is non-nil, the sort is in reverse order.
One unusual thing about this command is that the entire line containing position beg,
and the entire line containing position end, are included in the region sorted.
Note that sort-columns uses the sort utility program, and so cannot work properly on
text containing tab characters. Use M-x untabify to convert tabs to spaces before sorting.

36.15 Counting Columns

The column functions convert between a character position (counting characters from the
beginning of the buffer) and a column position (counting screen characters from the beginning
of a line).

A character counts according to the number of columns it occupies on the screen. This means
control characters count as occupying 2 or 4 columns, depending upon the value of ctl-arrow,
and tabs count as occupying a number of columns that depends on the value of tab-width and
on the column where the tab begins. See Section 45.10 [Usual Display], page 595.

Column number computations ignore the width of the window and the amount of horizontal
scrolling. Consequently, a column value can be arbitrarily high. The first (or leftmost) column
is numbered 0.

Functioncurrent-column
This function returns the horizontal position of point, measured in columns, counting from
0 at the left margin. The column position is the sum of the widths of all the displayed
representations of the characters between the start of the current line and point.
For an example of using current-column, see the description of count-lines in Sec-
tion 34.2.4 [Text Lines], page 444.

Functionmove-to-column column &optional force
This function moves point to column in the current line. The calculation of column takes
into account the widths of the displayed representations of the characters between the
start of the line and point.
If column column is beyond the end of the line, point moves to the end of the line. If
column is negative, point moves to the beginning of the line.

Chapter 36: Text 483

If it is impossible to move to column column because that is in the middle of a multicolumn
character such as a tab, point moves to the end of that character. However, if force is
non-nil, and column is in the middle of a tab, then move-to-column converts the tab into
spaces so that it can move precisely to column column. Other multicolumn characters can
cause anomalies despite force, since there is no way to split them.
The argument force also has an effect if the line isn’t long enough to reach column column;
in that case, it says to add whitespace at the end of the line to reach that column.
If column is not an integer, an error is signaled.
The return value is the column number actually moved to.

36.16 Indentation

The indentation functions are used to examine, move to, and change whitespace that is at
the beginning of a line. Some of the functions can also change whitespace elsewhere on a line.
Columns and indentation count from zero at the left margin.

36.16.1 Indentation Primitives

This section describes the primitive functions used to count and insert indentation. The
functions in the following sections use these primitives.

Functioncurrent-indentation
This function returns the indentation of the current line, which is the horizontal position of
the first nonblank character. If the contents are entirely blank, then this is the horizontal
position of the end of the line.

Commandindent-to column &optional minimum
This function indents from point with tabs and spaces until column is reached. If minimum
is specified and non-nil, then at least that many spaces are inserted even if this requires
going beyond column. Otherwise the function does nothing if point is already beyond
column. The value is the column at which the inserted indentation ends.

User Optionindent-tabs-mode
If this variable is non-nil, indentation functions can insert tabs as well as spaces. Oth-
erwise, they insert only spaces. Setting this variable automatically makes it local to the
current buffer.

36.16.2 Indentation Controlled by Major Mode

An important function of each major mode is to customize the 〈TAB〉 key to indent properly
for the language being edited. This section describes the mechanism of the 〈TAB〉 key and how
to control it. The functions in this section return unpredictable values.

Variableindent-line-function
This variable’s value is the function to be used by 〈TAB〉 (and various commands) to indent
the current line. The command indent-according-to-mode does no more than call this
function.
In Lisp mode, the value is the symbol lisp-indent-line; in C mode, c-indent-line; in
Fortran mode, fortran-indent-line. In Fundamental mode, Text mode, and many other
modes with no standard for indentation, the value is indent-to-left-margin (which is
the default value).

484 XEmacs Lisp Reference Manual

Commandindent-according-to-mode
This command calls the function in indent-line-function to indent the current line in
a way appropriate for the current major mode.

Commandindent-for-tab-command
This command calls the function in indent-line-function to indent the current line; ex-
cept that if that function is indent-to-left-margin, it calls insert-tab instead. (That
is a trivial command that inserts a tab character.)

Commandnewline-and-indent
This function inserts a newline, then indents the new line (the one following the newline
just inserted) according to the major mode.
It does indentation by calling the current indent-line-function. In programming lan-
guage modes, this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉
inserts a tab, newline-and-indent indents to the column specified by left-margin.

Commandreindent-then-newline-and-indent
This command reindents the current line, inserts a newline at point, and then reindents
the new line (the one following the newline just inserted).
This command does indentation on both lines according to the current major mode, by
calling the current value of indent-line-function. In programming language modes,
this is the same thing 〈TAB〉 does, but in some text modes, where 〈TAB〉 inserts a tab,
reindent-then-newline-and-indent indents to the column specified by left-margin.

36.16.3 Indenting an Entire Region

This section describes commands that indent all the lines in the region. They return unpre-
dictable values.

Commandindent-region start end to-column
This command indents each nonblank line starting between start (inclusive) and end
(exclusive). If to-column is nil, indent-region indents each nonblank line by calling the
current mode’s indentation function, the value of indent-line-function.
If to-column is non-nil, it should be an integer specifying the number of columns of
indentation; then this function gives each line exactly that much indentation, by either
adding or deleting whitespace.
If there is a fill prefix, indent-region indents each line by making it start with the fill
prefix.

Variableindent-region-function
The value of this variable is a function that can be used by indent-region as a short cut.
You should design the function so that it will produce the same results as indenting the
lines of the region one by one, but presumably faster.
If the value is nil, there is no short cut, and indent-region actually works line by line.
A short-cut function is useful in modes such as C mode and Lisp mode, where the indent-
line-function must scan from the beginning of the function definition: applying it to
each line would be quadratic in time. The short cut can update the scan information as it
moves through the lines indenting them; this takes linear time. In a mode where indenting
a line individually is fast, there is no need for a short cut.
indent-region with a non-nil argument to-column has a different meaning and does not
use this variable.

Chapter 36: Text 485

Commandindent-rigidly start end count
This command indents all lines starting between start (inclusive) and end (exclusive)
sideways by count columns. This “preserves the shape” of the affected region, moving it
as a rigid unit. Consequently, this command is useful not only for indenting regions of
unindented text, but also for indenting regions of formatted code.
For example, if count is 3, this command adds 3 columns of indentation to each of the
lines beginning in the region specified.
In Mail mode, C-c C-y (mail-yank-original) uses indent-rigidly to indent the text
copied from the message being replied to.

Functionindent-code-rigidly start end columns &optional nochange-regexp
This is like indent-rigidly, except that it doesn’t alter lines that start within strings or
comments.
In addition, it doesn’t alter a line if nochange-regexp matches at the beginning of the line
(if nochange-regexp is non-nil).

36.16.4 Indentation Relative to Previous Lines

This section describes two commands that indent the current line based on the contents of
previous lines.

Commandindent-relative &optional unindented-ok
This command inserts whitespace at point, extending to the same column as the next
indent point of the previous nonblank line. An indent point is a non-whitespace character
following whitespace. The next indent point is the first one at a column greater than the
current column of point. For example, if point is underneath and to the left of the first
non-blank character of a line of text, it moves to that column by inserting whitespace.
If the previous nonblank line has no next indent point (i.e., none at a great enough
column position), indent-relative either does nothing (if unindented-ok is non-nil) or
calls tab-to-tab-stop. Thus, if point is underneath and to the right of the last column of
a short line of text, this command ordinarily moves point to the next tab stop by inserting
whitespace.
The return value of indent-relative is unpredictable.
In the following example, point is at the beginning of the second line:

This line is indented twelve spaces.
?The quick brown fox jumped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.
?The quick brown fox jumped.

In this example, point is between the ‘m’ and ‘p’ of ‘jumped’:
This line is indented twelve spaces.

The quick brown fox jum?ped.

Evaluation of the expression (indent-relative nil) produces the following:
This line is indented twelve spaces.

The quick brown fox jum ?ped.

Commandindent-relative-maybe
This command indents the current line like the previous nonblank line. It calls indent-
relative with t as the unindented-ok argument. The return value is unpredictable.

486 XEmacs Lisp Reference Manual

If the previous nonblank line has no indent points beyond the current column, this com-
mand does nothing.

36.16.5 Adjustable “Tab Stops”

This section explains the mechanism for user-specified “tab stops” and the mechanisms that
use and set them. The name “tab stops” is used because the feature is similar to that of the tab
stops on a typewriter. The feature works by inserting an appropriate number of spaces and tab
characters to reach the next tab stop column; it does not affect the display of tab characters in
the buffer (see Section 45.10 [Usual Display], page 595). Note that the 〈TAB〉 character as input
uses this tab stop feature only in a few major modes, such as Text mode.

Commandtab-to-tab-stop
This command inserts spaces or tabs up to the next tab stop column defined by tab-
stop-list. It searches the list for an element greater than the current column number,
and uses that element as the column to indent to. It does nothing if no such element is
found.

User Optiontab-stop-list
This variable is the list of tab stop columns used by tab-to-tab-stops. The elements
should be integers in increasing order. The tab stop columns need not be evenly spaced.
Use M-x edit-tab-stops to edit the location of tab stops interactively.

36.16.6 Indentation-Based Motion Commands

These commands, primarily for interactive use, act based on the indentation in the text.

Commandback-to-indentation
This command moves point to the first non-whitespace character in the current line (which
is the line in which point is located). It returns nil.

Commandbackward-to-indentation arg
This command moves point backward arg lines and then to the first nonblank character
on that line. It returns nil.

Commandforward-to-indentation arg
This command moves point forward arg lines and then to the first nonblank character on
that line. It returns nil.

36.17 Case Changes

The case change commands described here work on text in the current buffer. See Section 4.11
[Character Case], page 65, for case conversion commands that work on strings and characters.
See Section 4.12 [Case Tables], page 66, for how to customize which characters are upper or
lower case and how to convert them.

Chapter 36: Text 487

Commandcapitalize-region start end
This function capitalizes all words in the region defined by start and end. To capitalize
means to convert each word’s first character to upper case and convert the rest of each
word to lower case. The function returns nil.
If one end of the region is in the middle of a word, the part of the word within the region
is treated as an entire word.
When capitalize-region is called interactively, start and end are point and the mark,
with the smallest first.

---------- Buffer: foo ----------
This is the contents of the 5th foo.
---------- Buffer: foo ----------

(capitalize-region 1 44)
⇒ nil

---------- Buffer: foo ----------
This Is The Contents Of The 5th Foo.
---------- Buffer: foo ----------

Commanddowncase-region start end
This function converts all of the letters in the region defined by start and end to lower
case. The function returns nil.
When downcase-region is called interactively, start and end are point and the mark,
with the smallest first.

Commandupcase-region start end
This function converts all of the letters in the region defined by start and end to upper
case. The function returns nil.
When upcase-region is called interactively, start and end are point and the mark, with
the smallest first.

Commandcapitalize-word count
This function capitalizes count words after point, moving point over as it does. To capi-
talize means to convert each word’s first character to upper case and convert the rest of
each word to lower case. If count is negative, the function capitalizes the −count previous
words but does not move point. The value is nil.
If point is in the middle of a word, the part of the word before point is ignored when
moving forward. The rest is treated as an entire word.
When capitalize-word is called interactively, count is set to the numeric prefix argument.

Commanddowncase-word count
This function converts the count words after point to all lower case, moving point over
as it does. If count is negative, it converts the −count previous words but does not move
point. The value is nil.
When downcase-word is called interactively, count is set to the numeric prefix argument.

Commandupcase-word count
This function converts the count words after point to all upper case, moving point over
as it does. If count is negative, it converts the −count previous words but does not move
point. The value is nil.
When upcase-word is called interactively, count is set to the numeric prefix argument.

488 XEmacs Lisp Reference Manual

36.18 Text Properties

Text properties are an alternative interface to extents (see Chapter 40 [Extents], page 529),
and are built on top of them. They are useful when you want to view textual properties as being
attached to the characters themselves rather than to intervals of characters. The text property
interface is compatible with FSF Emacs.

Each character position in a buffer or a string can have a text property list, much like the
property list of a symbol (see Section 5.9 [Property Lists], page 88). The properties belong to a
particular character at a particular place, such as, the letter ‘T’ at the beginning of this sentence
or the first ‘o’ in ‘foo’—if the same character occurs in two different places, the two occurrences
generally have different properties.

Each property has a name and a value. Both of these can be any Lisp object, but the name
is normally a symbol. The usual way to access the property list is to specify a name and ask
what value corresponds to it.

Note that FSF Emacs also looks at the category property to find defaults for text properties.
We consider this too bogus to implement.

Copying text between strings and buffers preserves the properties along with the characters;
this includes such diverse functions as substring, insert, and buffer-substring.

36.18.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular property of
a particular character. For that, use get-text-property. Use text-properties-at to get the
entire property list of a character. See Section 36.18.3 [Property Search], page 490, for functions
to examine the properties of a number of characters at once.

These functions handle both strings and buffers. (Keep in mind that positions in a string
start from 0, whereas positions in a buffer start from 1.)

Functionget-text-property pos prop &optional object
This function returns the value of the prop property of the character after position pos in
object (a buffer or string). The argument object is optional and defaults to the current
buffer.

Functionget-char-property pos prop &optional object
This function is like get-text-property, except that it checks all extents, not just text-
property extents.

Functiontext-properties-at position &optional object
This function returns the entire property list of the character at position in the string or
buffer object. If object is nil, it defaults to the current buffer.

Variabledefault-text-properties
This variable holds a property list giving default values for text properties. Whenever
a character does not specify a value for a property, the value stored in this list is used
instead. Here is an example:

(setq default-text-properties ’(foo 69))
;; Make sure character 1 has no properties of its own.
(set-text-properties 1 2 nil)
;; What we get, when we ask, is the default value.
(get-text-property 1 ’foo)

⇒ 69

Chapter 36: Text 489

36.18.2 Changing Text Properties

The primitives for changing properties apply to a specified range of text. The function set-
text-properties (see end of section) sets the entire property list of the text in that range;
more often, it is useful to add, change, or delete just certain properties specified by name.

Since text properties are considered part of the buffer’s contents, and can affect how the
buffer looks on the screen, any change in the text properties is considered a buffer modification.
Buffer text property changes are undoable (see Section 36.9 [Undo], page 474).

Functionput-text-property start end prop value &optional object
This function sets the prop property to value for the text between start and end in the
string or buffer object. If object is nil, it defaults to the current buffer.

Functionadd-text-properties start end props &optional object
This function modifies the text properties for the text between start and end in the string
or buffer object. If object is nil, it defaults to the current buffer.
The argument props specifies which properties to change. It should have the form of a
property list (see Section 5.9 [Property Lists], page 88): a list whose elements include the
property names followed alternately by the corresponding values.
The return value is t if the function actually changed some property’s value; nil otherwise
(if props is nil or its values agree with those in the text).
For example, here is how to set the comment and face properties of a range of text:

(add-text-properties start end
’(comment t face highlight))

Functionremove-text-properties start end props &optional object
This function deletes specified text properties from the text between start and end in the
string or buffer object. If object is nil, it defaults to the current buffer.
The argument props specifies which properties to delete. It should have the form of a
property list (see Section 5.9 [Property Lists], page 88): a list whose elements are property
names alternating with corresponding values. But only the names matter—the values that
accompany them are ignored. For example, here’s how to remove the face property.

(remove-text-properties start end ’(face nil))

The return value is t if the function actually changed some property’s value; nil otherwise
(if props is nil or if no character in the specified text had any of those properties).

Functionset-text-properties start end props &optional object
This function completely replaces the text property list for the text between start and end
in the string or buffer object. If object is nil, it defaults to the current buffer.
The argument props is the new property list. It should be a list whose elements are
property names alternating with corresponding values.
After set-text-properties returns, all the characters in the specified range have iden-
tical properties.
If props is nil, the effect is to get rid of all properties from the specified range of text.
Here’s an example:

(set-text-properties start end nil)

See also the function buffer-substring-without-properties (see Section 36.2 [Buffer Con-
tents], page 464) which copies text from the buffer but does not copy its properties.

490 XEmacs Lisp Reference Manual

36.18.3 Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine characters
one by one, it is much faster to process chunks of text that have the same property value.

Here are functions you can use to do this. They use eq for comparing property values. In all
cases, object defaults to the current buffer.

For high performance, it’s very important to use the limit argument to these functions,
especially the ones that search for a single property—otherwise, they may spend a long time
scanning to the end of the buffer, if the property you are interested in does not change.

Remember that a position is always between two characters; the position returned by these
functions is between two characters with different properties.

Functionnext-property-change pos &optional object limit
The function scans the text forward from position pos in the string or buffer object till
it finds a change in some text property, then returns the position of the change. In other
words, it returns the position of the first character beyond pos whose properties are not
identical to those of the character just after pos.
If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-property-change returns limit.
The value is nil if the properties remain unchanged all the way to the end of object and
limit is nil. If the value is non-nil, it is a position greater than or equal to pos. The
value equals pos only when limit equals pos.
Here is an example of how to scan the buffer by chunks of text within which all properties
are constant:

(while (not (eobp))
(let ((plist (text-properties-at (point)))

(next-change
(or (next-property-change (point) (current-buffer))

(point-max))))
Process text from point to next-change . . .
(goto-char next-change)))

Functionnext-single-property-change pos prop &optional object limit
The function scans the text forward from position pos in the string or buffer object till
it finds a change in the prop property, then returns the position of the change. In other
words, it returns the position of the first character beyond pos whose prop property differs
from that of the character just after pos.
If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-single-property-change returns limit.
The value is nil if the property remains unchanged all the way to the end of object and
limit is nil. If the value is non-nil, it is a position greater than or equal to pos; it equals
pos only if limit equals pos.

Functionprevious-property-change pos &optional object limit
This is like next-property-change, but scans back from pos instead of forward. If the
value is non-nil, it is a position less than or equal to pos; it equals pos only if limit equals
pos.

Chapter 36: Text 491

Functionprevious-single-property-change pos prop &optional object limit
This is like next-single-property-change, but scans back from pos instead of forward.
If the value is non-nil, it is a position less than or equal to pos; it equals pos only if limit
equals pos.

Functiontext-property-any start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value is value. More precisely, it returns the position of the first such
character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions are
relative to object. The default for object is the current buffer.

Functiontext-property-not-all start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value differs from value. More precisely, it returns the position of
the first such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions are
relative to object. The default for object is the current buffer.

36.18.4 Properties with Special Meanings

The predefined properties are the same as those for extents. See Section 40.6 [Extent Prop-
erties], page 534.

36.18.5 Saving Text Properties in Files

You can save text properties in files, and restore text properties when inserting the files,
using these two hooks:

Variablewrite-region-annotate-functions
This variable’s value is a list of functions for write-region to run to encode text properties
in some fashion as annotations to the text being written in the file. See Section 28.4
[Writing to Files], page 360.

Each function in the list is called with two arguments: the start and end of the region
to be written. These functions should not alter the contents of the buffer. Instead, they
should return lists indicating annotations to write in the file in addition to the text in the
buffer.

Each function should return a list of elements of the form (position . string), where
position is an integer specifying the relative position in the text to be written, and string
is the annotation to add there.

Each list returned by one of these functions must be already sorted in increasing order by
position. If there is more than one function, write-region merges the lists destructively
into one sorted list.

When write-region actually writes the text from the buffer to the file, it intermixes
the specified annotations at the corresponding positions. All this takes place without
modifying the buffer.

492 XEmacs Lisp Reference Manual

Variableafter-insert-file-functions
This variable holds a list of functions for insert-file-contents to call after inserting a
file’s contents. These functions should scan the inserted text for annotations, and convert
them to the text properties they stand for.
Each function receives one argument, the length of the inserted text; point indicates the
start of that text. The function should scan that text for annotations, delete them, and
create the text properties that the annotations specify. The function should return the
updated length of the inserted text, as it stands after those changes. The value returned
by one function becomes the argument to the next function.
These functions should always return with point at the beginning of the inserted text.
The intended use of after-insert-file-functions is for converting some sort of textual
annotations into actual text properties. But other uses may be possible.

We invite users to write Lisp programs to store and retrieve text properties in files, using
these hooks, and thus to experiment with various data formats and find good ones. Eventually
we hope users will produce good, general extensions we can install in Emacs.

We suggest not trying to handle arbitrary Lisp objects as property names or property values—
because a program that general is probably difficult to write, and slow. Instead, choose a set of
possible data types that are reasonably flexible, and not too hard to encode.

See Section 28.13 [Format Conversion], page 378, for a related feature.

36.19 Substituting for a Character Code

The following functions replace characters within a specified region based on their character
codes.

Functionsubst-char-in-region start end old-char new-char &optional noundo
This function replaces all occurrences of the character old-char with the character new-
char in the region of the current buffer defined by start and end.
If noundo is non-nil, then subst-char-in-region does not record the change for undo
and does not mark the buffer as modified. This feature is used for controlling selective
display (see Section 45.6 [Selective Display], page 591).
subst-char-in-region does not move point and returns nil.

---------- Buffer: foo ----------
This is the contents of the buffer before.
---------- Buffer: foo ----------

(subst-char-in-region 1 20 ?i ?X)
⇒ nil

---------- Buffer: foo ----------
ThXs Xs the contents of the buffer before.
---------- Buffer: foo ----------

Functiontranslate-region start end table
This function applies a translation table to the characters in the buffer between positions
start and end.
The translation table table is a string; (aref table ochar) gives the translated character
corresponding to ochar. If the length of table is less than 256, any characters with codes
larger than the length of table are not altered by the translation.

Chapter 36: Text 493

The return value of translate-region is the number of characters that were actually
changed by the translation. This does not count characters that were mapped into them-
selves in the translation table.

36.20 Registers

A register is a sort of variable used in XEmacs editing that can hold a marker, a string, a
rectangle, a window configuration (of one frame), or a frame configuration (of all frames). Each
register is named by a single character. All characters, including control and meta characters
(but with the exception of C-g), can be used to name registers. Thus, there are 255 possible
registers. A register is designated in Emacs Lisp by a character that is its name.

The functions in this section return unpredictable values unless otherwise stated.

Variableregister-alist
This variable is an alist of elements of the form (name . contents). Normally, there is
one element for each XEmacs register that has been used.

The object name is a character (an integer) identifying the register. The object contents is
a string, marker, or list representing the register contents. A string represents text stored
in the register. A marker represents a position. A list represents a rectangle; its elements
are strings, one per line of the rectangle.

Functionget-register reg
This function returns the contents of the register reg, or nil if it has no contents.

Functionset-register reg value
This function sets the contents of register reg to value. A register can be set to any value,
but the other register functions expect only certain data types. The return value is value.

Commandview-register reg
This command displays what is contained in register reg.

Commandinsert-register reg &optional beforep
This command inserts contents of register reg into the current buffer.

Normally, this command puts point before the inserted text, and the mark after it. How-
ever, if the optional second argument beforep is non-nil, it puts the mark before and point
after. You can pass a non-nil second argument beforep to this function interactively by
supplying any prefix argument.

If the register contains a rectangle, then the rectangle is inserted with its upper left
corner at point. This means that text is inserted in the current line and underneath it on
successive lines.

If the register contains something other than saved text (a string) or a rectangle (a list),
currently useless things happen. This may be changed in the future.

494 XEmacs Lisp Reference Manual

36.21 Transposition of Text

This subroutine is used by the transposition commands.

Functiontranspose-regions start1 end1 start2 end2 &optional leave-markers
This function exchanges two nonoverlapping portions of the buffer. Arguments start1 and
end1 specify the bounds of one portion and arguments start2 and end2 specify the bounds
of the other portion.
Normally, transpose-regions relocates markers with the transposed text; a marker pre-
viously positioned within one of the two transposed portions moves along with that por-
tion, thus remaining between the same two characters in their new position. However,
if leave-markers is non-nil, transpose-regions does not do this—it leaves all markers
unrelocated.

36.22 Change Hooks

These hook variables let you arrange to take notice of all changes in all buffers (or in a
particular buffer, if you make them buffer-local).

The functions you use in these hooks should save and restore the match data if they do
anything that uses regular expressions; otherwise, they will interfere in bizarre ways with the
editing operations that call them.

Buffer changes made while executing the following hooks don’t themselves cause any change
hooks to be invoked.

Variablebefore-change-functions
This variable holds a list of a functions to call before any buffer modification. Each
function gets two arguments, the beginning and end of the region that is about to change,
represented as integers. The buffer that is about to change is always the current buffer.

Variableafter-change-functions
This variable holds a list of a functions to call after any buffer modification. Each function
receives three arguments: the beginning and end of the region just changed, and the length
of the text that existed before the change. (To get the current length, subtract the region
beginning from the region end.) All three arguments are integers. The buffer that’s about
to change is always the current buffer.

Variablebefore-change-function
This obsolete variable holds one function to call before any buffer modification (or nil for
no function). It is called just like the functions in before-change-functions.

Variableafter-change-function
This obsolete variable holds one function to call after any buffer modification (or nil for
no function). It is called just like the functions in after-change-functions.

Variablefirst-change-hook
This variable is a normal hook that is run whenever a buffer is changed that was previously
in the unmodified state.

Chapter 37: Searching and Matching 495

37 Searching and Matching

XEmacs provides two ways to search through a buffer for specified text: exact string searches
and regular expression searches. After a regular expression search, you can examine the match
data to determine which text matched the whole regular expression or various portions of it.

The ‘skip-chars...’ functions also perform a kind of searching. See Section 34.2.7 [Skipping
Characters], page 447.

37.1 Searching for Strings

These are the primitive functions for searching through the text in a buffer. They are meant
for use in programs, but you may call them interactively. If you do so, they prompt for the
search string; limit and noerror are set to nil, and repeat is set to 1.

Commandsearch-forward string &optional limit noerror repeat
This function searches forward from point for an exact match for string. If successful, it
sets point to the end of the occurrence found, and returns the new value of point. If no
match is found, the value and side effects depend on noerror (see below).

In the following example, point is initially at the beginning of the line. Then (search-
forward "fox") moves point after the last letter of ‘fox’:

---------- Buffer: foo ----------
?The quick brown fox jumped over the lazy dog.
---------- Buffer: foo ----------

(search-forward "fox")
⇒ 20

---------- Buffer: foo ----------
The quick brown fox? jumped over the lazy dog.
---------- Buffer: foo ----------

The argument limit specifies the upper bound to the search. (It must be a position in the
current buffer.) No match extending after that position is accepted. If limit is omitted or
nil, it defaults to the end of the accessible portion of the buffer.

What happens when the search fails depends on the value of noerror. If noerror is nil, a
search-failed error is signaled. If noerror is t, search-forward returns nil and does
nothing. If noerror is neither nil nor t, then search-forward moves point to the upper
bound and returns nil. (It would be more consistent now to return the new position of
point in that case, but some programs may depend on a value of nil.)

If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If these succes-
sive searches succeed, the function succeeds, moving point and returning its new value.
Otherwise the search fails.

Commandsearch-backward string &optional limit noerror repeat
This function searches backward from point for string. It is just like search-forward
except that it searches backwards and leaves point at the beginning of the match.

496 XEmacs Lisp Reference Manual

Commandword-search-forward string &optional limit noerror repeat
This function searches forward from point for a “word” match for string. If it finds a
match, it sets point to the end of the match found, and returns the new value of point.
Word matching regards string as a sequence of words, disregarding punctuation that
separates them. It searches the buffer for the same sequence of words. Each word must be
distinct in the buffer (searching for the word ‘ball’ does not match the word ‘balls’), but
the details of punctuation and spacing are ignored (searching for ‘ball boy’ does match
‘ball. Boy!’).
In this example, point is initially at the beginning of the buffer; the search leaves it between
the ‘y’ and the ‘!’.

---------- Buffer: foo ----------
?He said "Please! Find
the ball boy!"
---------- Buffer: foo ----------

(word-search-forward "Please find the ball, boy.")
⇒ 35

---------- Buffer: foo ----------
He said "Please! Find
the ball boy?!"
---------- Buffer: foo ----------

If limit is non-nil (it must be a position in the current buffer), then it is the upper bound
to the search. The match found must not extend after that position.
If noerror is nil, then word-search-forward signals an error if the search fails. If noerror
is t, then it returns nil instead of signaling an error. If noerror is neither nil nor t, it
moves point to limit (or the end of the buffer) and returns nil.
If repeat is non-nil, then the search is repeated that many times. Point is positioned at
the end of the last match.

Commandword-search-backward string &optional limit noerror repeat
This function searches backward from point for a word match to string. This function
is just like word-search-forward except that it searches backward and normally leaves
point at the beginning of the match.

37.2 Regular Expressions

A regular expression (regexp, for short) is a pattern that denotes a (possibly infinite) set of
strings. Searching for matches for a regexp is a very powerful operation. This section explains
how to write regexps; the following section says how to search using them.

To gain a thorough understanding of regular expressions and how to use them to best ad-
vantage, we recommend that you study Mastering Regular Expressions, by Jeffrey E.F. Friedl,
O’Reilly and Associates, 1997. (It’s known as the "Hip Owls" book, because of the picture
on its cover.) You might also read the manuals to 〈undefined〉 [(gawk)Top], page 〈undefined〉,
〈undefined〉 [(ed)Top], page 〈undefined〉, sed, grep, 〈undefined〉 [(perl)Top], page 〈undefined〉,
〈undefined〉 [(regex)Top], page 〈undefined〉, 〈undefined〉 [(rx)Top], page 〈undefined〉, pcre, and
〈undefined〉 [(flex)Top], page 〈undefined〉. All of these programs and libraries make effective use
of regular expressions.

The XEmacs regular expression syntax most closely resembles that of ed, or grep, the GNU
versions of which all utilize the GNU regex library. XEmacs’ version of regex has recently been
extended with some Perl–like capabilities, which are described in the next section.

Chapter 37: Searching and Matching 497

37.2.1 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the rest
are ordinary. An ordinary character is a simple regular expression that matches that character
and nothing else. The special characters are ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’, ‘^’, ‘$’, and ‘\’; no new
special characters will be defined in the future. Any other character appearing in a regular
expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string ‘ff’.)
Likewise, ‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular expression
that matches a string if a matches some amount of the beginning of that string and b matches
the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the regular
expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something more powerful,
you need to use one of the special characters. Here is a list of them:

. (Period) is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any three-
character string that begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a quantifying suffix operator that means to repeat
the preceding regular expression as many times as possible. In ‘fo*’, the ‘*’ applies
to the ‘o’, so ‘fo*’ matches one ‘f’ followed by any number of ‘o’s. The case of zero
‘o’s is allowed: ‘fo*’ does match ‘f’.
‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’ has a
repeating ‘o’, not a repeating ‘fo’.
The matcher processes a ‘*’ construct by matching, immediately, as many repetitions
as can be found; it is "greedy". Then it continues with the rest of the pattern. If
that fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to match
all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left to match,
so this try fails. The next alternative is for ‘a*’ to match only two ‘a’s. With this
choice, the rest of the regexp matches successfully.
Nested repetition operators can be extremely slow if they specify backtracking loops.
For example, it could take hours for the regular expression ‘\(x+y*\)*a’ to match
the sequence ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz’. The slowness is because
Emacs must try each imaginable way of grouping the 35 ‘x’’s before concluding that
none of them can work. To make sure your regular expressions run fast, check nested
repetitions carefully.

+ is a quantifying suffix operator similar to ‘*’ except that the preceding expression
must match at least once. It is also "greedy". So, for example, ‘ca+r’ matches the
strings ‘car’ and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three
strings.

? is a quantifying suffix operator similar to ‘*’, except that the preceding expression
can match either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’, but
does not match anything else.

? works just like ‘’, except that rather than matching the longest match, it matches
the shortest match. ‘*?’ is known as a non-greedy quantifier, a regexp construct
borrowed from Perl.

498 XEmacs Lisp Reference Manual

This construct is very useful for when you want to match the text inside a pair
of delimiters. For instance, ‘/*.*?*/’ will match C comments in a string. This
could not be so elegantly achieved without the use of a non-greedy quantifier.
This construct has not been available prior to XEmacs 20.4. It is not available in
FSF Emacs.

+? is the ‘+’ analog to ‘*?’.

\{n,m\} serves as an interval quantifier, analogous to ‘*’ or ‘+’, but specifies that the ex-
pression must match at least n times, but no more than m times. This syntax is
supported by most Unix regexp utilities, and has been introduced to XEmacs for
the version 20.3.

[...] ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case, the
characters between the two brackets form the set. Thus, ‘[ad]’ matches either
one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string composed of just ‘a’s and ‘d’s
(including the empty string), from which it follows that ‘c[ad]*r’ matches ‘cr’,
‘car’, ‘cdr’, ‘caddaar’, etc.
The usual regular expression special characters are not special inside a character
set. A completely different set of special characters exists inside character sets: ‘]’,
‘-’ and ‘^’.
‘-’ is used for ranges of characters. To write a range, write two characters with a
‘-’ between them. Thus, ‘[a-z]’ matches any lower case letter. Ranges may be
intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches any
lower case letter or ‘$’, ‘%’, or a period.
To include a ‘]’ in a character set, make it the first character. For example, ‘[]a]’
matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first character in the set, or put
it immediately after a range. (You can replace one individual character c with the
range ‘c-c’ to make a place to put the ‘-’.) There is no way to write a set containing
just ‘-’ and ‘]’.
To include ‘^’ in a set, put it anywhere but at the beginning of the set.

[^ ...] ‘[^’ begins a complement character set, which matches any character except the ones
specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except letters and digits.
‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (thus, ‘-’ and ‘]’ are not special there).
Note that a complement character set can match a newline, unless newline is men-
tioned as one of the characters not to match.

^ is a special character that matches the empty string, but only at the beginning of a
line in the text being matched. Otherwise it fails to match anything. Thus, ‘^foo’
matches a ‘foo’ that occurs at the beginning of a line.
When matching a string instead of a buffer, ‘^’ matches at the beginning of the
string or after a newline character ‘\n’.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘x+$’ matches a string
of one ‘x’ or more at the end of a line.
When matching a string instead of a buffer, ‘$’ matches at the end of the string or
before a newline character ‘\n’.

\ has two functions: it quotes the special characters (including ‘\’), and it introduces
additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches only
‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Chapter 37: Searching and Matching 499

Note that ‘\’ also has special meaning in the read syntax of Lisp strings (see Sec-
tion 2.4.8 [String Type], page 22), and must be quoted with ‘\’. For example, the
regular expression that matches the ‘\’ character is ‘\\’. To write a Lisp string that
contains the characters ‘\\’, Lisp syntax requires you to quote each ‘\’ with another
‘\’. Therefore, the read syntax for a regular expression matching ‘\’ is "\\\\".

Please note: For historical compatibility, special characters are treated as ordinary ones if
they are in contexts where their special meanings make no sense. For example, ‘*foo’ treats ‘*’
as ordinary since there is no preceding expression on which the ‘*’ can act. It is poor practice
to depend on this behavior; quote the special character anyway, regardless of where it appears.

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: characters that, when preceded by ‘\’, are special constructs. Such
characters are always ordinary when encountered on their own. Here is a table of ‘\’ constructs:

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between form
an expression that matches anything that either a or b matches.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘\|’ applies to the largest possible surrounding expressions. Only a surrounding ‘\(
... \)’ grouping can limit the grouping power of ‘\|’.
Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) is a grouping construct that serves three purposes:
1. To enclose a set of ‘\|’ alternatives for other operations. Thus, ‘\(foo\|bar\)x’

matches either ‘foox’ or ‘barx’.
2. To enclose an expression for a suffix operator such as ‘*’ to act on. Thus,

‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero or more) number of ‘na’
strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that happens to be assigned as a second meaning to the
same ‘\(... \)’ construct because there is no conflict in practice between the two
meanings. Here is an explanation of this feature:

\digit matches the same text that matched the digitth occurrence of a ‘\(... \)’ con-
struct.
In other words, after the end of a ‘\(... \)’ construct. the matcher remembers
the beginning and end of the text matched by that construct. Then, later on in
the regular expression, you can use ‘\’ followed by digit to match that same text,
whatever it may have been.
The strings matching the first nine ‘\(... \)’ constructs appearing in a regular
expression are assigned numbers 1 through 9 in the order that the open parentheses
appear in the regular expression. So you can use ‘\1’ through ‘\9’ to refer to the
text matched by the corresponding ‘\(... \)’ constructs.
For example, ‘\(.*\)\1’ matches any newline-free string that is composed of two
identical halves. The ‘\(.*\)’ matches the first half, which may be anything, but
the ‘\1’ that follows must match the same exact text.

\(?: ... \)
is called a shy grouping operator, and it is used just like ‘\(... \)’, except that it
does not cause the match substring to be recorded for future reference.
This is useful when you need to use a lot of nested grouping ‘\(... \)’ constructs
to express complex alternation, but only want to memoize, or capture, one or two
of the subexpression matches. Since ‘\(?: ... \)’ doesn’t capture a sub-match, it

500 XEmacs Lisp Reference Manual

also doesn’t need to be counted when you count ‘\(... \)’ groups to figure the
‘match-string’ index. That turns out to be a very convenient characteristic.
This situation occurs where parts of a regular expression have been automaticly
generated by a program that builds them from lists of strings, and the static code
following the matching operation must access a specific match number. Here’s an
example that shows this.
We will assume that (require ’regexp-opt) has been executed already, to ensure
that ‘regexp-opt.el’, which is part of the xemacs-devel package, is loaded. In
a real program, lets pretend that varnames would be a list of strings holding the
names of some variables extracted somehow from the text of a program source you
are editing and running this function on. For the purposes of this illustration, we
can just bind it in the let* expression.

(let* ((varnames ’("k" "n" "i" "j" "varname"))
(keys-regexp (regexp-opt

(mapcar #’symbol-name
’(if then else elif

case in of do while
with for next unless
cond begin end))))

(varname-regexp (regexp-opt varnames))
(contrived-regexp (concat "\\(" keys-regexp "\\)"

"\\s-(\\s-\\("
varname-regexp
"\\)\\s-)"))

(keyname "")
(varname ""))

;; In the body of this particular defun, we:
(re-search-forward contrived-regexp nil t)
;; . . . and it finds a match. Now we want to extract the
;; text that it matched on, and save it into keyname
;; and varname.
(setq keyname (match-string 1)

varname (match-string 2))
;; . . . and then do something with those values.
(list keyname varname))

;; Here’s something for it to match, so you can try it with
;; C-x C-e
;; while (j) do ...

Here you should see that if the regular expression returned by regexp-opt did not
use ‘\(?: ... \)’ for grouping, and instead used ‘\(... \)’, it would be necessary
to count the number of opening parentheses in the keys-regexp and to use that
figure to calculate which match number is matched by the varname-regexp. It is
much more convenient to be able to just ask for the second match string.
The shy grouping operator has been borrowed from Perl, and has not been available
prior to XEmacs 20.3, nor is it available in FSF Emacs.

\w matches any word-constituent character. The editor syntax table determines which
characters these are. See Chapter 38 [Syntax Tables], page 513.

\W matches any character that is not a word constituent.
\scode matches any character whose syntax is code. Here code is a character that repre-

sents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’ for open

Chapter 37: Searching and Matching 501

parenthesis, etc. See Chapter 38 [Syntax Tables], page 513, for a list of syntax codes
and the characters that stand for them.

\Scode matches any character whose syntax is not code.

The following regular expression constructs match the empty string—that is, they don’t use
up any characters—but whether they match depends on the context.

\‘ matches the empty string, but only at the beginning of the buffer or string being
matched against.

\’ matches the empty string, but only at the end of the buffer or string being matched
against.

\= matches the empty string, but only at point. (This construct is not defined when
matching against a string.)

\b matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

\B matches the empty string, but not at the beginning or end of a word.

\< matches the empty string, but only at the beginning of a word.

\> matches the empty string, but only at the end of a word.

Not every string is a valid regular expression. For example, a string with unbalanced square
brackets is invalid (with a few exceptions, such as ‘[]]’), and so is a string that ends with a single
‘\’. If an invalid regular expression is passed to any of the search functions, an invalid-regexp
error is signaled.

Functionregexp-quote string
This function returns a regular expression string that matches exactly string and nothing
else. This allows you to request an exact string match when calling a function that wants
a regular expression.

(regexp-quote "^The cat$")
⇒ "\\^The cat\\$"

One use of regexp-quote is to combine an exact string match with context described as
a regular expression. For example, this searches for the string that is the value of string,
surrounded by whitespace:

(re-search-forward
(concat "\\s-" (regexp-quote string) "\\s-"))

37.2.2 Complex Regexp Example

Here is a complicated regexp, used by XEmacs to recognize the end of a sentence together
with any whitespace that follows. It is the value of the variable sentence-end.

First, we show the regexp as a string in Lisp syntax to distinguish spaces from tab characters.
The string constant begins and ends with a double-quote. ‘\"’ stands for a double-quote as part
of the string, ‘\\’ for a backslash as part of the string, ‘\t’ for a tab and ‘\n’ for a newline.

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

In contrast, if you evaluate the variable sentence-end, you will see the following:

502 XEmacs Lisp Reference Manual

sentence-end
⇒
"[.?!][]\"’)}]*\\($\\| $\\| \\| \\)[
]*"

In this output, tab and newline appear as themselves.
This regular expression contains four parts in succession and can be deciphered as follows:

[.?!] The first part of the pattern is a character set that matches any one of three char-
acters: period, question mark, and exclamation mark. The match must begin with
one of these three characters.

[]\"’)}]*
The second part of the pattern matches any closing braces and quotation marks,
zero or more of them, that may follow the period, question mark or exclamation
mark. The \" is Lisp syntax for a double-quote in a string. The ‘*’ at the end
indicates that the immediately preceding regular expression (a character set, in this
case) may be repeated zero or more times.

\\($\\| $\\|\t\\| \\)
The third part of the pattern matches the whitespace that follows the end of a
sentence: the end of a line, or a tab, or two spaces. The double backslashes mark the
parentheses and vertical bars as regular expression syntax; the parentheses delimit
a group and the vertical bars separate alternatives. The dollar sign is used to match
the end of a line.

[\t\n]* Finally, the last part of the pattern matches any additional whitespace beyond the
minimum needed to end a sentence.

37.3 Regular Expression Searching

In XEmacs, you can search for the next match for a regexp either incrementally or not.
Incremental search commands are described in the The XEmacs Reference Manual. See section
“Regular Expression Search” in The XEmacs Reference Manual. Here we describe only the
search functions useful in programs. The principal one is re-search-forward.

Commandre-search-forward regexp &optional limit noerror repeat
This function searches forward in the current buffer for a string of text that is matched
by the regular expression regexp. The function skips over any amount of text that is not
matched by regexp, and leaves point at the end of the first match found. It returns the
new value of point.
If limit is non-nil (it must be a position in the current buffer), then it is the upper bound
to the search. No match extending after that position is accepted.
What happens when the search fails depends on the value of noerror. If noerror is nil, a
search-failed error is signaled. If noerror is t, re-search-forward does nothing and
returns nil. If noerror is neither nil nor t, then re-search-forward moves point to
limit (or the end of the buffer) and returns nil.
If repeat is supplied (it must be a positive number), then the search is repeated that
many times (each time starting at the end of the previous time’s match). If these succes-
sive searches succeed, the function succeeds, moving point and returning its new value.
Otherwise the search fails.
In the following example, point is initially before the ‘T’. Evaluating the search call moves
point to the end of that line (between the ‘t’ of ‘hat’ and the newline).

Chapter 37: Searching and Matching 503

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(re-search-forward "[a-z]+" nil t 5)
⇒ 27

---------- Buffer: foo ----------
I read "The cat in the hat?
comes back" twice.
---------- Buffer: foo ----------

Commandre-search-backward regexp &optional limit noerror repeat
This function searches backward in the current buffer for a string of text that is matched
by the regular expression regexp, leaving point at the beginning of the first text found.
This function is analogous to re-search-forward, but they are not simple mirror images.
re-search-forward finds the match whose beginning is as close as possible to the starting
point. If re-search-backward were a perfect mirror image, it would find the match whose
end is as close as possible. However, in fact it finds the match whose beginning is as close
as possible. The reason is that matching a regular expression at a given spot always works
from beginning to end, and starts at a specified beginning position.
A true mirror-image of re-search-forward would require a special feature for matching
regexps from end to beginning. It’s not worth the trouble of implementing that.

Functionstring-match regexp string &optional start
This function returns the index of the start of the first match for the regular expression
regexp in string, or nil if there is no match. If start is non-nil, the search starts at that
index in string.
For example,

(string-match
"quick" "The quick brown fox jumped quickly.")

⇒ 4
(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

The index of the first character of the string is 0, the index of the second character is 1,
and so on.
After this function returns, the index of the first character beyond the match is available
as (match-end 0). See Section 37.6 [Match Data], page 506.

(string-match
"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

(match-end 0)
⇒ 32

Functionsplit-string string &optional pattern
This function splits string to substrings delimited by pattern, and returns a list of sub-
strings. If pattern is omitted, it defaults to ‘[\f\t\n\r\v]+’, which means that it splits
string by white–space.

504 XEmacs Lisp Reference Manual

(split-string "foo bar")
⇒ ("foo" "bar")

(split-string "something")
⇒ ("something")

(split-string "a:b:c" ":")
⇒ ("a" "b" "c")

(split-string ":a::b:c" ":")
⇒ ("" "a" "" "b" "c")

Functionsplit-path path
This function splits a search path into a list of strings. The path components are separated
with the characters specified with path-separator. Under Unix, path-separator will
normally be ‘:’, while under Windows, it will be ‘;’.

Functionlooking-at regexp
This function determines whether the text in the current buffer directly following point
matches the regular expression regexp. “Directly following” means precisely that: the
search is “anchored” and it can succeed only starting with the first character following
point. The result is t if so, nil otherwise.
This function does not move point, but it updates the match data, which you can access
using match-beginning and match-end. See Section 37.6 [Match Data], page 506.
In this example, point is located directly before the ‘T’. If it were anywhere else, the result
would be nil.

---------- Buffer: foo ----------
I read "?The cat in the hat
comes back" twice.
---------- Buffer: foo ----------

(looking-at "The cat in the hat$")
⇒ t

37.4 POSIX Regular Expression Searching

The usual regular expression functions do backtracking when necessary to handle the ‘\|’
and repetition constructs, but they continue this only until they find some match. Then they
succeed and report the first match found.

This section describes alternative search functions which perform the full backtracking spec-
ified by the POSIX standard for regular expression matching. They continue backtracking until
they have tried all possibilities and found all matches, so they can report the longest match, as
required by POSIX. This is much slower, so use these functions only when you really need the
longest match.

In Emacs versions prior to 19.29, these functions did not exist, and the functions described
above implemented full POSIX backtracking.

Functionposix-search-forward regexp &optional limit noerror repeat
This is like re-search-forward except that it performs the full backtracking specified by
the POSIX standard for regular expression matching.

Chapter 37: Searching and Matching 505

Functionposix-search-backward regexp &optional limit noerror repeat
This is like re-search-backward except that it performs the full backtracking specified
by the POSIX standard for regular expression matching.

Functionposix-looking-at regexp
This is like looking-at except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

Functionposix-string-match regexp string &optional start
This is like string-match except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

37.5 Search and Replace

Functionperform-replace from-string replacements query-flag regexp-flag
delimited-flag &optional repeat-count map

This function is the guts of query-replace and related commands. It searches for occur-
rences of from-string and replaces some or all of them. If query-flag is nil, it replaces all
occurrences; otherwise, it asks the user what to do about each one.
If regexp-flag is non-nil, then from-string is considered a regular expression; otherwise,
it must match literally. If delimited-flag is non-nil, then only replacements surrounded
by word boundaries are considered.
The argument replacements specifies what to replace occurrences with. If it is a string,
that string is used. It can also be a list of strings, to be used in cyclic order.
If repeat-count is non-nil, it should be an integer. Then it specifies how many times to
use each of the strings in the replacements list before advancing cyclicly to the next one.
Normally, the keymap query-replace-map defines the possible user responses for queries.
The argument map, if non-nil, is a keymap to use instead of query-replace-map.

Variablequery-replace-map
This variable holds a special keymap that defines the valid user responses for query-
replace and related functions, as well as y-or-n-p and map-y-or-n-p. It is unusual in
two ways:
• The “key bindings” are not commands, just symbols that are meaningful to the

functions that use this map.
• Prefix keys are not supported; each key binding must be for a single event key se-

quence. This is because the functions don’t use read key sequence to get the input;
instead, they read a single event and look it up “by hand.”

Here are the meaningful “bindings” for query-replace-map. Several of them are meaningful
only for query-replace and friends.

act Do take the action being considered—in other words, “yes.”

skip Do not take action for this question—in other words, “no.”

exit Answer this question “no,” and give up on the entire series of questions, assuming
that the answers will be “no.”

act-and-exit
Answer this question “yes,” and give up on the entire series of questions, assuming
that subsequent answers will be “no.”

506 XEmacs Lisp Reference Manual

act-and-show
Answer this question “yes,” but show the results—don’t advance yet to the next
question.

automatic
Answer this question and all subsequent questions in the series with “yes,” without
further user interaction.

backup Move back to the previous place that a question was asked about.
edit Enter a recursive edit to deal with this question—instead of any other action that

would normally be taken.
delete-and-edit

Delete the text being considered, then enter a recursive edit to replace it.
recenter Redisplay and center the window, then ask the same question again.
quit Perform a quit right away. Only y-or-n-p and related functions use this answer.
help Display some help, then ask again.

37.6 The Match Data

XEmacs keeps track of the positions of the start and end of segments of text found during a
regular expression search. This means, for example, that you can search for a complex pattern,
such as a date in an Rmail message, and then extract parts of the match under control of the
pattern.

Because the match data normally describe the most recent search only, you must be careful
not to do another search inadvertently between the search you wish to refer back to and the use
of the match data. If you can’t avoid another intervening search, you must save and restore the
match data around it, to prevent it from being overwritten.

37.6.1 Simple Match Data Access

This section explains how to use the match data to find out what was matched by the last
search or match operation.

You can ask about the entire matching text, or about a particular parenthetical subexpression
of a regular expression. The count argument in the functions below specifies which. If count is
zero, you are asking about the entire match. If count is positive, it specifies which subexpression
you want.

Recall that the subexpressions of a regular expression are those expressions grouped with
escaped parentheses, ‘\(...\)’. The countth subexpression is found by counting occurrences of
‘\(’ from the beginning of the whole regular expression. The first subexpression is numbered
1, the second 2, and so on. Only regular expressions can have subexpressions—after a simple
string search, the only information available is about the entire match.

Functionmatch-string count &optional in-string
This function returns, as a string, the text matched in the last search or match opera-
tion. It returns the entire text if count is zero, or just the portion corresponding to the
countth parenthetical subexpression, if count is positive. If count is out of range, or if
that subexpression didn’t match anything, the value is nil.
If the last such operation was done against a string with string-match, then you should
pass the same string as the argument in-string. Otherwise, after a buffer search or match,
you should omit in-string or pass nil for it; but you should make sure that the current
buffer when you call match-string is the one in which you did the searching or matching.

Chapter 37: Searching and Matching 507

Functionmatch-beginning count
This function returns the position of the start of text matched by the last regular expression
searched for, or a subexpression of it.
If count is zero, then the value is the position of the start of the entire match. Otherwise,
count specifies a subexpression in the regular expression, and the value of the function is
the starting position of the match for that subexpression.
The value is nil for a subexpression inside a ‘\|’ alternative that wasn’t used in the
match.

Functionmatch-end count
This function is like match-beginning except that it returns the position of the end of
the match, rather than the position of the beginning.

Here is an example of using the match data, with a comment showing the positions within
the text:

(string-match "\\(qu\\)\\(ick\\)"
"The quick fox jumped quickly.")
;0123456789

⇒ 4

(match-string 0 "The quick fox jumped quickly.")
⇒ "quick"

(match-string 1 "The quick fox jumped quickly.")
⇒ "qu"

(match-string 2 "The quick fox jumped quickly.")
⇒ "ick"

(match-beginning 1) ; The beginning of the match
⇒ 4 ; with ‘qu’ is at index 4.

(match-beginning 2) ; The beginning of the match
⇒ 6 ; with ‘ick’ is at index 6.

(match-end 1) ; The end of the match
⇒ 6 ; with ‘qu’ is at index 6.

(match-end 2) ; The end of the match
⇒ 9 ; with ‘ick’ is at index 9.

Here is another example. Point is initially located at the beginning of the line. Searching
moves point to between the space and the word ‘in’. The beginning of the entire match is at
the 9th character of the buffer (‘T’), and the beginning of the match for the first subexpression
is at the 13th character (‘c’).

(list
(re-search-forward "The \\(cat \\)")
(match-beginning 0)
(match-beginning 1))
⇒ (9 9 13)

---------- Buffer: foo ----------
I read "The cat ?in the hat comes back" twice.

^ ^
9 13

---------- Buffer: foo ----------

(In this case, the index returned is a buffer position; the first character of the buffer counts as
1.)

508 XEmacs Lisp Reference Manual

37.6.2 Replacing the Text That Matched

This function replaces the text matched by the last search with replacement.

Functionreplace-match replacement &optional fixedcase literal string
This function replaces the text in the buffer (or in string) that was matched by the last
search. It replaces that text with replacement.
If you did the last search in a buffer, you should specify nil for string. Then replace-
match does the replacement by editing the buffer; it leaves point at the end of the replace-
ment text, and returns t.
If you did the search in a string, pass the same string as string. Then replace-match
does the replacement by constructing and returning a new string.
If fixedcase is non-nil, then the case of the replacement text is not changed; otherwise,
the replacement text is converted to a different case depending upon the capitalization
of the text to be replaced. If the original text is all upper case, the replacement text is
converted to upper case. If the first word of the original text is capitalized, then the first
word of the replacement text is capitalized. If the original text contains just one word,
and that word is a capital letter, replace-match considers this a capitalized first word
rather than all upper case.
If case-replace is nil, then case conversion is not done, regardless of the value of fixed-
case. See Section 37.7 [Searching and Case], page 509.
If literal is non-nil, then replacement is inserted exactly as it is, the only alterations being
case changes as needed. If it is nil (the default), then the character ‘\’ is treated specially.
If a ‘\’ appears in replacement, then it must be part of one of the following sequences:

‘\&’ ‘\&’ stands for the entire text being replaced.

‘\n’ ‘\n’, where n is a digit, stands for the text that matched the nth subexpression
in the original regexp. Subexpressions are those expressions grouped inside
‘\(...\)’.

‘\\’ ‘\\’ stands for a single ‘\’ in the replacement text.

37.6.3 Accessing the Entire Match Data

The functions match-data and set-match-data read or write the entire match data, all at
once.

Functionmatch-data
This function returns a newly constructed list containing all the information on what text
the last search matched. Element zero is the position of the beginning of the match for the
whole expression; element one is the position of the end of the match for the expression.
The next two elements are the positions of the beginning and end of the match for the
first subexpression, and so on. In general, element number 2n corresponds to (match-
beginning n); and element number 2n+ 1 corresponds to (match-end n).
All the elements are markers or nil if matching was done on a buffer, and all are integers
or nil if matching was done on a string with string-match. (In Emacs 18 and earlier
versions, markers were used even for matching on a string, except in the case of the integer
0.)
As always, there must be no possibility of intervening searches between the call to a search
function and the call to match-data that is intended to access the match data for that
search.

Chapter 37: Searching and Matching 509

(match-data)
⇒ (#<marker at 9 in foo>

#<marker at 17 in foo>
#<marker at 13 in foo>
#<marker at 17 in foo>)

Functionset-match-data match-list
This function sets the match data from the elements of match-list, which should be a list
that was the value of a previous call to match-data.
If match-list refers to a buffer that doesn’t exist, you don’t get an error; that sets the
match data in a meaningless but harmless way.
store-match-data is an alias for set-match-data.

37.6.4 Saving and Restoring the Match Data

When you call a function that may do a search, you may need to save and restore the match
data around that call, if you want to preserve the match data from an earlier search for later
use. Here is an example that shows the problem that arises if you fail to save the match data:

(re-search-forward "The \\(cat \\)")
⇒ 48

(foo) ; Perhaps foo does
; more searching.

(match-end 0)
⇒ 61 ; Unexpected result—not 48!

You can save and restore the match data with save-match-data:

Macrosave-match-data body. . .
This special form executes body, saving and restoring the match data around it.

You can use set-match-data together with match-data to imitate the effect of the special
form save-match-data. This is useful for writing code that can run in Emacs 18. Here is how:

(let ((data (match-data)))
(unwind-protect

... ; May change the original match data.
(set-match-data data)))

Emacs automatically saves and restores the match data when it runs process filter func-
tions (see Section 49.9.2 [Filter Functions], page 617) and process sentinels (see Section 49.10
[Sentinels], page 619).

37.7 Searching and Case

By default, searches in Emacs ignore the case of the text they are searching through; if you
specify searching for ‘FOO’, then ‘Foo’ or ‘foo’ is also considered a match. Regexps, and in
particular character sets, are included: thus, ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all letters
must match exactly, including case. This is a buffer-local variable; altering the variable affects
only the current buffer. (See Section 10.9.1 [Intro to Buffer-Local], page 141.) Alternatively,

510 XEmacs Lisp Reference Manual

you may change the value of default-case-fold-search, which is the default value of case-
fold-search for buffers that do not override it.

Note that the user-level incremental search feature handles case distinctions differently. When
given a lower case letter, it looks for a match of either case, but when given an upper case letter,
it looks for an upper case letter only. But this has nothing to do with the searching functions
Lisp functions use.

User Optioncase-replace
This variable determines whether the replacement functions should preserve case. If the
variable is nil, that means to use the replacement text verbatim. A non-nil value means
to convert the case of the replacement text according to the text being replaced.
The function replace-match is where this variable actually has its effect. See Sec-
tion 37.6.2 [Replacing Match], page 508.

User Optioncase-fold-search
This buffer-local variable determines whether searches should ignore case. If the variable
is nil they do not ignore case; otherwise they do ignore case.

Variabledefault-case-fold-search
The value of this variable is the default value for case-fold-search in buffers that do
not override it. This is the same as (default-value ’case-fold-search).

37.8 Standard Regular Expressions Used in Editing

This section describes some variables that hold regular expressions used for certain purposes
in editing:

Variablepage-delimiter
This is the regexp describing line-beginnings that separate pages. The default value is
"^\014" (i.e., "^^L" or "^\C-l"); this matches a line that starts with a formfeed character.

The following two regular expressions should not assume the match always starts at the
beginning of a line; they should not use ‘^’ to anchor the match. Most often, the paragraph
commands do check for a match only at the beginning of a line, which means that ‘^’ would be
superfluous. When there is a nonzero left margin, they accept matches that start after the left
margin. In that case, a ‘^’ would be incorrect. However, a ‘^’ is harmless in modes where a left
margin is never used.

Variableparagraph-separate
This is the regular expression for recognizing the beginning of a line that separates para-
graphs. (If you change this, you may have to change paragraph-start also.) The default
value is "[\t\f]*$", which matches a line that consists entirely of spaces, tabs, and form
feeds (after its left margin).

Variableparagraph-start
This is the regular expression for recognizing the beginning of a line that starts or separates
paragraphs. The default value is "[\t\n\f]", which matches a line starting with a space,
tab, newline, or form feed (after its left margin).

Chapter 37: Searching and Matching 511

Variablesentence-end
This is the regular expression describing the end of a sentence. (All paragraph boundaries
also end sentences, regardless.) The default value is:

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

This means a period, question mark or exclamation mark, followed optionally by a closing
parenthetical character, followed by tabs, spaces or new lines.
For a detailed explanation of this regular expression, see Section 37.2.2 [Regexp Example],
page 501.

512 XEmacs Lisp Reference Manual

Chapter 38: Syntax Tables 513

38 Syntax Tables

A syntax table specifies the syntactic textual function of each character. This information
is used by the parsing commands, the complex movement commands, and others to determine
where words, symbols, and other syntactic constructs begin and end. The current syntax table
controls the meaning of the word motion functions (see Section 34.2.2 [Word Motion], page 443)
and the list motion functions (see Section 34.2.6 [List Motion], page 446) as well as the functions
in this chapter.

38.1 Syntax Table Concepts

Under XEmacs 20, a syntax table is a particular subtype of the primitive char table type
(see Section 4.13 [Char Tables], page 68), and each element of the char table is an integer that
encodes the syntax of the character in question, or a cons of such an integer and a matching
character (for characters with parenthesis syntax).

Under XEmacs 19, a syntax table is a vector of 256 elements; it contains one entry for each
of the 256 possible characters in an 8-bit byte. Each element is an integer that encodes the
syntax of the character in question. (The matching character, if any, is embedded in the bits of
this integer.)

Syntax tables are used only for moving across text, not for the Emacs Lisp reader. XEmacs
Lisp uses built-in syntactic rules when reading Lisp expressions, and these rules cannot be
changed.

Each buffer has its own major mode, and each major mode has its own idea of the syntactic
class of various characters. For example, in Lisp mode, the character ‘;’ begins a comment, but
in C mode, it terminates a statement. To support these variations, XEmacs makes the choice
of syntax table local to each buffer. Typically, each major mode has its own syntax table and
installs that table in each buffer that uses that mode. Changing this table alters the syntax in
all those buffers as well as in any buffers subsequently put in that mode. Occasionally several
similar modes share one syntax table. See Section 26.1.2 [Example Major Modes], page 329, for
an example of how to set up a syntax table.

A syntax table can inherit the data for some characters from the standard syntax table, while
specifying other characters itself. The “inherit” syntax class means “inherit this character’s
syntax from the standard syntax table.” Most major modes’ syntax tables inherit the syntax of
character codes 0 through 31 and 128 through 255. This is useful with character sets such as
ISO Latin-1 that have additional alphabetic characters in the range 128 to 255. Just changing
the standard syntax for these characters affects all major modes.

Functionsyntax-table-p object
This function returns t if object is a vector of length 256 elements. This means that the
vector may be a syntax table. However, according to this test, any vector of length 256 is
considered to be a syntax table, no matter what its contents.

38.2 Syntax Descriptors

This section describes the syntax classes and flags that denote the syntax of a character,
and how they are represented as a syntax descriptor, which is a Lisp string that you pass to
modify-syntax-entry to specify the desired syntax.

514 XEmacs Lisp Reference Manual

XEmacs defines a number of syntax classes. Each syntax table puts each character into one
class. There is no necessary relationship between the class of a character in one syntax table
and its class in any other table.

Each class is designated by a mnemonic character, which serves as the name of the class
when you need to specify a class. Usually the designator character is one that is frequently in
that class; however, its meaning as a designator is unvarying and independent of what syntax
that character currently has.

A syntax descriptor is a Lisp string that specifies a syntax class, a matching character (used
only for the parenthesis classes) and flags. The first character is the designator for a syntax
class. The second character is the character to match; if it is unused, put a space there. Then
come the characters for any desired flags. If no matching character or flags are needed, one
character is sufficient.

For example, the descriptor for the character ‘*’ in C mode is ‘. 23’ (i.e., punctuation,
matching character slot unused, second character of a comment-starter, first character of an
comment-ender), and the entry for ‘/’ is ‘. 14’ (i.e., punctuation, matching character slot unused,
first character of a comment-starter, second character of a comment-ender).

38.2.1 Table of Syntax Classes

Here is a table of syntax classes, the characters that stand for them, their meanings, and
examples of their use.

Syntax classwhitespace character
Whitespace characters (designated with ‘ ’ or ‘-’) separate symbols and words from each
other. Typically, whitespace characters have no other syntactic significance, and multiple
whitespace characters are syntactically equivalent to a single one. Space, tab, newline and
formfeed are almost always classified as whitespace.

Syntax classword constituent
Word constituents (designated with ‘w’) are parts of normal English words and are typically
used in variable and command names in programs. All upper- and lower-case letters, and
the digits, are typically word constituents.

Syntax classsymbol constituent
Symbol constituents (designated with ‘_’) are the extra characters that are used in variable
and command names along with word constituents. For example, the symbol constituents
class is used in Lisp mode to indicate that certain characters may be part of symbol names
even though they are not part of English words. These characters are ‘$&*+-_<>’. In
standard C, the only non-word-constituent character that is valid in symbols is underscore
(‘_’).

Syntax classpunctuation character
Punctuation characters (‘.’) are those characters that are used as punctuation in English,
or are used in some way in a programming language to separate symbols from one another.
Most programming language modes, including Emacs Lisp mode, have no characters in
this class since the few characters that are not symbol or word constituents all have other
uses.

Chapter 38: Syntax Tables 515

Syntax classopen parenthesis character
Syntax classclose parenthesis character

Open and close parenthesis characters are characters used in dissimilar pairs to surround
sentences or expressions. Such a grouping is begun with an open parenthesis charac-
ter and terminated with a close. Each open parenthesis character matches a particular
close parenthesis character, and vice versa. Normally, XEmacs indicates momentarily the
matching open parenthesis when you insert a close parenthesis. See Section 45.9 [Blinking],
page 594.

The class of open parentheses is designated with ‘(’, and that of close parentheses with
‘)’.

In English text, and in C code, the parenthesis pairs are ‘()’, ‘[]’, and ‘{}’. In XEmacs
Lisp, the delimiters for lists and vectors (‘()’ and ‘[]’) are classified as parenthesis char-
acters.

Syntax classstring quote
String quote characters (designated with ‘"’) are used in many languages, including Lisp
and C, to delimit string constants. The same string quote character appears at the begin-
ning and the end of a string. Such quoted strings do not nest.

The parsing facilities of XEmacs consider a string as a single token. The usual syntactic
meanings of the characters in the string are suppressed.

The Lisp modes have two string quote characters: double-quote (‘"’) and vertical bar (‘|’).
‘|’ is not used in XEmacs Lisp, but it is used in Common Lisp. C also has two string
quote characters: double-quote for strings, and single-quote (‘’’) for character constants.

English text has no string quote characters because English is not a programming language.
Although quotation marks are used in English, we do not want them to turn off the usual
syntactic properties of other characters in the quotation.

Syntax classescape
An escape character (designated with ‘\’) starts an escape sequence such as is used in C
string and character constants. The character ‘\’ belongs to this class in both C and Lisp.
(In C, it is used thus only inside strings, but it turns out to cause no trouble to treat it
this way throughout C code.)

Characters in this class count as part of words if words-include-escapes is non-nil. See
Section 34.2.2 [Word Motion], page 443.

Syntax classcharacter quote
A character quote character (designated with ‘/’) quotes the following character so that
it loses its normal syntactic meaning. This differs from an escape character in that only
the character immediately following is ever affected.

Characters in this class count as part of words if words-include-escapes is non-nil. See
Section 34.2.2 [Word Motion], page 443.

This class is used for backslash in TEX mode.

Syntax classpaired delimiter
Paired delimiter characters (designated with ‘$’) are like string quote characters except
that the syntactic properties of the characters between the delimiters are not suppressed.
Only TEX mode uses a paired delimiter presently—the ‘$’ that both enters and leaves
math mode.

516 XEmacs Lisp Reference Manual

Syntax classexpression prefix
An expression prefix operator (designated with ‘’’) is used for syntactic operators that
are part of an expression if they appear next to one. These characters in Lisp include the
apostrophe, ‘’’ (used for quoting), the comma, ‘,’ (used in macros), and ‘#’ (used in the
read syntax for certain data types).

Syntax classcomment starter
Syntax classcomment ender

The comment starter and comment ender characters are used in various languages to
delimit comments. These classes are designated with ‘<’ and ‘>’, respectively.
English text has no comment characters. In Lisp, the semicolon (‘;’) starts a comment
and a newline or formfeed ends one.

Syntax classinherit
This syntax class does not specify a syntax. It says to look in the standard syntax table
to find the syntax of this character. The designator for this syntax code is ‘@’.

38.2.2 Syntax Flags

In addition to the classes, entries for characters in a syntax table can include flags. There
are six possible flags, represented by the characters ‘1’, ‘2’, ‘3’, ‘4’, ‘b’ and ‘p’.

All the flags except ‘p’ are used to describe multi-character comment delimiters. The digit
flags indicate that a character can also be part of a comment sequence, in addition to the
syntactic properties associated with its character class. The flags are independent of the class
and each other for the sake of characters such as ‘*’ in C mode, which is a punctuation character,
and the second character of a start-of-comment sequence (‘/*’), and the first character of an
end-of-comment sequence (‘*/’).

The flags for a character c are:
• ‘1’ means c is the start of a two-character comment-start sequence.
• ‘2’ means c is the second character of such a sequence.
• ‘3’ means c is the start of a two-character comment-end sequence.
• ‘4’ means c is the second character of such a sequence.
• ‘b’ means that c as a comment delimiter belongs to the alternative “b” comment style.

Emacs supports two comment styles simultaneously in any one syntax table. This is for
the sake of C++. Each style of comment syntax has its own comment-start sequence and its
own comment-end sequence. Each comment must stick to one style or the other; thus, if it
starts with the comment-start sequence of style “b”, it must also end with the comment-end
sequence of style “b”.
The two comment-start sequences must begin with the same character; only the second
character may differ. Mark the second character of the “b”-style comment-start sequence
with the ‘b’ flag.
A comment-end sequence (one or two characters) applies to the “b” style if its first character
has the ‘b’ flag set; otherwise, it applies to the “a” style.
The appropriate comment syntax settings for C++ are as follows:

‘/’ ‘124b’

‘*’ ‘23’

newline ‘>b’

Chapter 38: Syntax Tables 517

This defines four comment-delimiting sequences:

‘/*’ This is a comment-start sequence for “a” style because the second character,
‘*’, does not have the ‘b’ flag.

‘//’ This is a comment-start sequence for “b” style because the second character,
‘/’, does have the ‘b’ flag.

‘*/’ This is a comment-end sequence for “a” style because the first character, ‘*’,
does not have the ‘b’ flag

newline This is a comment-end sequence for “b” style, because the newline character
has the ‘b’ flag.

• ‘p’ identifies an additional “prefix character” for Lisp syntax. These characters are treated as
whitespace when they appear between expressions. When they appear within an expression,
they are handled according to their usual syntax codes.
The function backward-prefix-chars moves back over these characters, as well as over
characters whose primary syntax class is prefix (‘’’). See Section 38.4 [Motion and Syntax],
page 518.

38.3 Syntax Table Functions

In this section we describe functions for creating, accessing and altering syntax tables.

Functionmake-syntax-table &optional table
This function creates a new syntax table. Character codes 0 through 31 and 128 through
255 are set up to inherit from the standard syntax table. The other character codes are
set up by copying what the standard syntax table says about them.
Most major mode syntax tables are created in this way.

Functioncopy-syntax-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is nil),
it returns a copy of the current syntax table. Otherwise, an error is signaled if table is
not a syntax table.

Commandmodify-syntax-entry char syntax-descriptor &optional table
This function sets the syntax entry for char according to syntax-descriptor. The syntax is
changed only for table, which defaults to the current buffer’s syntax table, and not in any
other syntax table. The argument syntax-descriptor specifies the desired syntax; this is a
string beginning with a class designator character, and optionally containing a matching
character and flags as well. See Section 38.2 [Syntax Descriptors], page 513.
This function always returns nil. The old syntax information in the table for this character
is discarded.
An error is signaled if the first character of the syntax descriptor is not one of the twelve
syntax class designator characters. An error is also signaled if char is not a character.
Examples:

;; Put the space character in class whitespace.
(modify-syntax-entry ?\ " ")

⇒ nil

518 XEmacs Lisp Reference Manual

;; Make ‘$’ an open parenthesis character,
;; with ‘^’ as its matching close.
(modify-syntax-entry ?$ "(^")

⇒ nil

;; Make ‘^’ a close parenthesis character,
;; with ‘$’ as its matching open.
(modify-syntax-entry ?^ ")$")

⇒ nil

;; Make ‘/’ a punctuation character,
;; the first character of a start-comment sequence,
;; and the second character of an end-comment sequence.
;; This is used in C mode.
(modify-syntax-entry ?/ ". 14")

⇒ nil

Functionchar-syntax character
This function returns the syntax class of character, represented by its mnemonic designator
character. This only returns the class, not any matching parenthesis or flags.
An error is signaled if char is not a character.
The following examples apply to C mode. The first example shows that the syntax class of
space is whitespace (represented by a space). The second example shows that the syntax
of ‘/’ is punctuation. This does not show the fact that it is also part of comment-start
and -end sequences. The third example shows that open parenthesis is in the class of open
parentheses. This does not show the fact that it has a matching character, ‘)’.

(char-to-string (char-syntax ?\))
⇒ " "

(char-to-string (char-syntax ?/))
⇒ "."

(char-to-string (char-syntax ?\())
⇒ "("

Functionset-syntax-table table &optional buffer
This function makes table the syntax table for buffer, which defaults to the current buffer
if omitted. It returns table.

Functionsyntax-table &optional buffer
This function returns the syntax table for buffer, which defaults to the current buffer if
omitted.

38.4 Motion and Syntax

This section describes functions for moving across characters in certain syntax classes. None
of these functions exists in Emacs version 18 or earlier.

Functionskip-syntax-forward syntaxes &optional limit buffer
This function moves point forward across characters having syntax classes mentioned in
syntaxes. It stops when it encounters the end of the buffer, or position limit (if specified),
or a character it is not supposed to skip. Optional argument buffer defaults to the current
buffer if omitted.

Chapter 38: Syntax Tables 519

Functionskip-syntax-backward syntaxes &optional limit buffer
This function moves point backward across characters whose syntax classes are mentioned
in syntaxes. It stops when it encounters the beginning of the buffer, or position limit (if
specified), or a character it is not supposed to skip. Optional argument buffer defaults to
the current buffer if omitted.

Functionbackward-prefix-chars &optional buffer
This function moves point backward over any number of characters with expression prefix
syntax. This includes both characters in the expression prefix syntax class, and characters
with the ‘p’ flag. Optional argument buffer defaults to the current buffer if omitted.

38.5 Parsing Balanced Expressions

Here are several functions for parsing and scanning balanced expressions, also known as sexps,
in which parentheses match in pairs. The syntax table controls the interpretation of characters,
so these functions can be used for Lisp expressions when in Lisp mode and for C expressions
when in C mode. See Section 34.2.6 [List Motion], page 446, for convenient higher-level functions
for moving over balanced expressions.

Functionparse-partial-sexp start limit &optional target-depth stop-before state
stop-comment buffer

This function parses a sexp in the current buffer starting at start, not scanning past limit.
It stops at position limit or when certain criteria described below are met, and sets point
to the location where parsing stops. It returns a value describing the status of the parse
at the point where it stops.
If state is nil, start is assumed to be at the top level of parenthesis structure, such as the
beginning of a function definition. Alternatively, you might wish to resume parsing in the
middle of the structure. To do this, you must provide a state argument that describes the
initial status of parsing.
If the third argument target-depth is non-nil, parsing stops if the depth in parentheses
becomes equal to target-depth. The depth starts at 0, or at whatever is given in state.
If the fourth argument stop-before is non-nil, parsing stops when it comes to any character
that starts a sexp. If stop-comment is non-nil, parsing stops when it comes to the start
of a comment.
The fifth argument state is an eight-element list of the same form as the value of this
function, described below. The return value of one call may be used to initialize the state
of the parse on another call to parse-partial-sexp.
The result is a list of eight elements describing the final state of the parse:
0. The depth in parentheses, counting from 0.
1. The character position of the start of the innermost parenthetical grouping containing

the stopping point; nil if none.
2. The character position of the start of the last complete subexpression terminated;

nil if none.
3. Non-nil if inside a string. More precisely, this is the character that will terminate

the string.
4. t if inside a comment (of either style).
5. t if point is just after a quote character.
6. The minimum parenthesis depth encountered during this scan.
7. t if inside a comment of style “b”.

520 XEmacs Lisp Reference Manual

Elements 0, 3, 4, 5 and 7 are significant in the argument state.
This function is most often used to compute indentation for languages that have nested
parentheses.

Functionscan-lists from count depth &optional buffer noerror
This function scans forward count balanced parenthetical groupings from character num-
ber from. It returns the character position where the scan stops.
If depth is nonzero, parenthesis depth counting begins from that value. The only candi-
dates for stopping are places where the depth in parentheses becomes zero; scan-lists
counts count such places and then stops. Thus, a positive value for depth means go out
depth levels of parenthesis.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of the buffer (or its accessible portion), and the
depth is not zero, an error is signaled. If the depth is zero but the count is not used up,
nil is returned.
If optional arg buffer is non-nil, scanning occurs in that buffer instead of in the current
buffer.
If optional arg noerror is non-nil, scan-lists will return nil instead of signalling an
error.

Functionscan-sexps from count &optional buffer noerror
This function scans forward count sexps from character position from. It returns the
character position where the scan stops.
Scanning ignores comments if parse-sexp-ignore-comments is non-nil.
If the scan reaches the beginning or end of (the accessible part of) the buffer in the middle
of a parenthetical grouping, an error is signaled. If it reaches the beginning or end between
groupings but before count is used up, nil is returned.
If optional arg buffer is non-nil, scanning occurs in that buffer instead of in the current
buffer.
If optional arg noerror is non-nil, scan-sexps will return nil instead of signalling an
error.

Variableparse-sexp-ignore-comments
If the value is non-nil, then comments are treated as whitespace by the functions in this
section and by forward-sexp.
In older Emacs versions, this feature worked only when the comment terminator is some-
thing like ‘*/’, and appears only to end a comment. In languages where newlines terminate
comments, it was necessary make this variable nil, since not every newline is the end of
a comment. This limitation no longer exists.

You can use forward-comment to move forward or backward over one comment or several
comments.

Functionforward-comment count &optional buffer
This function moves point forward across count comments (backward, if count is negative).
If it finds anything other than a comment or whitespace, it stops, leaving point at the
place where it stopped. It also stops after satisfying count.
Optional argument buffer defaults to the current buffer.

To move forward over all comments and whitespace following point, use (forward-comment
(buffer-size)). (buffer-size) is a good argument to use, because the number of comments
in the buffer cannot exceed that many.

Chapter 38: Syntax Tables 521

38.6 Some Standard Syntax Tables

Most of the major modes in XEmacs have their own syntax tables. Here are several of them:

Functionstandard-syntax-table
This function returns the standard syntax table, which is the syntax table used in Funda-
mental mode.

Variabletext-mode-syntax-table
The value of this variable is the syntax table used in Text mode.

Variablec-mode-syntax-table
The value of this variable is the syntax table for C-mode buffers.

Variableemacs-lisp-mode-syntax-table
The value of this variable is the syntax table used in Emacs Lisp mode by editing com-
mands. (It has no effect on the Lisp read function.)

38.7 Syntax Table Internals

Each element of a syntax table is an integer that encodes the syntax of one character: the
syntax class, possible matching character, and flags. Lisp programs don’t usually work with the
elements directly; the Lisp-level syntax table functions usually work with syntax descriptors (see
Section 38.2 [Syntax Descriptors], page 513).

The low 8 bits of each element of a syntax table indicate the syntax class.

Integer Class

0 whitespace

1 punctuation

2 word

3 symbol

4 open parenthesis

5 close parenthesis

6 expression prefix

7 string quote

8 paired delimiter

9 escape

10 character quote

11 comment-start

12 comment-end

13 inherit

The next 8 bits are the matching opposite parenthesis (if the character has parenthesis
syntax); otherwise, they are not meaningful. The next 6 bits are the flags.

522 XEmacs Lisp Reference Manual

Chapter 39: Abbrevs And Abbrev Expansion 523

39 Abbrevs And Abbrev Expansion

An abbreviation or abbrev is a string of characters that may be expanded to a longer string.
The user can insert the abbrev string and find it replaced automatically with the expansion of
the abbrev. This saves typing.

The set of abbrevs currently in effect is recorded in an abbrev table. Each buffer has a local
abbrev table, but normally all buffers in the same major mode share one abbrev table. There is
also a global abbrev table. Normally both are used.

An abbrev table is represented as an obarray containing a symbol for each abbreviation. The
symbol’s name is the abbreviation; its value is the expansion; its function definition is the hook
function to do the expansion (see Section 39.3 [Defining Abbrevs], page 524); its property list
cell contains the use count, the number of times the abbreviation has been expanded. Because
these symbols are not interned in the usual obarray, they will never appear as the result of
reading a Lisp expression; in fact, normally they are never used except by the code that handles
abbrevs. Therefore, it is safe to use them in an extremely nonstandard way. See Section 7.3
[Creating Symbols], page 103.

For the user-level commands for abbrevs, see section “Abbrev Mode” in The XEmacs Refer-
ence Manual.

39.1 Setting Up Abbrev Mode

Abbrev mode is a minor mode controlled by the value of the variable abbrev-mode.

Variableabbrev-mode
A non-nil value of this variable turns on the automatic expansion of abbrevs when their
abbreviations are inserted into a buffer. If the value is nil, abbrevs may be defined, but
they are not expanded automatically.
This variable automatically becomes local when set in any fashion.

Variabledefault-abbrev-mode
This is the value of abbrev-mode for buffers that do not override it. This is the same as
(default-value ’abbrev-mode).

39.2 Abbrev Tables

This section describes how to create and manipulate abbrev tables.

Functionmake-abbrev-table
This function creates and returns a new, empty abbrev table—an obarray containing no
symbols. It is a vector filled with zeros.

Functionclear-abbrev-table table
This function undefines all the abbrevs in abbrev table table, leaving it empty. The
function returns nil.

524 XEmacs Lisp Reference Manual

Functiondefine-abbrev-table tabname definitions
This function defines tabname (a symbol) as an abbrev table name, i.e., as a variable
whose value is an abbrev table. It defines abbrevs in the table according to definitions, a
list of elements of the form (abbrevname expansion hook usecount). The value is always
nil.

Variableabbrev-table-name-list
This is a list of symbols whose values are abbrev tables. define-abbrev-table adds the
new abbrev table name to this list.

Functioninsert-abbrev-table-description name &optional human
This function inserts before point a description of the abbrev table named name. The
argument name is a symbol whose value is an abbrev table. The value is always nil.

If human is non-nil, the description is human-oriented. Otherwise the description is a
Lisp expression—a call to define-abbrev-table that would define name exactly as it is
currently defined.

39.3 Defining Abbrevs

These functions define an abbrev in a specified abbrev table. define-abbrev is the low-level
basic function, while add-abbrev is used by commands that ask for information from the user.

Functionadd-abbrev table type arg
This function adds an abbreviation to abbrev table table based on information from the
user. The argument type is a string describing in English the kind of abbrev this will
be (typically, "global" or "mode-specific"); this is used in prompting the user. The
argument arg is the number of words in the expansion.

The return value is the symbol that internally represents the new abbrev, or nil if the
user declines to confirm redefining an existing abbrev.

Functiondefine-abbrev table name expansion hook
This function defines an abbrev in table named name, to expand to expansion, and call
hook. The return value is an uninterned symbol that represents the abbrev inside XEmacs;
its name is name.

The argument name should be a string. The argument expansion should be a string, or
nil to undefine the abbrev.

The argument hook is a function or nil. If hook is non-nil, then it is called with no
arguments after the abbrev is replaced with expansion; point is located at the end of
expansion when hook is called.

The use count of the abbrev is initialized to zero.

User Optiononly-global-abbrevs
If this variable is non-nil, it means that the user plans to use global abbrevs only. This
tells the commands that define mode-specific abbrevs to define global ones instead. This
variable does not alter the behavior of the functions in this section; it is examined by their
callers.

Chapter 39: Abbrevs And Abbrev Expansion 525

39.4 Saving Abbrevs in Files

A file of saved abbrev definitions is actually a file of Lisp code. The abbrevs are saved in the
form of a Lisp program to define the same abbrev tables with the same contents. Therefore, you
can load the file with load (see Section 14.1 [How Programs Do Loading], page 177). However,
the function quietly-read-abbrev-file is provided as a more convenient interface.

User-level facilities such as save-some-buffers can save abbrevs in a file automatically,
under the control of variables described here.

User Optionabbrev-file-name
This is the default file name for reading and saving abbrevs.

Functionquietly-read-abbrev-file filename
This function reads abbrev definitions from a file named filename, previously written with
write-abbrev-file. If filename is nil, the file specified in abbrev-file-name is used.
save-abbrevs is set to t so that changes will be saved.
This function does not display any messages. It returns nil.

User Optionsave-abbrevs
A non-nil value for save-abbrev means that XEmacs should save abbrevs when files are
saved. abbrev-file-name specifies the file to save the abbrevs in.

Variableabbrevs-changed
This variable is set non-nil by defining or altering any abbrevs. This serves as a flag for
various XEmacs commands to offer to save your abbrevs.

Commandwrite-abbrev-file filename
Save all abbrev definitions, in all abbrev tables, in the file filename, in the form of a Lisp
program that when loaded will define the same abbrevs. This function returns nil.

39.5 Looking Up and Expanding Abbreviations

Abbrevs are usually expanded by commands for interactive use, including self-insert-
command. This section describes the subroutines used in writing such functions, as well as the
variables they use for communication.

Functionabbrev-symbol abbrev &optional table
This function returns the symbol representing the abbrev named abbrev. The value re-
turned is nil if that abbrev is not defined. The optional second argument table is the
abbrev table to look it up in. If table is nil, this function tries first the current buffer’s
local abbrev table, and second the global abbrev table.

Functionabbrev-expansion abbrev &optional table
This function returns the string that abbrev would expand into (as defined by the abbrev
tables used for the current buffer). The optional argument table specifies the abbrev table
to use, as in abbrev-symbol.

Commandexpand-abbrev
This command expands the abbrev before point, if any. If point does not follow an abbrev,
this command does nothing. The command returns t if it did expansion, nil otherwise.

526 XEmacs Lisp Reference Manual

Commandabbrev-prefix-mark &optional arg
Mark current point as the beginning of an abbrev. The next call to expand-abbrev will
use the text from here to point (where it is then) as the abbrev to expand, rather than
using the previous word as usual.

User Optionabbrev-all-caps
When this is set non-nil, an abbrev entered entirely in upper case is expanded using all
upper case. Otherwise, an abbrev entered entirely in upper case is expanded by capitalizing
each word of the expansion.

Variableabbrev-start-location
This is the buffer position for expand-abbrev to use as the start of the next abbrev to be
expanded. (nil means use the word before point instead.) abbrev-start-location is set
to nil each time expand-abbrev is called. This variable is also set by abbrev-prefix-
mark.

Variableabbrev-start-location-buffer
The value of this variable is the buffer for which abbrev-start-location has been set.
Trying to expand an abbrev in any other buffer clears abbrev-start-location. This
variable is set by abbrev-prefix-mark.

Variablelast-abbrev
This is the abbrev-symbol of the last abbrev expanded. This information is left by
expand-abbrev for the sake of the unexpand-abbrev command.

Variablelast-abbrev-location
This is the location of the last abbrev expanded. This contains information left by expand-
abbrev for the sake of the unexpand-abbrev command.

Variablelast-abbrev-text
This is the exact expansion text of the last abbrev expanded, after case conversion (if any).
Its value is nil if the abbrev has already been unexpanded. This contains information
left by expand-abbrev for the sake of the unexpand-abbrev command.

Variablepre-abbrev-expand-hook
This is a normal hook whose functions are executed, in sequence, just before any expansion
of an abbrev. See Section 26.4 [Hooks], page 342. Since it is a normal hook, the hook
functions receive no arguments. However, they can find the abbrev to be expanded by
looking in the buffer before point.

The following sample code shows a simple use of pre-abbrev-expand-hook. If the user
terminates an abbrev with a punctuation character, the hook function asks for confirmation.
Thus, this hook allows the user to decide whether to expand the abbrev, and aborts expansion
if it is not confirmed.

(add-hook ’pre-abbrev-expand-hook ’query-if-not-space)

;; This is the function invoked by pre-abbrev-expand-hook.

;; If the user terminated the abbrev with a space, the function does
;; nothing (that is, it returns so that the abbrev can expand). If the
;; user entered some other character, this function asks whether
;; expansion should continue.

Chapter 39: Abbrevs And Abbrev Expansion 527

;; If the user answers the prompt with y, the function returns
;; nil (because of the not function), but that is
;; acceptable; the return value has no effect on expansion.

(defun query-if-not-space ()
(if (/= ?\ (preceding-char))

(if (not (y-or-n-p "Do you want to expand this abbrev? "))
(error "Not expanding this abbrev"))))

39.6 Standard Abbrev Tables

Here we list the variables that hold the abbrev tables for the preloaded major modes of
XEmacs.

Variableglobal-abbrev-table
This is the abbrev table for mode-independent abbrevs. The abbrevs defined in it apply
to all buffers. Each buffer may also have a local abbrev table, whose abbrev definitions
take precedence over those in the global table.

Variablelocal-abbrev-table
The value of this buffer-local variable is the (mode-specific) abbreviation table of the
current buffer.

Variablefundamental-mode-abbrev-table
This is the local abbrev table used in Fundamental mode; in other words, it is the local
abbrev table in all buffers in Fundamental mode.

Variabletext-mode-abbrev-table
This is the local abbrev table used in Text mode.

Variablec-mode-abbrev-table
This is the local abbrev table used in C mode.

Variablelisp-mode-abbrev-table
This is the local abbrev table used in Lisp mode and Emacs Lisp mode.

528 XEmacs Lisp Reference Manual

Chapter 40: Extents 529

40 Extents

An extent is a region of text (a start position and an end position) that is displayed in
a particular face and can have certain other properties such as being read-only. Extents can
overlap each other. XEmacs efficiently handles buffers with large numbers of extents in them.

Functionextentp object
This returns t if object is an extent.

40.1 Introduction to Extents

An extent is a region of text within a buffer or string that has certain properties associated
with it. The properties of an extent primarily affect the way the text contained in the extent is
displayed. Extents can freely overlap each other in a buffer or string. Extents are invisible to
functions that merely examine the text of a buffer or string.

Please note: An alternative way to add properties to a buffer or string is to use text properties.
See Section 36.18 [Text Properties], page 488.

An extent is logically a Lisp object consisting of a start position, an end position, a buffer or
string to which these positions refer, and a property list. As text is inserted into a buffer, the
start and end positions of the extent are automatically adjusted as necessary to keep the extent
referring to the same text in the buffer. If text is inserted at the boundary of an extent, the
extent’s start-open and end-open properties control whether the text is included as part of
the extent. If the text bounded by an extent is deleted, the extent becomes detached; its start
and end positions are no longer meaningful, but it maintains all its other properties and can
later be reinserted into a buffer. (None of these considerations apply to strings, because text
cannot be inserted into or deleted from a string.)

Each extent has a face or list of faces associated with it, which controls the way in which
the text bounded by the extent is displayed. If an extent’s face is nil or its properties are
partially undefined, the corresponding properties from the default face for the frame is used.
If two or more extents overlap, or if a list of more than one face is specified for a particular
extent, the corresponding faces are merged to determine the text’s displayed properties. Every
extent has a priority that determines which face takes precedence if the faces conflict. (If two
extents have the same priority, the one that comes later in the display order takes precedence.
See Section 40.3 [Extent Endpoints], page 530.) Higher-numbered priority values correspond to
a higher priority, and priority values can be negative. Every extent is created with a priority of
0, but this can be changed with set-extent-priority. Within a single extent with a list of
faces, faces earlier in the list have a higher priority than faces later in the list.

Extents can be set to respond specially to key and mouse events within the extent. An
extent’s keymap property controls the effect of key and mouse strokes within the extent’s text,
and the mouse-face property controls whether the extent is highlighted when the mouse moves
over it. See Section 40.10 [Extents and Events], page 540.

An extent can optionally have a begin-glyph or end-glyph associated with it. A begin-glyph
or end-glyph is a pixmap or string that will be displayed either at the start or end of an extent
or in the margin of the line that the start or end of the extent lies in, depending on the extent’s
layout policy. Begin-glyphs and end-glyphs are used to implement annotations, and you should
use the annotation API functions in preference to the lower-level extent functions. For more
information, See Chapter 44 [Annotations], page 579.

If an extent has its detachable property set, it will become detached (i.e. no longer in the
buffer) when all its text its deleted. Otherwise, it will simply shrink down to zero-length and

530 XEmacs Lisp Reference Manual

sit it the same place in the buffer. By default, the detachable property is set on newly-created
extents. See Section 40.7 [Detached Extents], page 538.

If an extent has its duplicable property set, it will be remembered when a string is created
from text bounded by the extent. When the string is re-inserted into a buffer, the extent will also
be re-inserted. This mechanism is used in the kill, yank, and undo commands. See Section 40.9
[Duplicable Extents], page 539.

40.2 Creating and Modifying Extents

Functionmake-extent from to &optional object
This function makes an extent for the range [from, to) in object (a buffer or string).
object defaults to the current buffer. Insertions at point to will be outside of the extent;
insertions at from will be inside the extent, causing the extent to grow (see Section 40.3
[Extent Endpoints], page 530). This is the same way that markers behave. The extent
is initially detached if both from and to are nil, and in this case object defaults to nil,
meaning the extent is in no buffer or string (see Section 40.7 [Detached Extents], page 538).

Functiondelete-extent extent
This function removes extent from its buffer and destroys it. This does not modify the
buffer’s text, only its display properties. The extent cannot be used thereafter. To re-
move an extent in such a way that it can be re-inserted later, use detach-extent. See
Section 40.7 [Detached Extents], page 538.

Functionextent-object extent
This function returns the buffer or string that extent is in. If the return value is nil, this
means that the extent is detached; however, a detached extent will not necessarily return
a value of nil.

Functionextent-live-p extent
This function returns nil if extent is deleted, and t otherwise.

40.3 Extent Endpoints

Every extent has a start position and an end position, and logically affects the characters
between those positions. Normally the start and end positions must both be valid positions
in the extent’s buffer or string. However, both endpoints can be nil, meaning the extent is
detached. See Section 40.7 [Detached Extents], page 538.

Whether the extent overlaps its endpoints is governed by its start-open and end-open
properties. Insertion of a character at a closed endpoint will expand the extent to include that
character; insertion at an open endpoint will not. Similarly, functions such as extent-at that
scan over all extents overlapping a particular position will include extents with a closed endpoint
at that position, but not extents with an open endpoint.

Note that the start-closed and end-closed properties are equivalent to start-open and
end-open with the opposite sense.

Both endpoints can be equal, in which case the extent includes no characters but still exists
in the buffer or string. Zero-length extents are used to represent annotations (see Chapter 44
[Annotations], page 579) and can be used as a more powerful form of a marker. Deletion of all
the characters in an extent may or may not result in a zero-length extent; this depends on the

Chapter 40: Extents 531

detachable property (see Section 40.7 [Detached Extents], page 538). Insertion at the position
of a zero-length extent expands the extent if both endpoints are closed; goes before the extent
if it has the start-open property; and goes after the extent if it has the end-open property.
Zero-length extents with both the start-open and end-open properties are treated as if their
starting point were closed. Deletion of a character on a side of a zero-length extent whose
corresponding endpoint is closed causes the extent to be detached if its detachable property is
set; if the corresponding endpoint is open, the extent remains in the buffer, moving as necessary.

Extents are ordered within a buffer or string by increasing start position, and then by de-
creasing end position (this is called the display order).

Functionextent-start-position extent
This function returns the start position of extent.

Functionextent-end-position extent
This function returns the end position of extent.

Functionextent-length extent
This function returns the length of extent in characters. If the extent is detached, this
returns 0. If the extent is not detached, this is equivalent to

(- (extent-end-position extent) (extent-start-position extent))

Functionset-extent-endpoints extent start end &optional buffer-or-string
This function sets the start and end position of extent to start and end. If both are nil,
this is equivalent to detach-extent.
buffer-or-string specifies the new buffer or string that the extent should be in, and defaults
to extent’s buffer or string. (If nil, and extent is in no buffer and no string, it defaults
to the current buffer.)
See documentation on detach-extent for a discussion of undo recording.

40.4 Finding Extents

The following functions provide a simple way of determining the extents in a buffer or string.
A number of more sophisticated primitives for mapping over the extents in a range of a buffer
or string are also provided (see Section 40.5 [Mapping Over Extents], page 532). When reading
through this section, keep in mind the way that extents are ordered (see Section 40.3 [Extent
Endpoints], page 530).

Functionextent-list &optional buffer-or-string from to flags
This function returns a list of the extents in buffer-or-string. buffer-or-string defaults to
the current buffer if omitted. from and to can be used to limit the range over which
extents are returned; if omitted, all extents in the buffer or string are returned.
More specifically, if a range is specified using from and to, only extents that overlap the
range (i.e. begin or end inside of the range) are included in the list. from and to default
to the beginning and end of buffer-or-string, respectively.
flags controls how end cases are treated. For a discussion of this, and exactly what
“overlap” means, see map-extents.

Functions that create extents must be prepared for the possibility that there are other extents
in the same area, created by other functions. To deal with this, functions typically mark their
own extents by setting a particular property on them. The following function makes it easier to
locate those extents.

532 XEmacs Lisp Reference Manual

Functionextent-at pos &optional object property before at-flag
This function finds the “smallest” extent (i.e., the last one in the display order) at (i.e.,
overlapping) pos in object (a buffer or string) having property set. object defaults to the
current buffer. property defaults to nil, meaning that any extent will do. Returns nil if
there is no matching extent at pos. If the fourth argument before is not nil, it must be
an extent; any returned extent will precede that extent. This feature allows extent-at
to be used by a loop over extents.
at-flag controls how end cases are handled (i.e. what “at” really means), and should be
one of:

nil

after An extent is at pos if it covers the character after pos. This is consistent with
the way that text properties work.

before An extent is at pos if it covers the character before pos.

at An extent is at pos if it overlaps or abuts pos. This includes all zero-length
extents at pos.

Note that in all cases, the start-openness and end-openness of the extents considered is
ignored. If you want to pay attention to those properties, you should use map-extents,
which gives you more control.

The following low-level functions are provided for explicitly traversing the extents in a buffer
according to the display order. These functions are mostly intended for debugging – in normal
operation, you should probably use mapcar-extents or map-extents, or loop using the before
argument to extent-at, rather than creating a loop using next-extent.

Functionnext-extent extent
Given an extent extent, this function returns the next extent in the buffer or string’s
display order. If extent is a buffer or string, this returns the first extent in the buffer or
string.

Functionprevious-extent extent
Given an extent extent, this function returns the previous extent in the buffer or string’s
display order. If extent is a buffer or string, this returns the last extent in the buffer or
string.

40.5 Mapping Over Extents

The most basic and general function for mapping over extents is called map-extents. You
should read through the definition of this function to familiarize yourself with the concepts and
optional arguments involved. However, in practice you may find it more convenient to use the
function mapcar-extents or to create a loop using the before argument to extent-at (see
Section 40.4 [Finding Extents], page 531).

Functionmap-extents function &optional object from to maparg flags property value
This function maps function over the extents which overlap a region in object. object is
normally a buffer or string but could be an extent (see below). The region is normally
bounded by [from, to) (i.e. the beginning of the region is closed and the end of the region
is open), but this can be changed with the flags argument (see below for a complete
discussion).

Chapter 40: Extents 533

function is called with the arguments (extent, maparg). The arguments object, from,
to, maparg, and flags are all optional and default to the current buffer, the beginning of
object, the end of object, nil, and nil, respectively. map-extents returns the first non-
nil result produced by function, and no more calls to function are made after it returns
non-nil.
If object is an extent, from and to default to the extent’s endpoints, and the mapping
omits that extent and its predecessors. This feature supports restarting a loop based on
map-extents. Note: object must be attached to a buffer or string, and the mapping is
done over that buffer or string.
An extent overlaps the region if there is any point in the extent that is also in the region.
(For the purpose of overlap, zero-length extents and regions are treated as closed on both
ends regardless of their endpoints’ specified open/closedness.) Note that the endpoints
of an extent or region are considered to be in that extent or region if and only if the
corresponding end is closed. For example, the extent [5,7] overlaps the region [2,5] because
5 is in both the extent and the region. However, (5,7] does not overlap [2,5] because 5 is
not in the extent, and neither [5,7] nor (5,7] overlaps the region [2,5) because 5 is not in
the region.
The optional flags can be a symbol or a list of one or more symbols, modifying the behavior
of map-extents. Allowed symbols are:

end-closed
The region’s end is closed.

start-open
The region’s start is open.

all-extents-closed
Treat all extents as closed on both ends for the purpose of determining whether
they overlap the region, irrespective of their actual open- or closedness.

all-extents-open
Treat all extents as open on both ends.

all-extents-closed-open
Treat all extents as start-closed, end-open.

all-extents-open-closed
Treat all extents as start-open, end-closed.

start-in-region
In addition to the above conditions for extent overlap, the extent’s start po-
sition must lie within the specified region. Note that, for this condition, open
start positions are treated as if 0.5 was added to the endpoint’s value, and
open end positions are treated as if 0.5 was subtracted from the endpoint’s
value.

end-in-region
The extent’s end position must lie within the region.

start-and-end-in-region
Both the extent’s start and end positions must lie within the region.

start-or-end-in-region
Either the extent’s start or end position must lie within the region.

negate-in-region
The condition specified by a *-in-region flag must not hold for the extent
to be considered.

534 XEmacs Lisp Reference Manual

At most one of all-extents-closed, all-extents-open, all-extents-closed-open,
and all-extents-open-closed may be specified.
At most one of start-in-region, end-in-region, start-and-end-in-region, and
start-or-end-in-region may be specified.
If optional arg property is non-nil, only extents with that property set on them will be
visited. If optional arg value is non-nil, only extents whose value for that property is eq
to value will be visited.

If you want to map over extents and accumulate a list of results, the following function may
be more convenient than map-extents.

Functionmapcar-extents function &optional predicate buffer-or-string from to flags
property value

This function applies function to all extents which overlap a region in buffer-or-string.
The region is delimited by from and to. function is called with one argument, the extent.
A list of the values returned by function is returned. An optional predicate may be used
to further limit the extents over which function is mapped. The optional arguments flags,
property, and value may also be used to control the extents passed to predicate or function,
and have the same meaning as in map-extents.

Functionmap-extent-children function &optional object from to maparg flags
property value

This function is similar to map-extents, but differs in that:
• It only visits extents which start in the given region.
• After visiting an extent e, it skips all other extents which start inside e but end before

e’s end.

Thus, this function may be used to walk a tree of extents in a buffer:
(defun walk-extents (buffer &optional ignore)

(map-extent-children ’walk-extents buffer))

Functionextent-in-region-p extent &optional from to flags
This function returns t if map-extents would visit extent if called with the given argu-
ments.

40.6 Properties of Extents

Each extent has a property list associating property names with values. Some property
names have predefined meanings, and can usually only assume particular values. Assigning
other values to such a property either cause the value to be converted into a legal value (e.g.,
assigning anything but nil to a Boolean property will cause the value of t to be assigned to the
property) or will cause an error. Property names without predefined meanings can be assigned
any value. An undefined property is equivalent to a property with a value of nil, or with a
particular default value in the case of properties with predefined meanings. Note that, when an
extent is created, the end-open and detachable properties are set on it.

If an extent has a parent, all of its properties actually derive from that parent (or from the
root ancestor if the parent in turn has a parent), and setting a property of the extent actually
sets that property on the parent. See Section 40.8 [Extent Parents], page 538.

Functionextent-property extent property
This function returns the value of property in extent. If property is undefined, nil is
returned.

Chapter 40: Extents 535

Functionextent-properties extent
This function returns a list of all of extent’s properties that do not have the value of nil
(or the default value, for properties with predefined meanings).

Functionset-extent-property extent property value
This function sets property to value in extent. (If property has a predefined meaning,
only certain values are allowed, and some values may be converted to others before being
stored.)

Functionset-extent-properties extent plist
Change some properties of extent. plist is a property list. This is useful to change many
extent properties at once.

The following table lists the properties with predefined meanings, along with their allowable
values.

detached (Boolean) Whether the extent is detached. Setting this is the same as calling
detach-extent. See Section 40.7 [Detached Extents], page 538.

destroyed
(Boolean) Whether the extent has been deleted. Setting this is the same as calling
delete-extent.

priority (integer) The extent’s redisplay priority. Defaults to 0. See Section 40.1 [Intro to
Extents], page 529. This property can also be set with set-extent-priority and
accessed with extent-priority.

start-open
(Boolean) Whether the start position of the extent is open, meaning that charac-
ters inserted at that position go outside of the extent. See Section 40.3 [Extent
Endpoints], page 530.

start-closed
(Boolean) Same as start-open but with the opposite sense. Setting this property
clears start-open and vice-versa.

end-open (Boolean) Whether the end position of the extent is open, meaning that charac-
ters inserted at that position go outside of the extent. This is t by default. See
Section 40.3 [Extent Endpoints], page 530.

end-closed
(Boolean) Same as end-open but with the opposite sense. Setting this property
clears end-open and vice-versa.

read-only
(Boolean) Whether text within this extent will be unmodifiable.

face (face, face name, list of faces or face names, or nil) The face in which to display the
extent’s text. This property can also be set with set-extent-face and accessed
with extent-face. Note that if a list of faces is specified, the faces are merged
together, with faces earlier in the list having priority over faces later in the list.

mouse-face
(face, face name, list of faces or face names, or nil) The face used to display the
extent when the mouse moves over it. This property can also be set with set-
extent-mouse-face and accessed with extent-mouse-face. Note that if a list of
faces is specified, the faces are merged together, with faces earlier in the list having
priority over faces later in the list. See Section 40.10 [Extents and Events], page 540.

536 XEmacs Lisp Reference Manual

pointer (pointer glyph) The glyph used as the pointer when the mouse moves over the extent.
This takes precedence over the text-pointer-glyph and nontext-pointer-glyph
variables. If for any reason this glyph is an invalid pointer, the standard glyphs will
be used as fallbacks. See Section 43.4 [Mouse Pointer], page 577.

detachable
(Boolean) Whether this extent becomes detached when all of the text it covers is
deleted. This is t by default. See Section 40.7 [Detached Extents], page 538.

duplicable
(Boolean) Whether this extent should be copied into strings, so that kill, yank,
and undo commands will restore or copy it. See Section 40.9 [Duplicable Extents],
page 539.

unique (Boolean) Meaningful only in conjunction with duplicable. When this is set, there
may be only one instance of this extent attached at a time. See Section 40.9 [Du-
plicable Extents], page 539.

invisible
(Boolean) If t, text under this extent will not be displayed – it will look as if the
text is not there at all.

keymap (keymap or nil) This keymap is consulted for mouse clicks on this extent or key-
presses made while point is within the extent. See Section 40.10 [Extents and
Events], page 540.

copy-function
This is a hook that is run when a duplicable extent is about to be copied from a
buffer to a string (or the kill ring). See Section 40.9 [Duplicable Extents], page 539.

paste-function
This is a hook that is run when a duplicable extent is about to be copied from a
string (or the kill ring) into a buffer. See Section 40.9 [Duplicable Extents], page 539.

begin-glyph
(glyph or nil) This extent’s begin glyph. See Chapter 44 [Annotations], page 579.

end-glyph
(glyph or nil) This extent’s end glyph. See Chapter 44 [Annotations], page 579.

begin-glyph-layout
(text, whitespace, inside-margin, or outside-margin) The layout policy for this
extent’s begin glyph. Defaults to text. See Chapter 44 [Annotations], page 579.

end-glyph-layout
(text, whitespace, inside-margin, or outside-margin) The layout policy for this
extent’s end glyph. Defaults to text. See Chapter 44 [Annotations], page 579.

initial-redisplay-function
(any funcallable object) The function to be called the first time (a part of) the
extent is redisplayed. It will be called with the extent as its argument.
This is used by lazy-shot to implement lazy font-locking. The functionality is still
experimental, and may change without further notice.

The following convenience functions are provided for accessing particular properties of an
extent.

Functionextent-face extent
This function returns the face property of extent. This might also return a list of face
names. Do not modify this list directly! Instead, use set-extent-face.

Chapter 40: Extents 537

Note that you can use eq to compare lists of faces as returned by extent-face. In other
words, if you set the face of two different extents to two lists that are equal but not eq,
then the return value of extent-face on the two extents will return the identical list.

Functionextent-mouse-face extent
This function returns the mouse-face property of extent. This might also return a list of
face names. Do not modify this list directly! Instead, use set-extent-mouse-face.
Note that you can use eq to compare lists of faces as returned by extent-mouse-face,
just like for extent-face.

Functionextent-priority extent
This function returns the priority property of extent.

Functionextent-keymap extent
This function returns the keymap property of extent.

Functionextent-begin-glyph-layout extent
This function returns the begin-glyph-layout property of extent, i.e. the layout policy
associated with the extent’s begin glyph.

Functionextent-end-glyph-layout extent
This function returns the end-glyph-layout property of extent, i.e. the layout policy
associated with the extent’s end glyph.

Functionextent-begin-glyph extent
This function returns the begin-glyph property of extent, i.e. the glyph object displayed
at the beginning of extent. If there is none, nil is returned.

Functionextent-end-glyph extent
This function returns the end-glyph property of extent, i.e. the glyph object displayed
at the end of extent. If there is none, nil is returned.

The following convenience functions are provided for setting particular properties of an extent.

Functionset-extent-priority extent pri
This function sets the priority property of extent to pri.

Functionset-extent-face extent face
This function sets the face property of extent to face.

Functionset-extent-mouse-face extent face
This function sets the mouse-face property of extent to face.

Functionset-extent-keymap extent keymap
This function sets the keymap property of extent to keymap. keymap must be either a
keymap object, or nil.

Functionset-extent-begin-glyph-layout extent layout
This function sets the begin-glyph-layout property of extent to layout.

Functionset-extent-end-glyph-layout extent layout
This function sets the end-glyph-layout property of extent to layout.

538 XEmacs Lisp Reference Manual

Functionset-extent-begin-glyph extent begin-glyph &optional layout
This function sets the begin-glyph and glyph-layout properties of extent to begin-glyph
and layout, respectively. (layout defaults to text if not specified.)

Functionset-extent-end-glyph extent end-glyph &optional layout
This function sets the end-glyph and glyph-layout properties of extent to end-glyph
and layout, respectively. (layout defaults to text if not specified.)

Functionset-extent-initial-redisplay-function extent function
This function sets the initial-redisplay-function property of the extent to function.

40.7 Detached Extents

A detached extent is an extent that is not attached to a buffer or string but can be re-
inserted. Detached extents have a start position and end position of nil. Extents can be
explicitly detached using detach-extent. An extent is also detached when all of its characters
are all killed by a deletion, if its detachable property is set; if this property is not set, the
extent becomes a zero-length extent. (Zero-length extents with the detachable property set
behave specially. See Section 40.3 [Extent Endpoints], page 530.)

Functiondetach-extent extent
This function detaches extent from its buffer or string. If extent has the duplicable
property, its detachment is tracked by the undo mechanism. See Section 40.9 [Duplicable
Extents], page 539.

Functionextent-detached-p extent
This function returns nil if extent is detached, and t otherwise.

Functioncopy-extent extent &optional object
This function makes a copy of extent. It is initially detached. Optional argument object
defaults to extent’s object (normally a buffer or string, but could be nil).

Functioninsert-extent extent &optional start end no-hooks object
This function inserts extent from start to end in object (a buffer or string). If extent is
detached from a different buffer or string, or in most cases when extent is already attached,
the extent will first be copied as if with copy-extent. This function operates the same
as if insert were called on a string whose extent data calls for extent to be inserted,
except that if no-hooks is non-nil, extent’s paste-function will not be invoked. See
Section 40.9 [Duplicable Extents], page 539.

40.8 Extent Parents

An extent can have a parent extent set for it. If this is the case, the extent derives all its
properties from that extent and has no properties of its own. The only “properties” that the
extent keeps are the buffer or string it refers to and the start and end points. (More correctly,
the extent’s own properties are shadowed. If you later change the extent to have no parent, its
own properties will become visible again.)

It is possible for an extent’s parent to itself have a parent, and so on. Through this, a whole
tree of extents can be created, all deriving their properties from one root extent. Note, however,
that you cannot create an inheritance loop – this is explicitly disallowed.

Parent extents are used to implement the extents over the modeline.

Chapter 40: Extents 539

Functionset-extent-parent extent parent
This function sets the parent of extent to parent. If parent is nil, the extent is set to
have no parent.

Functionextent-parent extent
This function return the parents (if any) of extent, or nil.

Functionextent-children extent
This function returns a list of the children (if any) of extent. The children of an extent
are all those extents whose parent is that extent. This function does not recursively trace
children of children.

Functionextent-descendants extent
This function returns a list of all descendants of extent, including extent. This recursively
applies extent-children to any children of extent, until no more children can be found.

40.9 Duplicable Extents

If an extent has the duplicable property, it will be copied into strings, so that kill, yank,
and undo commands will restore or copy it.

Specifically:
• When a string is created using buffer-substring or buffer-string, any duplicable ex-

tents in the region corresponding to the string will be copied into the string (see Section 36.2
[Buffer Contents], page 464). When the string in inserted into a buffer using insert,
insert-before-markers, insert-buffer or insert-buffer-substring, the extents in
the string will be copied back into the buffer (see Section 36.4 [Insertion], page 465). The
extents in a string can, of course, be retrieved explicitly using the standard extent primitives
over the string.

• Similarly, when text is copied or cut into the kill ring, any duplicable extents will be
remembered and reinserted later when the text is pasted back into a buffer.

• When concat is called on strings, the extents in the strings are copied into the resulting
string.

• When substring is called on a string, the relevant extents are copied into the resulting
string.

• When a duplicable extent is detached by detach-extent or string deletion, or inserted by
insert-extent or string insertion, the action is recorded by the undo mechanism so that
it can be undone later. Note that if an extent gets detached and then a later undo causes
the extent to get reinserted, the new extent will not be ‘eq’ to the original extent.

• Extent motion, face changes, and attachment via make-extent are not recorded by the undo
mechanism. This means that extent changes which are to be undo-able must be performed
by character editing, or by insertion and detachment of duplicable extents.

• A duplicable extent’s copy-function property, if non-nil, should be a function, and will
be run when a duplicable extent is about to be copied from a buffer to a string (or the kill
ring). It is called with three arguments: the extent and the buffer positions within it which
are being copied. If this function returns nil, then the extent will not be copied; otherwise
it will.

• A duplicable extent’s paste-function property, if non-nil, should be a function, and will
be run when a duplicable extent is about to be copied from a string (or the kill ring) into a
buffer. It is called with three arguments: the original extent and the buffer positions which

540 XEmacs Lisp Reference Manual

the copied extent will occupy. (This hook is run after the corresponding text has already
been inserted into the buffer.) Note that the extent argument may be detached when this
function is run. If this function returns nil, no extent will be inserted. Otherwise, there
will be an extent covering the range in question.
Note: if the extent to be copied is already attached to the buffer and overlaps the new
range, the extent will simply be extended and the paste-function will not be called.

40.10 Interaction of Extents with Keyboard and Mouse Events

If an extent has the mouse-face property set, it will be highlighted when the mouse passes
over it. Highlighting is accomplished by merging the extent’s face with the face or faces specified
by the mouse-face property. The effect is as if a pseudo-extent with the mouse-face face were
inserted after the extent in the display order (see Section 40.3 [Extent Endpoints], page 530,
display order).

Variablemouse-highlight-priority
This variable holds the priority to use when merging in the highlighting pseudo-extent.
The default is 1000. This is purposely set very high so that the highlighting pseudo-extent
shows up even if there are other extents with various priorities at the same location.

You can also explicitly cause an extent to be highlighted. Only one extent at a time can be
highlighted in this fashion, and any other highlighted extent will be de-highlighted.

Functionhighlight-extent extent &optional highlight-p
This function highlights (if highlight-p is non-nil) or de-highlights (if highlight-p is nil)
extent, if extent has the mouse-face property. (Nothing happens if extent does not have
the mouse-face property.)

Functionforce-highlight-extent extent &optional highlight-p
This function is similar to highlight-extent but highlights or de-highlights the extent
regardless of whether it has the mouse-face property.

If an extent has a keymap property, this keymap will be consulted for mouse clicks on the
extent and keypresses made while point is within the extent. The behavior of mouse clicks and
keystrokes not defined in the keymap is as normal for the buffer.

40.11 Atomic Extents

If the Lisp file ‘atomic-extents’ is loaded, then the atomic extent facility is available. An
atomic extent is an extent for which point cannot be positioned anywhere within it. This
ensures that when selecting text, either all or none of the extent is selected.

To make an extent atomic, set its atomic property.

Chapter 41: Specifiers 541

41 Specifiers

A specifier is an object used to keep track of a property whose value may vary depending
on the particular situation (e.g. particular buffer displayed in a particular window) that it is
used in. The value of many built-in properties, such as the font, foreground, background, and
such properties of a face and variables such as modeline-shadow-thickness and top-toolbar-
height, is actually a specifier object. The specifier object, in turn, is “instanced” in a particular
situation to yield the real value of the property in that situation.

Functionspecifierp object
This function returns non-nil if object is a specifier.

41.1 Introduction to Specifiers

Sometimes you may want the value of a property to vary depending on the context the
property is used in. A simple example of this in XEmacs is buffer-local variables. For example,
the variable modeline-format, which controls the format of the modeline, can have different
values depending on the particular buffer being edited. The variable has a default value which
most modes will use, but a specialized package such as Calendar might change the variable so
as to tailor the modeline to its own purposes.

Other properties (such as those that can be changed by the modify-frame-parameters
function, for example the color of the text cursor) can have frame-local values, although it
might also make sense for them to have buffer-local values. In other cases, you might want the
property to vary depending on the particular window within the frame that applies (e.g. the top
or bottom window in a split frame), the device type that that frame appears on (X or tty), etc.
Perhaps you can envision some more complicated scenario where you want a particular value
in a specified buffer, another value in all other buffers displayed on a particular frame, another
value in all other buffers displayed in all other frames on any mono (two-color, e.g. black and
white only) displays, and a default value in all other circumstances.

A specifier is a generalization of this, allowing a great deal of flexibility in controlling exactly
what value a property has in which circumstances. It is most commonly used for display prop-
erties, such as an image or the foreground color of a face. As a simple example, you can specify
that the foreground of the default face be
• blue for a particular buffer
• green for all other buffers

As a more complicated example, you could specify that the foreground of the default face be
• forest green for all buffers displayed in a particular Emacs window, or green if the X server

doesn’t recognize the color ‘forest green’
• blue for all buffers displayed in a particular frame
• red for all other buffers displayed on a color device
• white for all other buffers

41.2 In-Depth Overview of a Specifier

A specifier object encapsulates a set of specifications, each of which says what its value
should be if a particular condition applies. For example, one specification might be “The value

542 XEmacs Lisp Reference Manual

should be darkseagreen2 on X devices” another might be “The value should be blue in the
Help buffer”. In specifier terminology, these conditions are called locales and the values are
called instantiators. Given a specifier, a logical question is “What is its value in a particular
situation?” This involves looking through the specifications to see which ones apply to this
particular situation, and perhaps preferring one over another if more than one applies. In
specifier terminology, a “particular situation” is called a domain, and determining its value in a
particular domain is called instancing. Most of the time, a domain is identified by a particular
window. For example, if the redisplay engine is drawing text in the default face in a particular
window, it retrieves the specifier for the foreground color of the default face and instances it in
the domain given by that window; in other words, it asks the specifier, “What is your value in
this window?”.

More specifically, a specifier contains a set of specifications, each of which associates a locale
(a window object, a buffer object, a frame object, a device object, or the symbol global) with an
inst-list, which is a list of one or more inst-pairs. (For each possible locale, there can be at most
one specification containing that locale.) Each inst-pair is a cons of a tag set (an unordered list
of zero or more symbols, or tags) and an instantiator (the allowed form of this varies depending
on the type of specifier). In a given specification, there may be more than one inst-pair with
the same tag set; this is unlike for locales.

The tag set is used to restrict the sorts of devices over which the instantiator is valid and to
uniquely identify instantiators added by a particular application, so that different applications
can work on the same specifier and not interfere with each other. Each tag can have a predicate
associated with it, which is a function of one argument (a device) that specifies whether the tag
matches that particular device. (If a tag does not have a predicate, it matches all devices.) All
tags in a tag set must match a device for the associated inst-pair to be instantiable over that
device. (A null tag set is perfectly valid.)

The valid device types (normally x, tty, and stream) and device classes (normally color,
grayscale, and mono) can always be used as tags, and match devices of the associated type
or class (see Chapter 33 [Consoles and Devices], page 437). User-defined tags may be defined,
with an optional predicate specified. An application can create its own tag, use it to mark
all its instantiators, and be fairly confident that it will not interfere with other applications
that modify the same specifier – Functions that add a specification to a specifier usually only
overwrite existing inst-pairs with the same tag set as was given, and a particular tag or tag set
can be specified when removing instantiators.

When a specifier is instanced in a domain, both the locale and the tag set can be viewed
as specifying necessary conditions that must apply in that domain for an instantiator to be
considered as a possible result of the instancing. More specific locales always override more
general locales (thus, there is no particular ordering of the specifications in a specifier); however,
the tag sets are simply considered in the order that the inst-pairs occur in the specification’s
inst-list.

Note also that the actual object that results from the instancing (called an instance object)
may not be the same as the instantiator from which it was derived. For some specifier types
(such as integer specifiers and boolean specifiers), the instantiator will be returned directly
as the instance object. For other types, however, this is not the case. For example, for font
specifiers, the instantiator is a font-description string and the instance object is a font-instance
object, which describes how the font is displayed on a particular device. A font-instance object
encapsulates such things as the actual font name used to display the font on that device (a font-
description string under X is usually a wildcard specification that may resolve to different font
names, with possibly different foundries, widths, etc., on different devices), the extra properties
of that font on that device, etc. Furthermore, this conversion (called instantiation) might fail –
a font or color might not exist on a particular device, for example.

41.3 How a Specifier Is Instanced

Chapter 41: Specifiers 543

Instancing of a specifier in a particular window domain proceeds as follows:
• First, XEmacs searches for a specification whose locale is the same as the window. If that

fails, the search is repeated, looking for a locale that is the same as the window’s buffer.
If that fails, the search is repeated using the window’s frame, then using the device that
frame is on. Finally, the specification whose locale is the symbol global (if there is such a
specification) is considered.

• The inst-pairs contained in the specification that was found are considered in their order
in the inst-list, looking for one whose tag set matches the device that is derived from the
window domain. (The tag set is an unordered list of zero or more tag symbols. For all tags
that have predicates associated with them, the predicate must match the device.)

• If a matching tag set is found, the corresponding instantiator is passed to the specifier’s
instantiation method, which is specific to the type of the specifier. If it succeeds, the
resulting instance object is returned as the result of the instancing and the instancing is
done. Otherwise, the operation continues, looking for another matching inst-pair in the
current specification.

• When there are no more inst-pairs to be considered in the current specification, the search
starts over, looking for another specification as in the first step above.

• If all specifications are exhausted and no instance object can be derived, the instancing fails.
(Actually, this is not completely true. Some specifier objects for built-in properties have a
fallback value, which is either an inst-list or another specifier object, that is consulted if the
instancing is about to fail. If it is an inst-list, the searching proceeds using the inst-pairs
in that list. If it is a specifier, the entire instancing starts over using that specifier instead
of the given one. Fallback values are set by the C code and cannot be modified, except
perhaps indirectly, using any Lisp functions. The purpose of them is to supply some values
to make sure that instancing of built-in properties can’t fail and to implement some basic
specifier inheritance, such as the fact that faces inherit their properties from the default
face.)

It is also possible to instance a specifier over a frame domain or device domain instead of
over a window domain. The C code, for example, instances the top-toolbar-height variable
over a frame domain in order to determine the height of a frame’s top toolbar. Instancing over a
frame or device is similar to instancing over a window except that specifications for locales that
cannot be derived from the domain are ignored. Specifically, instancing over a frame looks first
for frame locales, then device locales, then the global locale. Instancing over a device domain
looks only for device locales and the global locale.

41.4 Specifier Types

There are various different types of specifiers. The type of a specifier controls what sorts of
instantiators are valid, how an instantiator is instantiated, etc. Here is a list of built-in specifier
types:
boolean The valid instantiators are the symbols t and nil. Instance objects are the same

as instantiators so no special instantiation function is needed.
integer The valid instantiators are integers. Instance objects are the same as instantiators

so no special instantiation function is needed. modeline-shadow-thickness is an
example of an integer specifier (negative thicknesses indicate that the shadow is
drawn recessed instead of raised).

natnum The valid instantiators are natnums (non-negative integers). Instance objects are
the same as instantiators so no special instantiation function is needed. Natnum
specifiers are used for dimension variables such as top-toolbar-height.

544 XEmacs Lisp Reference Manual

generic All Lisp objects are valid instantiators. Instance objects are the same as instantiators
so no special instantiation function is needed.

font The valid instantiators are strings describing fonts or vectors indicating inheritance
from the font of some face. Instance objects are font-instance objects, which are
specific to a particular device. The instantiation method for font specifiers can fail,
unlike for integer, natnum, boolean, and generic specifiers.

color The valid instantiators are strings describing colors or vectors indicating inheritance
from the foreground or background of some face. Instance objects are color-instance
objects, which are specific to a particular device. The instantiation method for color
specifiers can fail, as for font specifiers.

image Images are perhaps the most complicated type of built-in specifier. The valid in-
stantiators are strings (a filename, inline data for a pixmap, or text to be displayed
in a text glyph) or vectors describing inline data of various sorts or indicating in-
heritance from the background-pixmap property of some face. Instance objects
are either strings (for text images), image-instance objects (for pixmap images), or
subwindow objects (for subwindow images). The instantiation method for image
specifiers can fail, as for font and color specifiers.

face-boolean
The valid instantiators are the symbols t and nil and vectors indicating inheritance
from a boolean property of some face. Specifiers of this sort are used for all of the
built-in boolean properties of faces. Instance objects are either the symbol t or the
symbol nil.

toolbar The valid instantiators are toolbar descriptors, which are lists of toolbar-button
descriptors (each of which is a vector of two or four elements). See Chapter 23
[Toolbar], page 317, for more information.

Color and font instance objects can also be used in turn as instantiators for a new color or
font instance object. Since these instance objects are device-specific, the instantiator can be used
directly as the new instance object, but only if they are of the same device. If the devices differ,
the base color or font of the instantiating object is effectively used instead as the instantiator.

See Chapter 42 [Faces and Window-System Objects], page 555, for more information on fonts,
colors, and face-boolean specifiers. See Chapter 43 [Glyphs], page 565, for more information
about image specifiers. See Chapter 23 [Toolbar], page 317, for more information on toolbar
specifiers.

Functionspecifier-type specifier
This function returns the type of specifier. The returned value will be a symbol: one of
integer, boolean, etc., as listed in the above table.

Functions are also provided to query whether an object is a particular kind of specifier:

Functionboolean-specifier-p object
This function returns non-nil if object is a boolean specifier.

Functioninteger-specifier-p object
This function returns non-nil if object is an integer specifier.

Functionnatnum-specifier-p object
This function returns non-nil if object is a natnum specifier.

Functiongeneric-specifier-p object
This function returns non-nil if object is a generic specifier.

Chapter 41: Specifiers 545

Functionface-boolean-specifier-p object
This function returns non-nil if object is a face-boolean specifier.

Functiontoolbar-specifier-p object
This function returns non-nil if object is a toolbar specifier.

Functionfont-specifier-p object
This function returns non-nil if object is a font specifier.

Functioncolor-specifier-p object
This function returns non-nil if object is a color specifier.

Functionimage-specifier-p object
This function returns non-nil if object is an image specifier.

41.5 Adding specifications to a Specifier

Functionadd-spec-to-specifier specifier instantiator &optional locale tag-set
how-to-add

This function adds a specification to specifier. The specification maps from locale (which
should be a window, buffer, frame, device, or the symbol global, and defaults to global)
to instantiator, whose allowed values depend on the type of the specifier. Optional argu-
ment tag-set limits the instantiator to apply only to the specified tag set, which should be
a list of tags all of which must match the device being instantiated over (tags are a device
type, a device class, or tags defined with define-specifier-tag). Specifying a single
symbol for tag-set is equivalent to specifying a one-element list containing that symbol.
Optional argument how-to-add specifies what to do if there are already specifications in
the specifier. It should be one of

prepend Put at the beginning of the current list of instantiators for locale.

append Add to the end of the current list of instantiators for locale.

remove-tag-set-prepend
This is the default. Remove any existing instantiators whose tag set is the
same as tag-set; then put the new instantiator at the beginning of the current
list.

remove-tag-set-append
Remove any existing instantiators whose tag set is the same as tag-set; then
put the new instantiator at the end of the current list.

remove-locale
Remove all previous instantiators for this locale before adding the new spec.

remove-locale-type
Remove all specifications for all locales of the same type as locale (this includes
locale itself) before adding the new spec.

remove-all
Remove all specifications from the specifier before adding the new spec.

remove-tag-set-prepend is the default.
You can retrieve the specifications for a particular locale or locale type with the function
specifier-spec-list or specifier-specs.

546 XEmacs Lisp Reference Manual

Functionadd-spec-list-to-specifier specifier spec-list &optional how-to-add
This function adds a spec-list (a list of specifications) to specifier. The format of a spec-list
is

((locale (tag-set . instantiator) ...) ...)

where
• locale := a window, a buffer, a frame, a device, or global
• tag-set := an unordered list of zero or more tags, each of which is a symbol
• tag := a device class (see Chapter 33 [Consoles and Devices], page 437), a device

type, or a tag defined with define-specifier-tag

• instantiator := format determined by the type of specifier

The pair (tag-set . instantiator) is called an inst-pair. A list of inst-pairs is called an
inst-list. The pair (locale . inst-list) is called a specification. A spec-list, then, can be
viewed as a list of specifications.
how-to-add specifies how to combine the new specifications with the existing ones, and
has the same semantics as for add-spec-to-specifier.
In many circumstances, the higher-level function set-specifier is more convenient and
should be used instead.

Macrolet-specifier specifier-list &rest body
This special form temporarily adds specifications to specifiers, evaluates forms in body
and restores the specifiers to their previous states. The specifiers and their temporary
specifications are listed in specifier-list.
The format of specifier-list is

((specifier value &optional locale tag-set how-to-add) ...)

specifier is the specifier to be temporarily modified. value is the instantiator to be tem-
porarily added to specifier in locale. locale, tag-set and how-to-add have the same meaning
as in add-spec-to-specifier.
This special form is implemented as a macro; the code resulting from macro expansion
will add specifications to specifiers using add-spec-to-specifier. After forms in body
are evaluated, the temporary specifications are removed and old specifier spec-lists are
restored.
locale, tag-set and how-to-add may be omitted, and default to nil. The value of the last
form in body is returned.
NOTE: If you want the specifier’s instance to change in all circumstances, use (selected-
window) as the locale. If locale is nil or omitted, it defaults to global.
The following example removes the 3D modeline effect in the currently selected window
for the duration of a second:

(let-specifier ((modeline-shadow-thickness 0 (selected-window)))
(sit-for 1))

Functionset-specifier specifier value &optional how-to-add
This function adds some specifications to specifier. value can be a single instantiator or
tagged instantiator (added as a global specification), a list of tagged and/or untagged
instantiators (added as a global specification), a cons of a locale and instantiator or locale
and instantiator list, a list of such conses, or nearly any other reasonable form. More
specifically, value can be anything accepted by canonicalize-spec-list.
how-to-add is the same as in add-spec-to-specifier.
Note that set-specifier is exactly complementary to specifier-specs except in the
case where specifier has no specs at all in it but nil is a valid instantiator (in that case,

Chapter 41: Specifiers 547

specifier-specs will return nil (meaning no specs) and set-specifier will interpret
the nil as meaning “I’m adding a global instantiator and its value is nil”), or in strange
cases where there is an ambiguity between a spec-list and an inst-list, etc. (The built-in
specifier types are designed in such a way as to avoid any such ambiguities.)

If you want to work with spec-lists, you should probably not use these functions, but should
use the lower-level functions specifier-spec-list and add-spec-list-to-specifier.
These functions always work with fully-qualified spec-lists; thus, there is no ambiguity.

Functioncanonicalize-inst-pair inst-pair specifier-type &optional noerror
This function canonicalizes the given inst-pair.

specifier-type specifies the type of specifier that this spec-list will be used for.

Canonicalizing means converting to the full form for an inst-pair, i.e. (tag-set . instan-
tiator). A single, untagged instantiator is given a tag set of nil (the empty set), and a
single tag is converted into a tag set consisting only of that tag.

If noerror is non-nil, signal an error if the inst-pair is invalid; otherwise return t.

Functioncanonicalize-inst-list inst-list specifier-type &optional noerror
This function canonicalizes the given inst-list (a list of inst-pairs).

specifier-type specifies the type of specifier that this inst-list will be used for.

Canonicalizing means converting to the full form for an inst-list, i.e. ((tag-set . instan-
tiator) ...). This function accepts a single inst-pair or any abbreviation thereof or a list
of (possibly abbreviated) inst-pairs. (See canonicalize-inst-pair.)

If noerror is non-nil, signal an error if the inst-list is invalid; otherwise return t.

Functioncanonicalize-spec spec specifier-type &optional noerror
This function canonicalizes the given spec (a specification).

specifier-type specifies the type of specifier that this spec-list will be used for.

Canonicalizing means converting to the full form for a spec, i.e. (locale (tag-set . instan-
tiator) ...). This function accepts a possibly abbreviated inst-list or a cons of a locale
and a possibly abbreviated inst-list. (See canonicalize-inst-list.)

If noerror is nil, signal an error if the specification is invalid; otherwise return t.

Functioncanonicalize-spec-list spec-list specifier-type &optional noerror
This function canonicalizes the given spec-list (a list of specifications).

specifier-type specifies the type of specifier that this spec-list will be used for.

Canonicalizing means converting to the full form for a spec-list, i.e. ((locale (tag-set
. instantiator) ...) ...). This function accepts a possibly abbreviated specification or
a list of such things. (See canonicalize-spec.) This is the function used to convert
spec-lists accepted by set-specifier and such into a form suitable for add-spec-list-
to-specifier.

This function tries extremely hard to resolve any ambiguities, and the built-in specifier
types (font, image, toolbar, etc.) are designed so that there won’t be any ambiguities.

If noerror is nil, signal an error if the spec-list is invalid; otherwise return t.

548 XEmacs Lisp Reference Manual

41.6 Retrieving the Specifications from a Specifier

Functionspecifier-spec-list specifier &optional locale tag-set exact-p
This function returns the spec-list of specifications for specifier in locale.

If locale is a particular locale (a window, buffer, frame, device, or the symbol global), a
spec-list consisting of the specification for that locale will be returned.

If locale is a locale type (i.e. a symbol window, buffer, frame, or device), a spec-list of
the specifications for all locales of that type will be returned.

If locale is nil or the symbol all, a spec-list of all specifications in specifier will be
returned.

locale can also be a list of locales, locale types, and/or all; the result is as if specifier-
spec-list were called on each element of the list and the results concatenated together.

Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are returned. (The default value of nil is a subset
of all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-
nil, however, tag-set must be equal to an instantiator’s tag set for the instantiator to be
returned.

Functionspecifier-specs specifier &optional locale tag-set exact-p
This function returns the specification(s) for specifier in locale.

If locale is a single locale or is a list of one element containing a single locale, then a
“short form” of the instantiators for that locale will be returned. Otherwise, this function
is identical to specifier-spec-list.

The “short form” is designed for readability and not for ease of use in Lisp programs, and
is as follows:

1. If there is only one instantiator, then an inst-pair (i.e. cons of tag and instantiator)
will be returned; otherwise a list of inst-pairs will be returned.

2. For each inst-pair returned, if the instantiator’s tag is any, the tag will be removed
and the instantiator itself will be returned instead of the inst-pair.

3. If there is only one instantiator, its value is nil, and its tag is any, a one-element list
containing nil will be returned rather than just nil, to distinguish this case from
there being no instantiators at all.

Functionspecifier-fallback specifier
This function returns the fallback value for specifier. Fallback values are provided by the
C code for certain built-in specifiers to make sure that instancing won’t fail even if all
specs are removed from the specifier, or to implement simple inheritance behavior (e.g.
this method is used to ensure that faces other than default inherit their attributes from
default). By design, you cannot change the fallback value, and specifiers created with
make-specifier will never have a fallback (although a similar, Lisp-accessible capability
may be provided in the future to allow for inheritance).

The fallback value will be an inst-list that is instanced like any other inst-list, a specifier
of the same type as specifier (results in inheritance), or nil for no fallback.

When you instance a specifier, you can explicitly request that the fallback not be consulted.
(The C code does this, for example, when merging faces.) See specifier-instance.

Chapter 41: Specifiers 549

41.7 Working With Specifier Tags

A specifier tag set is an entity that is attached to an instantiator and can be used to restrict the
scope of that instantiator to a particular device class or device type and/or to mark instantiators
added by a particular package so that they can be later removed.

A specifier tag set consists of a list of zero of more specifier tags, each of which is a symbol
that is recognized by XEmacs as a tag. (The valid device types and device classes are always
tags, as are any tags defined by define-specifier-tag.) It is called a “tag set” (as opposed
to a list) because the order of the tags or the number of times a particular tag occurs does not
matter.

Each tag has a predicate associated with it, which specifies whether that tag applies to a
particular device. The tags which are device types and classes match devices of that type or
class. User-defined tags can have any predicate, or none (meaning that all devices match). When
attempting to instance a specifier, a particular instantiator is only considered if the device of
the domain being instanced over matches all tags in the tag set attached to that instantiator.

Most of the time, a tag set is not specified, and the instantiator gets a null tag set, which
matches all devices.

Functionvalid-specifier-tag-p tag
This function returns non-nil if tag is a valid specifier tag.

Functionvalid-specifier-tag-set-p tag-set
This function returns non-nil if tag-set is a valid specifier tag set.

Functioncanonicalize-tag-set tag-set
This function canonicalizes the given tag set. Two canonicalized tag sets can be compared
with equal to see if they represent the same tag set. (Specifically, canonicalizing involves
sorting by symbol name and removing duplicates.)

Functiondevice-matches-specifier-tag-set-p device tag-set
This function returns non-nil if device matches specifier tag set tag-set. This means that
device matches each tag in the tag set.

Functiondefine-specifier-tag tag &optional predicate
This function defines a new specifier tag. If predicate is specified, it should be a function
of one argument (a device) that specifies whether the tag matches that particular device.
If predicate is omitted, the tag matches all devices.
You can redefine an existing user-defined specifier tag. However, you cannot redefine the
built-in specifier tags (the device types and classes) or the symbols nil, t, all, or global.

Functiondevice-matching-specifier-tag-list &optional device
This function returns a list of all specifier tags matching device. device defaults to the
selected device if omitted.

Functionspecifier-tag-list
This function returns a list of all currently-defined specifier tags. This includes the built-in
ones (the device types and classes).

Functionspecifier-tag-predicate tag
This function returns the predicate for the given specifier tag.

550 XEmacs Lisp Reference Manual

41.8 Functions for Instancing a Specifier

Functionspecifier-instance specifier &optional domain default no-fallback
This function instantiates specifier (return its value) in domain. If no instance can be
generated for this domain, return default.
domain should be a window, frame, or device. Other values that are legal as a locale
(e.g. a buffer) are not valid as a domain because they do not provide enough information
to identify a particular device (see valid-specifier-domain-p). domain defaults to the
selected window if omitted.
Instantiating a specifier in a particular domain means determining the specifier’s “value” in
that domain. This is accomplished by searching through the specifications in the specifier
that correspond to all locales that can be derived from the given domain, from specific to
general. In most cases, the domain is an Emacs window. In that case specifications are
searched for as follows:
1. A specification whose locale is the window itself;
2. A specification whose locale is the window’s buffer;
3. A specification whose locale is the window’s frame;
4. A specification whose locale is the window’s frame’s device;
5. A specification whose locale is the symbol global.

If all of those fail, then the C-code-provided fallback value for this specifier is consulted
(see specifier-fallback). If it is an inst-list, then this function attempts to instantiate
that list just as when a specification is located in the first five steps above. If the fallback is
a specifier, specifier-instance is called recursively on this specifier and the return value
used. Note, however, that if the optional argument no-fallback is non-nil, the fallback
value will not be consulted.
Note that there may be more than one specification matching a particular locale; all
such specifications are considered before looking for any specifications for more general
locales. Any particular specification that is found may be rejected because it is tagged
to a particular device class (e.g. color) or device type (e.g. x) or both and the device
for the given domain does not match this, or because the specification is not valid for the
device of the given domain (e.g. the font or color name does not exist for this particular
X server).
The returned value is dependent on the type of specifier. For example, for a font specifier
(as returned by the face-font function), the returned value will be a font-instance object.
For images, the returned value will be a string, pixmap, or subwindow.

Functionspecifier-instance-from-inst-list specifier domain inst-list &optional
default

This function attempts to convert a particular inst-list into an instance. This attempts to
instantiate inst-list in the given domain, as if inst-list existed in a specification in specifier.
If the instantiation fails, default is returned. In most circumstances, you should not use
this function; use specifier-instance instead.

41.9 Example of Specifier Usage

Now let us present an example to clarify the theoretical discussions we have been through.
In this example, we will use the general specifier functions for clarity. Keep in mind that many

Chapter 41: Specifiers 551

types of specifiers, and some other types of objects that are associated with specifiers (e.g. faces),
provide convenience functions making it easier to work with objects of that type.

Let us consider the background color of the default face. A specifier is used to specify how
that color will appear in different domains. First, let’s retrieve the specifier:

(setq sp (face-property ’default ’background))
⇒ #<color-specifier 0x3da>

(specifier-specs sp)
⇒ ((#<buffer "device.c"> (nil . "forest green"))

(#<window on "Makefile" 0x8a2b> (nil . "hot pink"))
(#<x-frame "emacs" 0x4ac> (nil . "puke orange")

(nil . "moccasin"))
(#<x-frame "VM" 0x4ac> (nil . "magenta"))

(global ((tty) . "cyan") (nil . "white"))
)

Then, say we want to determine what the background color of the default face is for the
window currently displaying the buffer ‘*scratch*’. We call

(get-buffer-window "*scratch*")
⇒ #<window on "*scratch*" 0x4ad>

(window-frame (get-buffer-window "*scratch*"))
⇒ #<x-frame "emacs" 0x4ac>

(specifier-instance sp (get-buffer-window "*scratch*"))
⇒ #<color-instance moccasin 47=(FFFF,E4E4,B5B5) 0x6309>

Note that we passed a window to specifier-instance, not a buffer. We cannot pass a
buffer because a buffer by itself does not provide enough information. The buffer might not be
displayed anywhere at all, or could be displayed in many different frames on different devices.

The result is arrived at like this:
1. First, we look for a specification matching the buffer displayed in the window, i.e.

‘*scratch’. There are none, so we proceed.
2. Then, we look for a specification matching the window itself. Again, there are none.
3. Then, we look for a specification matching the window’s frame. The specification (#<x-

frame "emacs" 0x4ac> . "puke orange") is found. We call the instantiation method for
colors, passing it the locale we were searching over (i.e. the window, in this case) and
the instantiator (‘"puke orange"’). However, the particular device which this window is
on (let’s say it’s an X connection) doesn’t recognize the color ‘"puke orange"’, so the
specification is rejected.

4. So we continue looking for a specification matching the window’s frame. We find
‘(#<x-frame "emacs" 0x4ac> . "moccasin")’. Again, we call the instantiation method
for colors. This time, the X server our window is on recognizes the color ‘moccasin’, and
so the instantiation method succeeds and returns a color instance.

41.10 Creating New Specifier Objects

Functionmake-specifier type
This function creates a new specifier.
A specifier is an object that can be used to keep track of a property whose value can
be per-buffer, per-window, per-frame, or per-device, and can further be restricted to a
particular device-type or device-class. Specifiers are used, for example, for the various
built-in properties of a face; this allows a face to have different values in different frames,

552 XEmacs Lisp Reference Manual

buffers, etc. For more information, see ‘specifier-instance’, ‘specifier-specs’, and ‘add-spec-
to-specifier’; or, for a detailed description of specifiers, including how they are instantiated
over a particular domain (i.e. how their value in that domain is determined), see the
chapter on specifiers in the XEmacs Lisp Reference Manual.
type specifies the particular type of specifier, and should be one of the symbols generic,
integer, natnum, boolean, color, font, image, face-boolean, or toolbar.
For more information on particular types of specifiers, see the functions generic-
specifier-p, integer-specifier-p, natnum-specifier-p, boolean-specifier-p,
color-specifier-p, font-specifier-p, image-specifier-p, face-boolean-
specifier-p, and toolbar-specifier-p.

Functionmake-specifier-and-init type spec-list &optional dont-canonicalize
This function creates and initialize a new specifier.
This is a front-end onto make-specifier that allows you to create a specifier and add
specs to it at the same time. type specifies the specifier type. spec-list supplies the
specification(s) to be added to the specifier. Normally, almost any reasonable abbreviation
of the full spec-list form is accepted, and is converted to the full form; however, if optional
argument dont-canonicalize is non-nil, this conversion is not performed, and the spec-list
must already be in full form. See canonicalize-spec-list.

41.11 Functions for Checking the Validity of Specifier
Components

Functionvalid-specifier-domain-p domain
This function returns non-nil if domain is a valid specifier domain. A domain is used to
instance a specifier (i.e. determine the specifier’s value in that domain). Valid domains
are a window, frame, or device. (nil is not valid.)

Functionvalid-specifier-locale-p locale
This function returns non-nil if locale is a valid specifier locale. Valid locales are a device,
a frame, a window, a buffer, and global. (nil is not valid.)

Functionvalid-specifier-locale-type-p locale-type
Given a specifier locale-type, this function returns non-nil if it is valid. Valid locale types
are the symbols global, device, frame, window, and buffer. (Note, however, that in
functions that accept either a locale or a locale type, global is considered an individual
locale.)

Functionvalid-specifier-type-p specifier-type
Given a specifier-type, this function returns non-nil if it is valid. Valid types are generic,
integer, boolean, color, font, image, face-boolean, and toolbar.

Functionvalid-specifier-tag-p tag
This function returns non-nil if tag is a valid specifier tag.

Functionvalid-instantiator-p instantiator specifier-type
This function returns non-nil if instantiator is valid for specifier-type.

Functionvalid-inst-list-p inst-list type
This function returns non-nil if inst-list is valid for specifier type type.

Chapter 41: Specifiers 553

Functionvalid-spec-list-p spec-list type
This function returns non-nil if spec-list is valid for specifier type type.

Functioncheck-valid-instantiator instantiator specifier-type
This function signals an error if instantiator is invalid for specifier-type.

Functioncheck-valid-inst-list inst-list type
This function signals an error if inst-list is invalid for specifier type type.

Functioncheck-valid-spec-list spec-list type
This function signals an error if spec-list is invalid for specifier type type.

41.12 Other Functions for Working with Specifications in a
Specifier

Functioncopy-specifier specifier &optional dest locale tag-set exact-p how-to-add
This function copies specifier to dest, or creates a new one if dest is nil.
If dest is nil or omitted, a new specifier will be created and the specifications copied into
it. Otherwise, the specifications will be copied into the existing specifier in dest.
If locale is nil or the symbol all, all specifications will be copied. If locale is a particular
locale, the specification for that particular locale will be copied. If locale is a locale type,
the specifications for all locales of that type will be copied. locale can also be a list of
locales, locale types, and/or all; this is equivalent to calling copy-specifier for each of
the elements of the list. See specifier-spec-list for more information about locale.
Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are copied. (The default value of nil is a subset of
all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-nil,
however, tag-set must be equal to an instantiator’s tag set for the instantiator to be copied.
Optional argument how-to-add specifies what to do with existing specifications in dest.
If nil, then whichever locales or locale types are copied will first be completely erased in
dest. Otherwise, it is the same as in add-spec-to-specifier.

Functionremove-specifier specifier &optional locale tag-set exact-p
This function removes specification(s) for specifier.
If locale is a particular locale (a buffer, window, frame, device, or the symbol global),
the specification for that locale will be removed.
If instead, locale is a locale type (i.e. a symbol buffer, window, frame, or device), the
specifications for all locales of that type will be removed.
If locale is nil or the symbol all, all specifications will be removed.
locale can also be a list of locales, locale types, and/or all; this is equivalent to calling
remove-specifier for each of the elements in the list.
Only instantiators where tag-set (a list of zero or more tags) is a subset of (or possibly
equal to) the instantiator’s tag set are removed. (The default value of nil is a subset
of all tag sets, so in this case no instantiators will be screened out.) If exact-p is non-
nil, however, tag-set must be equal to an instantiator’s tag set for the instantiator to be
removed.

554 XEmacs Lisp Reference Manual

Functionmap-specifier specifier func &optional locale maparg
This function applies func to the specification(s) for locale in specifier.
If locale is a locale, func will be called for that locale. If locale is a locale type, func will
be mapped over all locales of that type. If locale is nil or the symbol all, func will be
mapped over all locales in specifier.
func is called with four arguments: the specifier, the locale being mapped over, the inst-
list for that locale, and the optional maparg. If any invocation of func returns non-nil,
the mapping will stop and the returned value becomes the value returned from map-
specifier. Otherwise, map-specifier returns nil.

Functionspecifier-locale-type-from-locale locale
Given a specifier locale, this function returns its type.

Chapter 42: Faces and Window-System Objects 555

42 Faces and Window-System Objects

42.1 Faces

A face is a named collection of graphical properties: font, foreground color, background
color, background pixmap, optional underlining, and (on TTY devices) whether the text is to
be highlighted, dimmed, blinking, or displayed in reverse video. Faces control the display of text
on the screen. Every face has a name, which is a symbol such as default or modeline.

Each built-in property of a face is controlled using a specifier, which allows it to have separate
values in particular buffers, frames, windows, and devices and to further vary according to device
type (X or TTY) and device class (color, mono, or grayscale). See Chapter 41 [Specifiers],
page 541, for more information.

The face named default is used for ordinary text. The face named modeline is used for
displaying the modeline. The face named highlight is used for highlighted extents (see Chap-
ter 40 [Extents], page 529). The faces named left-margin and right-margin are used for the
left and right margin areas, respectively (see Chapter 44 [Annotations], page 579). The face
named zmacs-region is used for the highlighted region between point and mark.

42.1.1 Merging Faces for Display

Here are all the ways to specify which face to use for display of text:

• With defaults. Each frame has a default face, which is used for all text that doesn’t
somehow specify another face. The face named default applies to the text area, while the
faces left-margin and right-margin apply to the left and right margin areas.

• With text properties. A character may have a face property; if so, it’s displayed with that
face. (Text properties are actually implemented in terms of extents.) See Section 36.18
[Text Properties], page 488.

• With extents. An extent may have a face property, which applies to all the text covered
by the extent; in addition, if the highlight property is set, the highlight property ap-
plies when the mouse moves over the extent or if the extent is explicitly highlighted. See
Chapter 40 [Extents], page 529.

• With annotations. Annotations that are inserted into a buffer can specify their own face.
(Annotations are actually implemented in terms of extents.) See Chapter 44 [Annotations],
page 579.

If these various sources together specify more than one face for a particular character, XEmacs
merges the properties of the various faces specified. Extents, text properties, and annotations all
use the same underlying representation (as extents). When multiple extents cover one character,
an extent with higher priority overrides those with lower priority. See Chapter 40 [Extents],
page 529. If no extent covers a particular character, the default face is used.

If a background pixmap is specified, it determines what will be displayed in the background
of text characters. If the background pixmap is actually a pixmap, with its colors specified,
those colors are used; if it is a bitmap, the face’s foreground and background colors are used to
color it.

556 XEmacs Lisp Reference Manual

42.1.2 Basic Functions for Working with Faces

The properties a face can specify include the font, the foreground color, the background color,
the background pixmap, the underlining, the display table, and (for TTY devices) whether the
text is to be highlighted, dimmed, blinking, or displayed in reverse video. The face can also
leave these unspecified, causing them to assume the value of the corresponding property of the
default face.

Here are the basic primitives for working with faces.

Functionmake-face name &optional doc-string temporary
This function defines and returns a new face named name, initially with all properties
unspecified. It does nothing if there is already a face named name. Optional argument doc-
string specifies an explanatory string used for descriptive purposes. If optional argument
temporary is non-nil, the face will automatically disappear when there are no more
references to it anywhere in text or Lisp code (otherwise, the face will continue to exist
indefinitely even if it is not used).

Functionface-list &optional temporary
This function returns a list of the names of all defined faces. If temporary is nil, only
the permanent faces are included. If it is t, only the temporary faces are included. If it is
any other non-nil value both permanent and temporary are included.

Functionfacep object
This function returns whether the given object is a face.

Functioncopy-face old-face new-name &optional locale how-to-add
This function defines a new face named new-name which is a copy of the existing face
named old-face. If there is already a face named new-name, then it alters the face to
have the same properties as old-face. locale and how-to-add let you copy just parts of
the old face rather than the whole face, and are as in copy-specifier (see Chapter 41
[Specifiers], page 541).

42.1.3 Face Properties

You can examine and modify the properties of an existing face with the following functions.
The following symbols have predefined meanings:

foreground
The foreground color of the face.

background
The background color of the face.

font The font used to display text covered by this face.

display-table
The display table of the face.

background-pixmap
The pixmap displayed in the background of the face. Only used by faces on X
devices.

underline
Underline all text covered by this face.

Chapter 42: Faces and Window-System Objects 557

highlight
Highlight all text covered by this face. Only used by faces on TTY devices.

dim Dim all text covered by this face. Only used by faces on TTY devices.

blinking Blink all text covered by this face. Only used by faces on TTY devices.

reverse Reverse the foreground and background colors. Only used by faces on TTY devices.

doc-string
Description of what the face’s normal use is. NOTE: This is not a specifier, unlike
all the other built-in properties, and cannot contain locale-specific values.

Functionset-face-property face property value &optional locale tag how-to-add
This function changes a property of a face.
For built-in properties, the actual value of the property is a specifier and you cannot
change this; but you can change the specifications within the specifier, and that is what
this function will do. For user-defined properties, you can use this function to either change
the actual value of the property or, if this value is a specifier, change the specifications
within it.
If property is a built-in property, the specifications to be added to this property can be
supplied in many different ways:

If value is a simple instantiator (e.g. a string naming a font or color) or a list of
instantiators, then the instantiator(s) will be added as a specification of the property
for the given locale (which defaults to global if omitted).
If value is a list of specifications (each of which is a cons of a locale and a list of
instantiators), then locale must be nil (it does not make sense to explicitly specify
a locale in this case), and specifications will be added as given.
If value is a specifier (as would be returned by face-property if no locale argument
is given), then some or all of the specifications in the specifier will be added to the
property. In this case, the function is really equivalent to copy-specifier and locale
has the same semantics (if it is a particular locale, the specification for the locale will
be copied; if a locale type, specifications for all locales of that type will be copied; if
nil or all, then all specifications will be copied).

how-to-add should be either nil or one of the symbols prepend, append, remove-
tag-set-prepend, remove-tag-set-append, remove-locale, remove-locale-type, or
remove-all. See copy-specifier and add-spec-to-specifier for a description of what
each of these means. Most of the time, you do not need to worry about this argument;
the default behavior usually is fine.
In general, it is OK to pass an instance object (e.g. as returned by face-property-
instance) as an instantiator in place of an actual instantiator. In such a case, the
instantiator used to create that instance object will be used (for example, if you set a
font-instance object as the value of the font property, then the font name used to create
that object will be used instead). If some cases, however, doing this conversion does not
make sense, and this will be noted in the documentation for particular types of instance
objects.
If property is not a built-in property, then this function will simply set its value if lo-
cale is nil. However, if locale is given, then this function will attempt to add value as
the instantiator for the given locale, using add-spec-to-specifier. If the value of the
property is not a specifier, it will automatically be converted into a generic specifier.

Functionface-property face property &optional locale
This function returns face’s value of the given property.

558 XEmacs Lisp Reference Manual

If locale is omitted, the face’s actual value for property will be returned. For built-in
properties, this will be a specifier object of a type appropriate to the property (e.g. a font
or color specifier). For other properties, this could be anything.
If locale is supplied, then instead of returning the actual value, the specification(s) for
the given locale or locale type will be returned. This will only work if the actual value of
property is a specifier (this will always be the case for built-in properties, but not or not
may apply to user-defined properties). If the actual value of property is not a specifier,
this value will simply be returned regardless of locale.
The return value will be a list of instantiators (e.g. strings specifying a font or color name),
or a list of specifications, each of which is a cons of a locale and a list of instantiators.
Specifically, if locale is a particular locale (a buffer, window, frame, device, or global), a
list of instantiators for that locale will be returned. Otherwise, if locale is a locale type
(one of the symbols buffer, window, frame, or device), the specifications for all locales
of that type will be returned. Finally, if locale is all, the specifications for all locales of
all types will be returned.
The specifications in a specifier determine what the value of property will be in a particular
domain or set of circumstances, which is typically a particular Emacs window along with
the buffer it contains and the frame and device it lies within. The value is derived from
the instantiator associated with the most specific locale (in the order buffer, window,
frame, device, and global) that matches the domain in question. In other words, given a
domain (i.e. an Emacs window, usually), the specifier for property will first be searched
for a specification whose locale is the buffer contained within that window; then for a
specification whose locale is the window itself; then for a specification whose locale is the
frame that the window is contained within; etc. The first instantiator that is valid for the
domain (usually this means that the instantiator is recognized by the device [i.e. the X
server or TTY device] that the domain is on). The function face-property-instance
actually does all this, and is used to determine how to display the face.

Functionface-property-instance face property &optional domain default
no-fallback

This function returns the instance of face’s property in the specified domain.
Under most circumstances, domain will be a particular window, and the returned instance
describes how the specified property actually is displayed for that window and the partic-
ular buffer in it. Note that this may not be the same as how the property appears when
the buffer is displayed in a different window or frame, or how the property appears in
the same window if you switch to another buffer in that window; and in those cases, the
returned instance would be different.
The returned instance will typically be a color-instance, font-instance, or pixmap-instance
object, and you can query it using the appropriate object-specific functions. For example,
you could use color-instance-rgb-components to find out the RGB (red, green, and
blue) components of how the background property of the highlight face is displayed in
a particular window. The results might be different from the results you would get for
another window (perhaps the user specified a different color for the frame that window is
on; or perhaps the same color was specified but the window is on a different X server, and
that X server has different RGB values for the color from this one).
domain defaults to the selected window if omitted.
domain can be a frame or device, instead of a window. The value returned for a such a
domain is used in special circumstances when a more specific domain does not apply; for
example, a frame value might be used for coloring a toolbar, which is conceptually attached
to a frame rather than a particular window. The value is also useful in determining what
the value would be for a particular window within the frame or device, if it is not overridden
by a more specific specification.

Chapter 42: Faces and Window-System Objects 559

If property does not name a built-in property, its value will simply be returned unless it
is a specifier object, in which case it will be instanced using specifier-instance.
Optional arguments default and no-fallback are the same as in specifier-instance. See
Chapter 41 [Specifiers], page 541.

42.1.4 Face Convenience Functions

Functionset-face-foreground face color &optional locale tag how-to-add
Functionset-face-background face color &optional locale tag how-to-add

These functions set the foreground (respectively, background) color of face face to color.
The argument color should be a string (the name of a color) or a color object as returned
by make-color (see Section 42.3 [Colors], page 563).

Functionset-face-background-pixmap face pixmap &optional locale tag
how-to-add

This function sets the background pixmap of face face to pixmap. The argument pixmap
should be a string (the name of a bitmap or pixmap file; the directories listed in the
variable x-bitmap-file-path will be searched) or a glyph object as returned by make-
glyph (see Chapter 43 [Glyphs], page 565). The argument may also be a list of the form
(width height data) where width and height are the size in pixels, and data is a string,
containing the raw bits of the bitmap.

Functionset-face-font face font &optional locale tag how-to-add
This function sets the font of face face. The argument font should be a string or a font
object as returned by make-font (see Section 42.2 [Fonts], page 560).

Functionset-face-underline-p face underline-p &optional locale tag how-to-add
This function sets the underline property of face face.

Functionface-foreground face &optional locale
Functionface-background face &optional locale

These functions return the foreground (respectively, background) color specifier of face
face. See Section 42.3 [Colors], page 563.

Functionface-background-pixmap face &optional locale
This function return the background-pixmap glyph object of face face.

Functionface-font face &optional locale
This function returns the font specifier of face face. (Note: This is not the same as the
function face-font in FSF Emacs.) See Section 42.2 [Fonts], page 560.

Functionface-font-name face &optional domain
This function returns the name of the font of face face, or nil if it is unspecified. This
is basically equivalent to (font-name (face-font face) domain) except that it does not
cause an error if face’s font is nil. (This function is named face-font in FSF Emacs.)

Functionface-underline-p face &optional locale
This function returns the underline property of face face.

560 XEmacs Lisp Reference Manual

Functionface-foreground-instance face &optional domain
Functionface-background-instance face &optional domain

These functions return the foreground (respectively, background) color specifier of face
face. See Section 42.3 [Colors], page 563.

Functionface-background-pixmap-instance face &optional domain
This function return the background-pixmap glyph object of face face.

Functionface-font-instance face &optional domain
This function returns the font specifier of face face. See Section 42.2 [Fonts], page 560.

42.1.5 Other Face Display Functions

Functioninvert-face face &optional locale
Swap the foreground and background colors of face face. If the face doesn’t specify both
foreground and background, then its foreground and background are set to the default
background and foreground.

Functionface-equal face1 face2 &optional domain
This returns t if the faces face1 and face2 will display in the same way. domain is as in
face-property-instance.

Functionface-differs-from-default-p face &optional domain
This returns t if the face face displays differently from the default face. domain is as in
face-property-instance.

42.2 Fonts

This section describes how to work with font specifier and font instance objects, which en-
capsulate fonts in the window system.

42.2.1 Font Specifiers

Functionfont-specifier-p object
This predicate returns t if object is a font specifier, and nil otherwise.

42.2.2 Font Instances

Functionfont-instance-p object
This predicate returns t if object is a font instance, and nil otherwise.

Chapter 42: Faces and Window-System Objects 561

Functionmake-font-instance name &optional device noerror
This function creates a new font-instance object of the specified name. device specifies the
device this object applies to and defaults to the selected device. An error is signalled if
the font is unknown or cannot be allocated; however, if noerror is non-nil, nil is simply
returned in this case.

The returned object is a normal, first-class lisp object. The way you “deallocate” the font
is the way you deallocate any other lisp object: you drop all pointers to it and allow it to
be garbage collected. When these objects are GCed, the underlying X data is deallocated
as well.

42.2.3 Font Instance Names

Functionlist-fonts pattern &optional device
This function returns a list of font names matching the given pattern. device specifies
which device to search for names, and defaults to the currently selected device.

Functionfont-instance-name font-instance
This function returns the name used to allocate font-instance.

Functionfont-instance-truename font-instance
This function returns the canonical name of the given font instance. Font names are
patterns which may match any number of fonts, of which the first found is used. This
returns an unambiguous name for that font (but not necessarily its only unambiguous
name).

42.2.4 Font Instance Size

Functionx-font-size font
This function returns the nominal size of the given font. This is done by parsing its
name, so it’s likely to lose. X fonts can be specified (by the user) in either pixels or 10ths
of points, and this returns the first one it finds, so you have to decide which units the
returned value is measured in yourself ...

Functionx-find-larger-font font &optional device
This function loads a new, slightly larger version of the given font (or font name). Returns
the font if it succeeds, nil otherwise. If scalable fonts are available, this returns a font
which is 1 point larger. Otherwise, it returns the next larger version of this font that is
defined.

Functionx-find-smaller-font font &optional device
This function loads a new, slightly smaller version of the given font (or font name). Returns
the font if it succeeds, nil otherwise. If scalable fonts are available, this returns a font
which is 1 point smaller. Otherwise, it returns the next smaller version of this font that
is defined.

562 XEmacs Lisp Reference Manual

42.2.5 Font Instance Characteristics

Functionfont-instance-properties font
This function returns the properties (an alist or nil) of font-instance.

Functionx-make-font-bold font &optional device
Given an X font specification, this attempts to make a “bold” font. If it fails, it returns
nil.

Functionx-make-font-unbold font &optional device
Given an X font specification, this attempts to make a non-bold font. If it fails, it returns
nil.

Functionx-make-font-italic font &optional device
Given an X font specification, this attempts to make an “italic” font. If it fails, it returns
nil.

Functionx-make-font-unitalic font &optional device
Given an X font specification, this attempts to make a non-italic font. If it fails, it returns
nil.

Functionx-make-font-bold-italic font &optional device
Given an X font specification, this attempts to make a “bold-italic” font. If it fails, it
returns nil.

42.2.6 Font Convenience Functions

Functionfont-name font &optional domain
This function returns the name of the font in the specified domain, if any. font should
be a font specifier object and domain is normally a window and defaults to the selected
window if omitted. This is equivalent to using specifier-instance and applying font-
instance-name to the result.

Functionfont-truename font &optional domain
This function returns the truename of the font in the specified domain, if any. font should
be a font specifier object and domain is normally a window and defaults to the selected
window if omitted. This is equivalent to using specifier-instance and applying font-
instance-truename to the result.

Functionfont-properties font &optional domain
This function returns the properties of the font in the specified domain, if any. font
should be a font specifier object and domain is normally a window and defaults to the
selected window if omitted. This is equivalent to using specifier-instance and applying
font-instance-properties to the result.

Chapter 42: Faces and Window-System Objects 563

42.3 Colors

42.3.1 Color Specifiers

Functioncolor-specifier-p object
This function returns non-nil if object is a color specifier.

42.3.2 Color Instances

A color-instance object is an object describing the way a color specifier is instanced in a par-
ticular domain. Functions such as face-background-instance return a color-instance object.
For example,

(face-background-instance ’default (next-window))
⇒ #<color-instance moccasin 47=(FFFF,E4E4,B5B5) 0x678d>

The color-instance object returned describes the way the background color of the default
face is displayed in the next window after the selected one.

Functioncolor-instance-p object
This function returns non-nil if object is a color-instance.

42.3.3 Color Instance Properties

Functioncolor-instance-name color-instance
This function returns the name used to allocate color-instance.

Functioncolor-instance-rgb-components color-instance
This function returns a three element list containing the red, green, and blue color com-
ponents of color-instance.

(color-instance-rgb-components
(face-background-instance ’default (next-window)))
⇒ (65535 58596 46517)

42.3.4 Color Convenience Functions

Functioncolor-name color &optional domain
This function returns the name of the color in the specified domain, if any. color should
be a color specifier object and domain is normally a window and defaults to the selected
window if omitted. This is equivalent to using specifier-instance and applying color-
instance-name to the result.

Functioncolor-rgb-components color &optional domain
This function returns the RGB components of the color in the specified domain, if any.
color should be a color specifier object and domain is normally a window and defaults
to the selected window if omitted. This is equivalent to using specifier-instance and
applying color-instance-rgb-components to the result.

564 XEmacs Lisp Reference Manual

(color-rgb-components (face-background ’default (next-window)))
⇒ (65535 58596 46517)

Chapter 43: Glyphs 565

43 Glyphs

A glyph is an object that is used for pixmaps and images of all sorts, as well as for things
that “act” like pixmaps, such as non-textual strings (annotations) displayed in a buffer or in
the margins. It is used in begin-glyphs and end-glyphs attached to extents, marginal and tex-
tual annotations, overlay arrows (overlay-arrow-* variables), toolbar buttons, mouse pointers,
frame icons, truncation and continuation markers, and the like. (Basically, any place there is an
image or something that acts like an image, there will be a glyph object representing it.)

The actual image that is displayed (as opposed to its position or clipping) is defined by an
image specifier object contained within the glyph. The separation between an image specifier
object and a glyph object is made because the glyph includes other properties than just the
actual image: e.g. the face it is displayed in (for text images), the alignment of the image (when
it is in a buffer), etc.

Functionglyphp object
This function returns t if object is a glyph.

43.1 Glyph Functions

43.1.1 Creating Glyphs

Functionmake-glyph &optional spec-list type
This function creates a new glyph object of type type.
spec-list is used to initialize the glyph’s image. It is typically an image instantiator (a
string or a vector; Section 43.2.1 [Image Specifiers], page 570), but can also be a list of
such instantiators (each one in turn is tried until an image is successfully produced), a
cons of a locale (frame, buffer, etc.) and an instantiator, a list of such conses, or any other
form accepted by canonicalize-spec-list. See Chapter 41 [Specifiers], page 541, for
more information about specifiers.
type specifies the type of the glyph, which specifies in which contexts the glyph can be used,
and controls the allowable image types into which the glyph’s image can be instantiated.
type should be one of buffer (used for glyphs in an extent, the modeline, the toolbar, or
elsewhere in a buffer), pointer (used for the mouse-pointer), or icon (used for a frame’s
icon), and defaults to buffer. See Section 43.3 [Glyph Types], page 576.

Functionmake-glyph-internal &optional type
This function creates a new, uninitialized glyph of type type.

Functionmake-pointer-glyph &optional spec-list
This function is equivalent to calling make-glyph with a type of pointer.

Functionmake-icon-glyph &optional spec-list
This function is equivalent to calling make-glyph with a type of icon.

566 XEmacs Lisp Reference Manual

43.1.2 Glyph Properties

Each glyph has a list of properties, which control all of the aspects of the glyph’s appearance.
The following symbols have predefined meanings:
image The image used to display the glyph.
baseline Percent above baseline that glyph is to be displayed. Only for glyphs displayed

inside of a buffer.
contrib-p

Whether the glyph contributes to the height of the line it’s on. Only for glyphs
displayed inside of a buffer.

face Face of this glyph (not a specifier).

Functionset-glyph-property glyph property value &optional locale tag-set
how-to-add

This function changes a property of a glyph.
For built-in properties, the actual value of the property is a specifier and you cannot
change this; but you can change the specifications within the specifier, and that is what
this function will do. For user-defined properties, you can use this function to either change
the actual value of the property or, if this value is a specifier, change the specifications
within it.
If property is a built-in property, the specifications to be added to this property can be
supplied in many different ways:
• If value is a simple instantiator (e.g. a string naming a pixmap filename) or a list of

instantiators, then the instantiator(s) will be added as a specification of the property
for the given locale (which defaults to global if omitted).

• If value is a list of specifications (each of which is a cons of a locale and a list of
instantiators), then locale must be nil (it does not make sense to explicitly specify
a locale in this case), and specifications will be added as given.

• If value is a specifier (as would be returned by glyph-property if no locale argument
is given), then some or all of the specifications in the specifier will be added to the
property. In this case, the function is really equivalent to copy-specifier and locale
has the same semantics (if it is a particular locale, the specification for the locale will
be copied; if a locale type, specifications for all locales of that type will be copied; if
nil or all, then all specifications will be copied).

how-to-add should be either nil or one of the symbols prepend, append, remove-
tag-set-prepend, remove-tag-set-append, remove-locale, remove-locale-type, or
remove-all. See copy-specifier and add-spec-to-specifier for a description of what
each of these means. Most of the time, you do not need to worry about this argument;
the default behavior usually is fine.
In general, it is OK to pass an instance object (e.g. as returned by glyph-property-
instance) as an instantiator in place of an actual instantiator. In such a case, the
instantiator used to create that instance object will be used (for example, if you set a
font-instance object as the value of the font property, then the font name used to create
that object will be used instead). If some cases, however, doing this conversion does not
make sense, and this will be noted in the documentation for particular types of instance
objects.
If property is not a built-in property, then this function will simply set its value if lo-
cale is nil. However, if locale is given, then this function will attempt to add value as
the instantiator for the given locale, using add-spec-to-specifier. If the value of the
property is not a specifier, it will automatically be converted into a generic specifier.

Chapter 43: Glyphs 567

Functionglyph-property glyph property &optional locale
This function returns glyph’s value of the given property.
If locale is omitted, the glyph’s actual value for property will be returned. For built-in
properties, this will be a specifier object of a type appropriate to the property (e.g. a font
or color specifier). For other properties, this could be anything.
If locale is supplied, then instead of returning the actual value, the specification(s) for
the given locale or locale type will be returned. This will only work if the actual value of
property is a specifier (this will always be the case for built-in properties, but may or may
not apply to user-defined properties). If the actual value of property is not a specifier,
this value will simply be returned regardless of locale.
The return value will be a list of instantiators (e.g. vectors specifying pixmap data),
or a list of specifications, each of which is a cons of a locale and a list of instantiators.
Specifically, if locale is a particular locale (a buffer, window, frame, device, or global), a
list of instantiators for that locale will be returned. Otherwise, if locale is a locale type
(one of the symbols buffer, window, frame, or device), the specifications for all locales
of that type will be returned. Finally, if locale is all, the specifications for all locales of
all types will be returned.
The specifications in a specifier determine what the value of property will be in a particular
domain or set of circumstances, which is typically a particular Emacs window along with
the buffer it contains and the frame and device it lies within. The value is derived from
the instantiator associated with the most specific locale (in the order buffer, window,
frame, device, and global) that matches the domain in question. In other words, given a
domain (i.e. an Emacs window, usually), the specifier for property will first be searched
for a specification whose locale is the buffer contained within that window; then for a
specification whose locale is the window itself; then for a specification whose locale is the
frame that the window is contained within; etc. The first instantiator that is valid for the
domain (usually this means that the instantiator is recognized by the device [i.e. the X
server or TTY device] that the domain is on). The function glyph-property-instance
actually does all this, and is used to determine how to display the glyph.

Functionglyph-property-instance glyph property &optional domain default
no-fallback

This function returns the instance of glyph’s property in the specified domain.
Under most circumstances, domain will be a particular window, and the returned instance
describes how the specified property actually is displayed for that window and the partic-
ular buffer in it. Note that this may not be the same as how the property appears when
the buffer is displayed in a different window or frame, or how the property appears in
the same window if you switch to another buffer in that window; and in those cases, the
returned instance would be different.
The returned instance is an image-instance object, and you can query it using the appro-
priate image instance functions. For example, you could use image-instance-depth to
find out the depth (number of color planes) of a pixmap displayed in a particular window.
The results might be different from the results you would get for another window (perhaps
the user specified a different image for the frame that window is on; or perhaps the same
image was specified but the window is on a different X server, and that X server has
different color capabilities from this one).
domain defaults to the selected window if omitted.
domain can be a frame or device, instead of a window. The value returned for such a
domain is used in special circumstances when a more specific domain does not apply; for
example, a frame value might be used for coloring a toolbar, which is conceptually attached
to a frame rather than a particular window. The value is also useful in determining what

568 XEmacs Lisp Reference Manual

the value would be for a particular window within the frame or device, if it is not overridden
by a more specific specification.
If property does not name a built-in property, its value will simply be returned unless it
is a specifier object, in which case it will be instanced using specifier-instance.
Optional arguments default and no-fallback are the same as in specifier-instance. See
Chapter 41 [Specifiers], page 541.

Functionremove-glyph-property glyph property &optional locale tag-set exact-p
This function removes a property from a glyph. For built-in properties, this is analogous
to remove-specifier. See Chapter 41 [Specifiers], page 541, for the meaning of the locale,
tag-set, and exact-p arguments.

43.1.3 Glyph Convenience Functions

The following functions are provided for working with specific properties of a glyph. Note
that these are exactly like calling the general functions described above and passing in the
appropriate value for property.

Remember that if you want to determine the “value” of a specific glyph property, you prob-
ably want to use the *-instance functions. For example, to determine whether a glyph con-
tributes to its line height, use glyph-contrib-p-instance, not glyph-contrib-p. (The latter
will return a boolean specifier or a list of specifications, and you probably aren’t concerned with
these.)

Functionglyph-image glyph &optional locale
This function is equivalent to calling glyph-property with a property of image. The
return value will be an image specifier if locale is nil or omitted; otherwise, it will be a
specification or list of specifications.

Functionset-glyph-image glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of image.

Functionglyph-image-instance glyph &optional domain default no-fallback
This function returns the instance of glyph’s image in the given domain, and is equivalent
to calling glyph-property-instance with a property of image. The return value will be
an image instance.
Normally domain will be a window or nil (meaning the selected window), and an instance
object describing how the image appears in that particular window and buffer will be
returned.

Functionglyph-contrib-p glyph &optional locale
This function is equivalent to calling glyph-property with a property of contrib-p. The
return value will be a boolean specifier if locale is nil or omitted; otherwise, it will be a
specification or list of specifications.

Functionset-glyph-contrib-p glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of contrib-p.

Functionglyph-contrib-p-instance glyph &optional domain default no-fallback
This function returns whether the glyph contributes to its line height in the given domain,
and is equivalent to calling glyph-property-instance with a property of contrib-p.
The return value will be either nil or t. (Normally domain will be a window or nil,
meaning the selected window.)

Chapter 43: Glyphs 569

Functionglyph-baseline glyph &optional locale
This function is equivalent to calling glyph-property with a property of baseline. The
return value will be a specifier if locale is nil or omitted; otherwise, it will be a specification
or list of specifications.

Functionset-glyph-baseline glyph spec &optional locale tag-set how-to-add
This function is equivalent to calling set-glyph-property with a property of baseline.

Functionglyph-baseline-instance glyph &optional domain default no-fallback
This function returns the instance of glyph’s baseline value in the given domain, and is
equivalent to calling glyph-property-instance with a property of baseline. The return
value will be an integer or nil.
Normally domain will be a window or nil (meaning the selected window), and an instance
object describing the baseline value appears in that particular window and buffer will be
returned.

Functionglyph-face glyph
This function returns the face of glyph. (Remember, this is not a specifier, but a simple
property.)

Functionset-glyph-face glyph face
This function changes the face of glyph to face.

43.1.4 Glyph Dimensions

Functionglyph-width glyph &optional window
This function returns the width of glyph on window. This may not be exact as it does
not take into account all of the context that redisplay will.

Functionglyph-ascent glyph &optional window
This function returns the ascent value of glyph on window. This may not be exact as it
does not take into account all of the context that redisplay will.

Functionglyph-descent glyph &optional window
This function returns the descent value of glyph on window. This may not be exact as it
does not take into account all of the context that redisplay will.

Functionglyph-height glyph &optional window
This function returns the height of glyph on window. (This is equivalent to the sum of
the ascent and descent values.) This may not be exact as it does not take into account all
of the context that redisplay will.

43.2 Images

570 XEmacs Lisp Reference Manual

43.2.1 Image Specifiers

An image specifier is used to describe the actual image of a glyph. It works like other
specifiers (see Chapter 41 [Specifiers], page 541), in that it contains a number of specifications
describing how the image should appear in a variety of circumstances. These specifications are
called image instantiators. When XEmacs wants to display the image, it instantiates the image
into an image instance. Image instances are their own primitive object type (similar to font
instances and color instances), describing how the image appears in a particular domain. (On
the other hand, image instantiators, which are just descriptions of how the image should appear,
are represented using strings or vectors.)

Functionimage-specifier-p object
This function returns non-nil if object is an image specifier. Usually, an image specifier
results from calling glyph-image on a glyph.

Functionmake-image-specifier spec-list
This function creates a new image specifier object and initializes it according to spec-
list. It is unlikely that you will ever want to do this, but this function is provided for
completeness and for experimentation purposes. See Chapter 41 [Specifiers], page 541.

Image instantiators come in many formats: xbm, xpm, gif, jpeg, etc. This describes the
format of the data describing the image. The resulting image instances also come in many types
– mono-pixmap, color-pixmap, text, pointer, etc. This refers to the behavior of the image
and the sorts of places it can appear. (For example, a color-pixmap image has fixed colors
specified for it, while a mono-pixmap image comes in two unspecified shades “foreground” and
“background” that are determined from the face of the glyph or surrounding text; a text image
appears as a string of text and has an unspecified foreground, background, and font; a pointer
image behaves like a mono-pixmap image but can only be used as a mouse pointer [mono-
pixmap images cannot be used as mouse pointers]; etc.) It is important to keep the distinction
between image instantiator format and image instance type in mind. Typically, a given image
instantiator format can result in many different image instance types (for example, xpm can be
instanced as color-pixmap, mono-pixmap, or pointer; whereas cursor-font can be instanced
only as pointer), and a particular image instance type can be generated by many different
image instantiator formats (e.g. color-pixmap can be generated by xpm, gif, jpeg, etc.).

See Section 43.2.3 [Image Instances], page 573, for a more detailed discussion of image instance
types.

An image instantiator should be a string or a vector of the form
[format :keyword value ...]

i.e. a format symbol followed by zero or more alternating keyword-value pairs. The format
field should be a symbol, one of

nothing (Don’t display anything; no keywords are valid for this. Can only be instanced as
nothing.)

string (Display this image as a text string. Can only be instanced as text, although
support for instancing as mono-pixmap should be added.)

formatted-string
(Display this image as a text string with replaceable fields, similar to a modeline
format string; not currently implemented.)

xbm (An X bitmap; only if X support was compiled into this XEmacs. Can be instanced
as mono-pixmap, color-pixmap, or pointer.)

Chapter 43: Glyphs 571

xpm (An XPM pixmap; only if XPM support was compiled into this XEmacs. Can be
instanced as color-pixmap, mono-pixmap, or pointer. XPM is an add-on library
for X that was designed to rectify the shortcomings of the XBM format. Most
implementations of X include the XPM library as a standard part. If your vendor
does not, it is highly recommended that you download it and install it. You can get
it from the standard XEmacs FTP site, among other places.)

xface (An X-Face bitmap, used to encode people’s faces in e-mail messages; only if X-
Face support was compiled into this XEmacs. Can be instanced as mono-pixmap,
color-pixmap, or pointer.)

gif (A GIF87 or GIF89 image; only if GIF support was compiled into this XEmacs. Can
be instanced as color-pixmap. Note that XEmacs includes GIF decoding functions
as a standard part of it, so if you have X support, you will normally have GIF
support, unless you explicitly disable it at configure time.)

jpeg (A JPEG-format image; only if JPEG support was compiled into this XEmacs.
Can be instanced as color-pixmap. If you have the JPEG libraries present on your
system when XEmacs is built, XEmacs will automatically detect this and use them,
unless you explicitly disable it at configure time.)

png (A PNG/GIF24 image; only if PNG support was compiled into this XEmacs. Can
be instanced as color-pixmap.)

tiff (A TIFF-format image; only if TIFF support was compiled into this XEmacs. Not
currently implemented.)

cursor-font
(One of the standard cursor-font names, such as ‘watch’ or ‘right_ptr’ under X.
Under X, this is, more specifically, any of the standard cursor names from appendix
B of the Xlib manual [also known as the file ‘<X11/cursorfont.h>’] minus the ‘XC_’
prefix. On other window systems, the valid names will be specific to the type of
window system. Can only be instanced as pointer.)

font (A glyph from a font; i.e. the name of a font, and glyph index into it of the
form ‘font fontname index [[mask-font] mask-index]’. Only if X support was
compiled into this XEmacs. Currently can only be instanced as pointer, although
this should probably be fixed.)

subwindow
(An embedded X window; not currently implemented.)

autodetect
(XEmacs tries to guess what format the data is in. If X support exists, the data
string will be checked to see if it names a filename. If so, and this filename contains
XBM or XPM data, the appropriate sort of pixmap or pointer will be created.
[This includes picking up any specified hotspot or associated mask file.] Otherwise,
if pointer is one of the allowable image-instance types and the string names a valid
cursor-font name, the image will be created as a pointer. Otherwise, the image will
be displayed as text. If no X support exists, the image will always be displayed as
text.)

The valid keywords are:

:data (Inline data. For most formats above, this should be a string. For XBM images,
this should be a list of three elements: width, height, and a string of bit data. This
keyword is not valid for instantiator format nothing.)

:file (Data is contained in a file. The value is the name of this file. If both :data
and :file are specified, the image is created from what is specified in :data and

572 XEmacs Lisp Reference Manual

the string in :file becomes the value of the image-instance-file-name function
when applied to the resulting image-instance. This keyword is not valid for in-
stantiator formats nothing, string, formatted-string, cursor-font, font, and
autodetect.)

:foreground
:background

(For xbm, xface, cursor-font, and font. These keywords allow you to explicitly
specify foreground and background colors. The argument should be anything ac-
ceptable to make-color-instance. This will cause what would be a mono-pixmap
to instead be colorized as a two-color color-pixmap, and specifies the foreground
and/or background colors for a pointer instead of black and white.)

:mask-data
(For xbm and xface. This specifies a mask to be used with the bitmap. The format
is a list of width, height, and bits, like for :data.)

:mask-file
(For xbm and xface. This specifies a file containing the mask data. If neither a mask
file nor inline mask data is given for an XBM image, and the XBM image comes
from a file, XEmacs will look for a mask file with the same name as the image
file but with ‘Mask’ or ‘msk’ appended. For example, if you specify the XBM file
‘left_ptr’ [usually located in ‘/usr/include/X11/bitmaps’], the associated mask
file ‘left_ptrmsk’ will automatically be picked up.)

:hotspot-x
:hotspot-y

(For xbm and xface. These keywords specify a hotspot if the image is instantiated as
a pointer. Note that if the XBM image file specifies a hotspot, it will automatically
be picked up if no explicit hotspot is given.)

:color-symbols
(Only for xpm. This specifies an alist that maps strings that specify symbolic color
names to the actual color to be used for that symbolic color (in the form of a string or
a color-specifier object). If this is not specified, the contents of xpm-color-symbols
are used to generate the alist.)

If instead of a vector, the instantiator is a string, it will be converted into a vector by looking
it up according to the specs in the console-type-image-conversion-list for the console type
of the domain (usually a window; sometimes a frame or device) over which the image is being
instantiated.

If the instantiator specifies data from a file, the data will be read in at the time that the
instantiator is added to the image specifier (which may be well before the image is actually
displayed), and the instantiator will be converted into one of the inline-data forms, with the
filename retained using a :file keyword. This implies that the file must exist when the instan-
tiator is added to the image, but does not need to exist at any other time (e.g. it may safely be
a temporary file).

Functionvalid-image-instantiator-format-p format
This function returns non-nil if format is a valid image instantiator format. Note that
the return value for many formats listed above depends on whether XEmacs was compiled
with support for that format.

Functionimage-instantiator-format-list
This function return a list of valid image-instantiator formats.

Chapter 43: Glyphs 573

Variablexpm-color-symbols
This variable holds definitions of logical color-names used when reading XPM files. Ele-
ments of this list should be of the form (color-name form-to-evaluate). The color-name
should be a string, which is the name of the color to define; the form-to-evaluate should
evaluate to a color specifier object, or a string to be passed to make-color-instance (see
Section 42.3 [Colors], page 563). If a loaded XPM file references a symbolic color called
color-name, it will display as the computed color instead.

The default value of this variable defines the logical color names ‘"foreground"’ and
‘"background"’ to be the colors of the default face.

Variablex-bitmap-file-path
A list of the directories in which X bitmap files may be found. If nil, this is initialized from
the ‘"*bitmapFilePath"’ resource. This is used by the make-image-instance function
(however, note that if the environment variable ‘XBMLANGPATH’ is set, it is consulted first).

43.2.2 Image Instantiator Conversion

Functionset-console-type-image-conversion-list console-type list
This function sets the image-conversion-list for consoles of the given console-type. The
image-conversion-list specifies how image instantiators that are strings should be inter-
preted. Each element of the list should be a list of two elements (a regular expression
string and a vector) or a list of three elements (the preceding two plus an integer index
into the vector). The string is converted to the vector associated with the first matching
regular expression. If a vector index is specified, the string itself is substituted into that
position in the vector.

Note: The conversion above is applied when the image instantiator is added to an image
specifier, not when the specifier is actually instantiated. Therefore, changing the image-
conversion-list only affects newly-added instantiators. Existing instantiators in glyphs and
image specifiers will not be affected.

Functionconsole-type-image-conversion-list console-type
This function returns the image-conversion-list for consoles of the given console-type.

43.2.3 Image Instances

Image-instance objects encapsulate the way a particular image (pixmap, etc.) is displayed
on a particular device.

In most circumstances, you do not need to directly create image instances; use a glyph
instead. However, it may occasionally be useful to explicitly create image instances, if you want
more control over the instantiation process.

Functionimage-instance-p object
This function returns non-nil if object is an image instance.

574 XEmacs Lisp Reference Manual

43.2.3.1 Image Instance Types

Image instances come in a number of different types. The type of an image instance specifies
the nature of the image: Whether it is a text string, a mono pixmap, a color pixmap, etc.

The valid image instance types are

nothing Nothing is displayed.

text Displayed as text. The foreground and background colors and the font of the text
are specified independent of the pixmap. Typically these attributes will come from
the face of the surrounding text, unless a face is specified for the glyph in which the
image appears.

mono-pixmap
Displayed as a mono pixmap (a pixmap with only two colors where the foreground
and background can be specified independent of the pixmap; typically the pixmap
assumes the foreground and background colors of the text around it, unless a face
is specified for the glyph in which the image appears).

color-pixmap
Displayed as a color pixmap.

pointer Used as the mouse pointer for a window.

subwindow
A child window that is treated as an image. This allows (e.g.) another program to
be responsible for drawing into the window. Not currently implemented.

Functionvalid-image-instance-type-p type
This function returns non-nil if type is a valid image instance type.

Functionimage-instance-type-list
This function returns a list of the valid image instance types.

Functionimage-instance-type image-instance
This function returns the type of the given image instance. The return value will be one
of nothing, text, mono-pixmap, color-pixmap, pointer, or subwindow.

Functiontext-image-instance-p object
This function returns non-nil if object is an image instance of type text.

Functionmono-pixmap-image-instance-p object
This function returns non-nil if object is an image instance of type mono-pixmap.

Functioncolor-pixmap-image-instance-p object
This function returns non-nil if object is an image instance of type color-pixmap.

Functionpointer-image-instance-p object
This function returns non-nil if object is an image instance of type pointer.

Functionsubwindow-image-instance-p object
This function returns non-nil if object is an image instance of type subwindow.

Functionnothing-image-instance-p object
This function returns non-nil if object is an image instance of type nothing.

Chapter 43: Glyphs 575

43.2.3.2 Image Instance Functions

Functionmake-image-instance data &optional device dest-types no-error
This function creates a new image-instance object.
data is an image instantiator, which describes the image (see Section 43.2.1 [Image Spec-
ifiers], page 570).
dest-types should be a list of allowed image instance types that can be generated. The dest-
types list is unordered. If multiple destination types are possible for a given instantiator,
the “most natural” type for the instantiator’s format is chosen. (For XBM, the most
natural types are mono-pixmap, followed by color-pixmap, followed by pointer. For
the other normal image formats, the most natural types are color-pixmap, followed by
mono-pixmap, followed by pointer. For the string and formatted-string formats, the most
natural types are text, followed by mono-pixmap (not currently implemented), followed by
color-pixmap (not currently implemented). The other formats can only be instantiated
as one type. (If you want to control more specifically the order of the types into which an
image is instantiated, just call make-image-instance repeatedly until it succeeds, passing
less and less preferred destination types each time.
If dest-types is omitted, all possible types are allowed.
no-error controls what happens when the image cannot be generated. If nil, an error
message is generated. If t, no messages are generated and this function returns nil. If
anything else, a warning message is generated and this function returns nil.

Functioncolorize-image-instance image-instance foreground background
This function makes the image instance be displayed in the given colors. Image instances
come in two varieties: bitmaps, which are 1 bit deep which are rendered in the prevailing
foreground and background colors; and pixmaps, which are of arbitrary depth (including
1) and which have the colors explicitly specified. This function converts a bitmap to a
pixmap. If the image instance was a pixmap already, nothing is done (and nil is returned).
Otherwise t is returned.

Functionimage-instance-name image-instance
This function returns the name of the given image instance.

Functionimage-instance-string image-instance
This function returns the string of the given image instance. This will only be non-nil
for text image instances.

Functionimage-instance-file-name image-instance
This function returns the file name from which image-instance was read, if known.

Functionimage-instance-mask-file-name image-instance
This function returns the file name from which image-instance’s mask was read, if known.

Functionimage-instance-depth image-instance
This function returns the depth of the image instance. This is 0 for a mono pixmap, or a
positive integer for a color pixmap.

Functionimage-instance-height image-instance
This function returns the height of the image instance, in pixels.

576 XEmacs Lisp Reference Manual

Functionimage-instance-width image-instance
This function returns the width of the image instance, in pixels.

Functionimage-instance-hotspot-x image-instance
This function returns the X coordinate of the image instance’s hotspot, if known. This is
a point relative to the origin of the pixmap. When an image is used as a mouse pointer,
the hotspot is the point on the image that sits over the location that the pointer points
to. This is, for example, the tip of the arrow or the center of the crosshairs.
This will always be nil for a non-pointer image instance.

Functionimage-instance-hotspot-y image-instance
This function returns the Y coordinate of the image instance’s hotspot, if known.

Functionimage-instance-foreground image-instance
This function returns the foreground color of image-instance, if applicable. This will be
a color instance or nil. (It will only be non-nil for colorized mono pixmaps and for
pointers.)

Functionimage-instance-background image-instance
This function returns the background color of image-instance, if applicable. This will be
a color instance or nil. (It will only be non-nil for colorized mono pixmaps and for
pointers.)

43.3 Glyph Types

Each glyph has a particular type, which controls how the glyph’s image is generated. Each
glyph type has a corresponding list of allowable image instance types that can be generated.
When you call glyph-image-instance to retrieve the image instance of a glyph, XEmacs does
the equivalent of calling make-image-instance and passing in dest-types the list of allowable
image instance types for the glyph’s type.
• buffer glyphs can be used as the begin-glyph or end-glyph of an extent, in the modeline,

and in the toolbar. Their image can be instantiated as nothing, mono-pixmap, color-
pixmap, text, and subwindow.

• pointer glyphs can be used to specify the mouse pointer. Their image can be instantiated
as pointer.

• icon glyphs can be used to specify the icon used when a frame is iconified. Their image
can be instantiated as mono-pixmap and color-pixmap.

Functionglyph-type glyph
This function returns the type of the given glyph. The return value will be a symbol, one
of buffer, pointer, or icon.

Functionvalid-glyph-type-p glyph-type
Given a glyph-type, this function returns non-nil if it is valid.

Functionglyph-type-list
This function returns a list of valid glyph types.

Functionbuffer-glyph-p object
This function returns non-nil if object is a glyph of type buffer.

Chapter 43: Glyphs 577

Functionicon-glyph-p object
This function returns non-nil if object is a glyph of type icon.

Functionpointer-glyph-p object
This function returns non-nil if object is a glyph of type pointer.

43.4 Mouse Pointer

The shape of the mouse pointer when over a particular section of a frame is controlled using
various glyph variables. Since the image of a glyph is a specifier, it can be controlled on a
per-buffer, per-frame, per-window, or per-device basis.

You should use set-glyph-image to set the following variables, not setq.

Glyphtext-pointer-glyph
This variable specifies the shape of the mouse pointer when over text.

Glyphnontext-pointer-glyph
This variable specifies the shape of the mouse pointer when over a buffer, but not over
text. If unspecified in a particular domain, text-pointer-glyph is used.

Glyphmodeline-pointer-glyph
This variable specifies the shape of the mouse pointer when over the modeline. If unspec-
ified in a particular domain, nontext-pointer-glyph is used.

Glyphselection-pointer-glyph
This variable specifies the shape of the mouse pointer when over a selectable text region.
If unspecified in a particular domain, text-pointer-glyph is used.

Glyphgc-pointer-glyph
This variable specifies the shape of the mouse pointer when a garbage collection is in
progress. If the selected window is on a window system and this glyph specifies a value
(i.e. a pointer image instance) in the domain of the selected window, the pointer will be
changed as specified during garbage collection. Otherwise, a message will be printed in
the echo area, as controlled by gc-message.

Glyphbusy-pointer-glyph
This variable specifies the shape of the mouse pointer when XEmacs is busy. If unspecified
in a particular domain, the pointer is not changed when XEmacs is busy.

Glyphmenubar-pointer-glyph
This variable specifies the shape of the mouse pointer when over the menubar. If unspec-
ified in a particular domain, the window-system-provided default pointer is used.

Glyphscrollbar-pointer-glyph
This variable specifies the shape of the mouse pointer when over a scrollbar. If unspecified
in a particular domain, the window-system-provided default pointer is used.

Glyphtoolbar-pointer-glyph
This variable specifies the shape of the mouse pointer when over a toolbar. If unspecified
in a particular domain, nontext-pointer-glyph is used.

578 XEmacs Lisp Reference Manual

Internally, these variables are implemented in default-mouse-motion-handler, and thus
only take effect when the mouse moves. That function calls set-frame-pointer, which sets the
current mouse pointer for a frame.

Functionset-frame-pointer frame image-instance
This function sets the mouse pointer of frame to the given pointer image instance. You
should not call this function directly. (If you do, the pointer will change again the next
time the mouse moves.)

43.5 Redisplay Glyphs

Glyphtruncation-glyph
This variable specifies what is displayed at the end of truncated lines.

Glyphcontinuation-glyph
This variable specifies what is displayed at the end of wrapped lines.

Glyphoctal-escape-glyph
This variable specifies what to prefix character codes displayed in octal with.

Glyphhscroll-glyph
This variable specifies what to display at the beginning of horizontally scrolled lines.

Glyphinvisible-text-glyph
This variable specifies what to use to indicate the presence of invisible text. This is the
glyph that is displayed when an ellipsis is called for, according to selective-display-
ellipses or buffer-invisibility-spec). Normally this is three dots (“...”).

Glyphcontrol-arrow-glyph
This variable specifies what to use as an arrow for control characters.

43.6 Subwindows

Subwindows are not currently implemented.

Functionsubwindowp object
This function returns non-nil if object is a subwindow.

Chapter 44: Annotations 579

44 Annotations

An annotation is a pixmap or string that is not part of a buffer’s text but is displayed next
to a particular location in a buffer. Annotations can be displayed intermixed with text, in any
whitespace at the beginning or end of a line, or in a special area at the left or right side of the
frame called a margin, whose size is controllable. Annotations are implemented using extents
(see Chapter 40 [Extents], page 529); but you can work with annotations without knowing how
extents work.

44.1 Annotation Basics

Marginal annotations are notes associated with a particular location in a buffer. They may be
displayed in a margin created on the left-hand or right-hand side of the frame, in any whitespace
at the beginning or end of a line, or inside of the text itself. Every annotation may have an
associated action to be performed when the annotation is selected. The term annotation is used
to refer to an individual note. The term margin is generically used to refer to the whitespace
before the first character on a line or after the last character on a line.

Each annotation has the following characteristics:

glyph This is a glyph object and is used as the displayed representation of the annotation.

down-glyph
If given, this glyph is used as the displayed representation of the annotation when
the mouse is pressed down over the annotation.

face The face with which to display the glyph.

side Which side of the text (left or right) the annotation is displayed at.

action If non-nil, this field must contain a function capable of being the first argument to
funcall. This function is normally evaluated with a single argument, the value of
the data field, each time the annotation is selected. However, if the with-event pa-
rameter to make-annotation is non-nil, the function is called with two arguments.
The first argument is the same as before, and the second argument is the event (a
button-up event, usually) that activated the annotation.

data Not used internally. This field can contain any E-Lisp object. It is passed as the
first argument to action described above.

menu A menu displayed when the right mouse button is pressed over the annotation.

The margin is divided into outside and inside. The outside margin is space on the left or
right side of the frame which normal text cannot be displayed in. The inside margin is that
space between the leftmost or rightmost point at which text can be displayed and where the
first or last character actually is.

There are four different layout types which affect the exact location an annotation appears.

outside-margin
The annotation is placed in the outside margin area. as close as possible to the edge
of the frame. If the outside margin is not wide enough for an annotation to fit, it is
not displayed.

inside-margin
The annotation is placed in the inside margin area, as close as possible to the edge of
the frame. If the inside margin is not wide enough for the annotation to fit, it will be

580 XEmacs Lisp Reference Manual

displayed using any available outside margin space if and only if the specifier use-
left-overflow or use-right-overflow (depending on which side the annotation
appears in) is non-nil.

whitespace
The annotation is placed in the inside margin area, as close as possible to the first
or last non-whitespace character on a line. If the inside margin is not wide enough
for the annotation to fit, it will be displayed if and only if the specifier use-left-
overflow or use-right-overflow (depending on which side the annotation appears
in) is non-nil.

text The annotation is placed at the position it is inserted. It will create enough space
for itself inside of the text area. It does not take up a place in the logical buffer,
only in the display of the buffer.

The current layout policy is that all whitespace annotations are displayed first. Next, all
inside-margin annotations are displayed using any remaining space. Finally as many outside-
margin annotations are displayed as possible. The text annotations will always display as they
create their own space to display in.

44.2 Annotation Primitives

Functionmake-annotation glyph &optional position layout buffer with-event d-glyph
rightp

This function creates a marginal annotation at position pos in buffer. The annotation is
displayed using glyph, which should be a glyph object or a string, and is positioned using
layout policy layout. If pos is nil, point is used. If layout is nil, whitespace is used. If
buffer is nil, the current buffer is used.
If with-event is non-nil, then when an annotation is activated, the triggering event is
passed as the second arg to the annotation function. If d-glyph is non-nil then it is used
as the glyph that will be displayed when button1 is down. If rightp is non-nil then the
glyph will be displayed on the right side of the buffer instead of the left.
The newly created annotation is returned.

Functiondelete-annotation annotation
This function removes annotation from its buffer. This does not modify the buffer text.

Functionannotationp annotation
This function returns t if annotation is an annotation, nil otherwise.

44.3 Annotation Properties

Functionannotation-glyph annotation
This function returns the glyph object used to display annotation.

Functionset-annotation-glyph annotation glyph &optional layout side
This function sets the glyph of annotation to glyph, which should be a glyph object. If
layout is non-nil, set the layout policy of annotation to layout. If side is left or right,
change the side of the buffer at which the annotation is displayed to the given side. The
new value of annotation-glyph is returned.

Chapter 44: Annotations 581

Functionannotation-down-glyph annotation
This function returns the glyph used to display annotation when the left mouse button is
depressed on the annotation.

Functionset-annotation-down-glyph annotation glyph
This function returns the glyph used to display annotation when the left mouse button is
depressed on the annotation to glyph, which should be a glyph object.

Functionannotation-face annotation
This function returns the face associated with annotation.

Functionset-annotation-face annotation face
This function sets the face associated with annotation to face.

Functionannotation-layout annotation
This function returns the layout policy of annotation.

Functionset-annotation-layout annotation layout
This function sets the layout policy of annotation to layout.

Functionannotation-side annotation
This function returns the side of the buffer that annotation is displayed on. Return value
is a symbol, either left or right.

Functionannotation-data annotation
This function returns the data associated with annotation.

Functionset-annotation-data annotation data
This function sets the data field of annotation to data. data is returned.

Functionannotation-action annotation
This function returns the action associated with annotation.

Functionset-annotation-action annotation action
This function sets the action field of annotation to action. action is returned..

Functionannotation-menu annotation
This function returns the menu associated with annotation.

Functionset-annotation-menu annotation menu
This function sets the menu associated with annotation to menu. This menu will be
displayed when the right mouse button is pressed over the annotation.

Functionannotation-visible annotation
This function returns t if there is enough available space to display annotation, nil
otherwise.

Functionannotation-width annotation
This function returns the width of annotation in pixels.

Functionhide-annotation annotation
This function removes annotation’s glyph, making it invisible.

Functionreveal-annotation annotation
This function restores annotation’s glyph, making it visible.

582 XEmacs Lisp Reference Manual

44.4 Locating Annotations

Functionannotations-in-region start end buffer
This function returns a list of all annotations in buffer which are between start and end
inclusively.

Functionannotations-at &optional position buffer
This function returns a list of all annotations at position in buffer. If position is nil point
is used. If buffer is nil the current buffer is used.

Functionannotation-list &optional buffer
This function returns a list of all annotations in buffer. If buffer is nil, the current buffer
is used.

Functionall-annotations
This function returns a list of all annotations in all buffers in existence.

44.5 Margin Primitives

The margin widths are controllable on a buffer-local, window-local, frame-local, device-local,
or device-type-local basis through the use of specifiers. See Chapter 41 [Specifiers], page 541.

Specifierleft-margin-width
This is a specifier variable controlling the width of the left outside margin, in characters.
Use set-specifier to change its value.

Specifierright-margin-width
This is a specifier variable controlling the width of the right outside margin, in characters.
Use set-specifier to change its value.

Specifieruse-left-overflow
If non-nil, use the left outside margin as extra whitespace when displaying whitespace
and inside-margin annotations. Defaults to nil. This is a specifier variable; use set-
specifier to change its value.

Specifieruse-right-overflow
If non-nil, use the right outside margin as extra whitespace when displaying whitespace
and inside-margin annotations. Defaults to nil. This is a specifier variable; use set-
specifier to change its value.

Functionwindow-left-margin-pixel-width &optional window
This function returns the width in pixels of the left outside margin of window. If window
is nil, the selected window is assumed.

Functionwindow-right-margin-pixel-width &optional window
This function returns the width in pixels of the right outside margin of window. If window
is nil, the selected window is assumed.

The margin colors are controlled by the faces left-margin and right-margin. These
can be set using the X resources Emacs.left-margin.background and Emacs.left-
margin.foreground; likewise for the right margin.

Chapter 44: Annotations 583

44.6 Annotation Hooks

The following three hooks are provided for use with the marginal annotations:

before-delete-annotation-hook
This hook is called immediately before an annotation is destroyed. It is passed a
single argument, the annotation being destroyed.

after-delete-annotation-hook
This normal hook is called immediately after an annotation is destroyed.

make-annotation-hook
This hook is called immediately after an annotation is created. It is passed a single
argument, the newly created annotation.

584 XEmacs Lisp Reference Manual

Chapter 45: Emacs Display 585

45 Emacs Display

This chapter describes a number of other features related to the display that XEmacs presents
to the user.

45.1 Refreshing the Screen

The function redraw-frame redisplays the entire contents of a given frame. See Chapter 32
[Frames], page 425.

Functionredraw-frame frame
This function clears and redisplays frame frame.

Even more powerful is redraw-display:

Commandredraw-display &optional device
This function redraws all frames on device marked as having their image garbled. device
defaults to the selected device. If device is t, all devices will have their frames checked.

Processing user input takes absolute priority over redisplay. If you call these functions when
input is available, they do nothing immediately, but a full redisplay does happen eventually—
after all the input has been processed.

Normally, suspending and resuming XEmacs also refreshes the screen. Some terminal emu-
lators record separate contents for display-oriented programs such as XEmacs and for ordinary
sequential display. If you are using such a terminal, you might want to inhibit the redisplay on
resumption. See Section 50.2.2 [Suspending XEmacs], page 627.

Variableno-redraw-on-reenter
This variable controls whether XEmacs redraws the entire screen after it has been sus-
pended and resumed. Non-nil means yes, nil means no.

The above functions do not actually cause the display to be updated; rather, they clear out
the internal display records that XEmacs maintains, so that the next time the display is updated
it will be redrawn from scratch. Normally this occurs the next time that next-event or sit-for
is called; however, a display update will not occur if there is input pending. See Chapter 19
[Command Loop], page 255.

Functionforce-cursor-redisplay
This function causes an immediate update of the cursor on the selected frame. (This
function does not exist in FSF Emacs.)

586 XEmacs Lisp Reference Manual

45.2 Truncation

When a line of text extends beyond the right edge of a window, the line can either be
truncated or continued on the next line. When a line is truncated, this is normally shown with a
‘\’ in the rightmost column of the window on X displays, and with a ‘$’ on TTY devices. When
a line is continued or “wrapped” onto the next line, this is shown with a curved arrow in the
rightmost column of the window (or with a ‘\’ on TTY devices). The additional screen lines
used to display a long text line are called continuation lines.

Normally, whenever line truncation is in effect for a particular window, a horizontal scrollbar
is displayed in that window if the device supports scrollbars. See Chapter 24 [Scrollbars],
page 323.

Note that continuation is different from filling; continuation happens on the screen only, not
in the buffer contents, and it breaks a line precisely at the right margin, not at a word boundary.
See Section 36.11 [Filling], page 476.

User Optiontruncate-lines
This buffer-local variable controls how XEmacs displays lines that extend beyond the right
edge of the window. If it is non-nil, then XEmacs does not display continuation lines;
rather each line of text occupies exactly one screen line, and a backslash appears at the
edge of any line that extends to or beyond the edge of the window. The default is nil.
If the variable truncate-partial-width-windows is non-nil, then truncation is always
used for side-by-side windows (within one frame) regardless of the value of truncate-
lines.

User Optiondefault-truncate-lines
This variable is the default value for truncate-lines, for buffers that do not have local
values for it.

User Optiontruncate-partial-width-windows
This variable controls display of lines that extend beyond the right edge of the window,
in side-by-side windows (see Section 31.2 [Splitting Windows], page 404). If it is non-nil,
these lines are truncated; otherwise, truncate-lines says what to do with them.

The backslash and curved arrow used to indicate truncated or continued lines are only
defaults, and can be changed. These images are actually glyphs (see Chapter 43 [Glyphs],
page 565). XEmacs provides a great deal of flexibility in how glyphs can be controlled. (This
differs from FSF Emacs, which uses display tables to control these images.)

For details, Section 43.5 [Redisplay Glyphs], page 578.

45.3 The Echo Area

The echo area is used for displaying messages made with the message primitive, and for
echoing keystrokes. It is not the same as the minibuffer, despite the fact that the minibuffer
appears (when active) in the same place on the screen as the echo area. The XEmacs Reference
Manual specifies the rules for resolving conflicts between the echo area and the minibuffer for
use of that screen space (see section “The Minibuffer” in The XEmacs Reference Manual). Error
messages appear in the echo area; see Section 9.5.3 [Errors], page 124.

You can write output in the echo area by using the Lisp printing functions with t as the
stream (see Section 17.5 [Output Functions], page 232), or as follows:

Chapter 45: Emacs Display 587

Functionmessage string &rest arguments
This function displays a one-line message in the echo area. The argument string is similar
to a C language printf control string. See format in Section 4.7 [String Conversion],
page 60, for the details on the conversion specifications. message returns the constructed
string.
In batch mode, message prints the message text on the standard error stream, followed
by a newline.
If string is nil, message clears the echo area. If the minibuffer is active, this brings the
minibuffer contents back onto the screen immediately.

(message "Minibuffer depth is %d."
(minibuffer-depth))

a Minibuffer depth is 0.
⇒ "Minibuffer depth is 0."

---------- Echo Area ----------
Minibuffer depth is 0.
---------- Echo Area ----------

In addition to only displaying a message, XEmacs allows you to label your messages, giving
you fine-grained control of their display. Message label is a symbol denoting the message type.
Some standard labels are:
• message—default label used by the message function;
• error—default label used for reporting errors;
• progress—progress indicators like ‘Converting... 45%’ (not logged by default);
• prompt—prompt-like messages like ‘Isearch: foo’ (not logged by default);
• command—helper command messages like ‘Mark set’ (not logged by default);
• no-log—messages that should never be logged

Several messages may be stacked in the echo area at once. Lisp programs may access these
messages, or remove them as appropriate, via the message stack.

Functiondisplay-message label message &optional frame stdout-p
This function displays message (a string) labeled as label, as described above.
The frame argument specifies the frame to whose minibuffer the message should be printed.
This is currently unimplemented. The stdout-p argument is used internally.

(display-message ’command "Mark set")

Functionlmessage label string &rest arguments
This function displays a message string with label label. It is similar to message in that
it accepts a printf-like strings and any number of arguments.

;; Display a command message.
(lmessage ’command "Comment column set to %d" comment-column)

;; Display a progress message.
(lmessage ’progress "Fontifying %s... (%d)" buffer percentage)

;; Display a message that should not be logged.
(lmessage ’no-log "Done")

Functionclear-message &optional label frame stdout-p no-restore
This function remove any message with the given label from the message-stack, erasing it
from the echo area if it’s currently displayed there.

588 XEmacs Lisp Reference Manual

If a message remains at the head of the message-stack and no-restore is nil, it will be
displayed. The string which remains in the echo area will be returned, or nil if the
message-stack is now empty. If label is nil, the entire message-stack is cleared.

;; Show a message, wait for 2 seconds, and restore old minibuffer
;; contents.
(message "A message")
a A message
⇒ "A Message"
(lmessage ’my-label "Newsflash! Newsflash!")
a Newsflash! Newsflash!
⇒ "Newsflash! Newsflash!"
(sit-for 2)
(clear-message ’my-label)
a A message
⇒ "A message"

Unless you need the return value or you need to specify a label, you should just use
(message nil).

Functioncurrent-message &optional frame
This function returns the current message in the echo area, or nil. The frame argument
is currently unused.

Some of the messages displayed in the echo area are also recorded in the ‘ *Message-Log*’
buffer. Exactly which messages will be recorded can be tuned using the following variables.

User Optionlog-message-max-size
This variable specifies the maximum size of the ‘ *Message-log*’ buffer.

Variablelog-message-ignore-labels
This variable specifies the labels whose messages will not be logged. It should be a list of
symbols.

Variablelog-message-ignore-regexps
This variable specifies the regular expressions matching messages that will not be logged.
It should be a list of regular expressions.
Normally, packages that generate messages that might need to be ignored should label
them with progress, prompt, or no-log, so they can be filtered by log-message-ignore-
labels.

Variableecho-keystrokes
This variable determines how much time should elapse before command characters echo.
Its value must be a number, which specifies the number of seconds to wait before echoing.
If the user types a prefix key (such as C-x) and then delays this many seconds before
continuing, the prefix key is echoed in the echo area. Any subsequent characters in the
same command will be echoed as well.
If the value is zero, then command input is not echoed.

Variablecursor-in-echo-area
This variable controls where the cursor appears when a message is displayed in the echo
area. If it is non-nil, then the cursor appears at the end of the message. Otherwise, the
cursor appears at point—not in the echo area at all.
The value is normally nil; Lisp programs bind it to t for brief periods of time.

Chapter 45: Emacs Display 589

45.4 Warnings

XEmacs contains a facility for unified display of various warnings. Unlike errors, warnings are
displayed in the situations when XEmacs encounters a problem that is recoverable, but which
should be fixed for safe future operation.

For example, warnings are printed by the startup code when it encounters problems with
X keysyms, when there is an error in ‘.emacs’, and in other problematic situations. Unlike
messages, warnings are displayed in a separate buffer, and include an explanatory message that
may span across several lines. Here is an example of how a warning is displayed:

(1) (initialization/error) An error has occurred while loading ~/.emacs:

Symbol’s value as variable is void: bogus-variable

To ensure normal operation, you should investigate the cause of the error
in your initialization file and remove it. Use the ‘-debug-init’ option
to XEmacs to view a complete error backtrace.

Each warning has a class and a priority level. The class is a symbol describing what sort of
warning this is, such as initialization, resource or key-mapping.

The warning priority level specifies how important the warning is. The recognized warning
levels, in increased order of priority, are: debug, info, notice, warning, error, critical,
alert and emergency.

Functiondisplay-warning class message &optional level
This function displays a warning message message (a string). class should be a warning
class symbol, as described above, or a list of such symbols. level describes the warning
priority level. If unspecified, it default to warning.

(display-warning ’resource
"Bad resource specification encountered:

something like

Emacs*foo: bar

You should replace the * with a . in order to get proper behavior when
you use the specifier and/or ‘set-face-*’ functions.")

---------- Warning buffer ----------
(1) (resource/warning) Bad resource specification encountered:
something like

Emacs*foo: bar

You should replace the * with a . in order to get proper behavior when
you use the specifier and/or ‘set-face-*’ functions.
---------- Warning buffer ----------

Functionlwarn class level message &rest args
This function displays a formatted labeled warning message. As above, class should be
the warning class symbol, or a list of such symbols, and level should specify the warning
priority level (warning by default).
Unlike in display-warning, message may be a formatted message, which will be, together
with the rest of the arguments, passed to format.

590 XEmacs Lisp Reference Manual

(lwarn ’message-log ’warning
"Error caught in ‘remove-message-hook’: %s"
(error-message-string e))

Variablelog-warning-minimum-level
This variable specifies the minimum level of warnings that should be generated. Warnings
with level lower than defined by this variable are completely ignored, as if they never
happened.

Variabledisplay-warning-minimum-level
This variable specifies the minimum level of warnings that should be displayed. Unlike
log-warning-minimum-level, setting this function does not suppress warnings entirely—
they are still generated in the ‘*Warnings*’ buffer, only they are not displayed by default.

Variablelog-warning-suppressed-classes
This variable specifies a list of classes that should not be logged or displayed. If any of
the class symbols associated with a warning is the same as any of the symbols listed here,
the warning will be completely ignored, as it they never happened.

Variabledisplay-warning-suppressed-classes
This variable specifies a list of classes that should not be logged or displayed. If any
of the class symbols associated with a warning is the same as any of the symbols listed
here, the warning will not be displayed. The warning will still logged in the *Warnings*
buffer (unless also contained in ‘log-warning-suppressed-classes’), but the buffer will not
be automatically popped up.

45.5 Invisible Text

You can make characters invisible, so that they do not appear on the screen, with the
invisible property. This can be either a text property or a property of an overlay.

In the simplest case, any non-nil invisible property makes a character invisible. This is
the default case—if you don’t alter the default value of buffer-invisibility-spec, this is how
the invisibility property works. This feature is much like selective display (see Section 45.6
[Selective Display], page 591), but more general and cleaner.

More generally, you can use the variable buffer-invisibility-spec to control which values
of the invisible property make text invisible. This permits you to classify the text into different
subsets in advance, by giving them different invisible values, and subsequently make various
subsets visible or invisible by changing the value of buffer-invisibility-spec.

Controlling visibility with buffer-invisibility-spec is especially useful in a program to
display the list of entries in a data base. It permits the implementation of convenient filtering
commands to view just a part of the entries in the data base. Setting this variable is very fast,
much faster than scanning all the text in the buffer looking for properties to change.

Variablebuffer-invisibility-spec
This variable specifies which kinds of invisible properties actually make a character
invisible.

t A character is invisible if its invisible property is non-nil. This is the
default.

a list Each element of the list makes certain characters invisible. Ultimately, a
character is invisible if any of the elements of this list applies to it. The list
can have two kinds of elements:

Chapter 45: Emacs Display 591

atom A character is invisible if its invisible property value is atom or
if it is a list with atom as a member.

(atom . t)
A character is invisible if its invisible property value is atom or
if it is a list with atom as a member. Moreover, if this character is
at the end of a line and is followed by a visible newline, it displays
an ellipsis.

Ordinarily, commands that operate on text or move point do not care whether the text is
invisible. However, the user-level line motion commands explicitly ignore invisible newlines.

45.6 Selective Display

Selective display is a pair of features that hide certain lines on the screen.
The first variant, explicit selective display, is designed for use in a Lisp program. The program

controls which lines are hidden by altering the text. Outline mode has traditionally used this
variant. It has been partially replaced by the invisible text feature (see Section 45.5 [Invisible
Text], page 590); there is a new version of Outline mode which uses that instead.

In the second variant, the choice of lines to hide is made automatically based on indentation.
This variant is designed to be a user-level feature.

The way you control explicit selective display is by replacing a newline (control-j) with a
carriage return (control-m). The text that was formerly a line following that newline is now
invisible. Strictly speaking, it is temporarily no longer a line at all, since only newlines can
separate lines; it is now part of the previous line.

Selective display does not directly affect editing commands. For example, C-f (forward-
char) moves point unhesitatingly into invisible text. However, the replacement of newline
characters with carriage return characters affects some editing commands. For example, next-
line skips invisible lines, since it searches only for newlines. Modes that use selective display
can also define commands that take account of the newlines, or that make parts of the text
visible or invisible.

When you write a selectively displayed buffer into a file, all the control-m’s are output as
newlines. This means that when you next read in the file, it looks OK, with nothing invisible.
The selective display effect is seen only within XEmacs.

Variableselective-display
This buffer-local variable enables selective display. This means that lines, or portions of
lines, may be made invisible.
• If the value of selective-display is t, then any portion of a line that follows a

control-m is not displayed.
• If the value of selective-display is a positive integer, then lines that start with

more than that many columns of indentation are not displayed.

When some portion of a buffer is invisible, the vertical movement commands operate as
if that portion did not exist, allowing a single next-line command to skip any number
of invisible lines. However, character movement commands (such as forward-char) do
not skip the invisible portion, and it is possible (if tricky) to insert or delete text in an
invisible portion.
In the examples below, we show the display appearance of the buffer foo, which changes
with the value of selective-display. The contents of the buffer do not change.

592 XEmacs Lisp Reference Manual

(setq selective-display nil)
⇒ nil

---------- Buffer: foo ----------
1 on this column
2on this column
3n this column
3n this column

2on this column
1 on this column
---------- Buffer: foo ----------

(setq selective-display 2)
⇒ 2

---------- Buffer: foo ----------
1 on this column
2on this column
2on this column
1 on this column
---------- Buffer: foo ----------

Variableselective-display-ellipses
If this buffer-local variable is non-nil, then XEmacs displays ‘...’ at the end of a line
that is followed by invisible text. This example is a continuation of the previous one.

(setq selective-display-ellipses t)
⇒ t

---------- Buffer: foo ----------
1 on this column
2on this column ...
2on this column
1 on this column
---------- Buffer: foo ----------

You can use a display table to substitute other text for the ellipsis (‘...’). See Section 45.11
[Display Tables], page 596.

45.7 The Overlay Arrow

The overlay arrow is useful for directing the user’s attention to a particular line in a buffer.
For example, in the modes used for interface to debuggers, the overlay arrow indicates the line
of code about to be executed.

Variableoverlay-arrow-string
This variable holds the string to display to call attention to a particular line, or nil if the
arrow feature is not in use. Despite its name, the value of this variable can be either a
string or a glyph (see Chapter 43 [Glyphs], page 565).

Variableoverlay-arrow-position
This variable holds a marker that indicates where to display the overlay arrow. It should
point at the beginning of a line. The arrow text appears at the beginning of that line,

Chapter 45: Emacs Display 593

overlaying any text that would otherwise appear. Since the arrow is usually short, and
the line usually begins with indentation, normally nothing significant is overwritten.
The overlay string is displayed only in the buffer that this marker points into. Thus, only
one buffer can have an overlay arrow at any given time.

You can do the same job by creating an extent with a begin-glyph property. See Section 40.6
[Extent Properties], page 534.

45.8 Temporary Displays

Temporary displays are used by commands to put output into a buffer and then present it
to the user for perusal rather than for editing. Many of the help commands use this feature.

Special Formwith-output-to-temp-buffer buffer-name forms. . .
This function executes forms while arranging to insert any output they print into the buffer
named buffer-name. The buffer is then shown in some window for viewing, displayed but
not selected.
The string buffer-name specifies the temporary buffer, which need not already exist. The
argument must be a string, not a buffer. The buffer is erased initially (with no questions
asked), and it is marked as unmodified after with-output-to-temp-buffer exits.
with-output-to-temp-buffer binds standard-output to the temporary buffer, then it
evaluates the forms in forms. Output using the Lisp output functions within forms goes
by default to that buffer (but screen display and messages in the echo area, although they
are “output” in the general sense of the word, are not affected). See Section 17.5 [Output
Functions], page 232.
The value of the last form in forms is returned.

---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------

(with-output-to-temp-buffer "foo"
(print 20)
(print standard-output))

⇒ #<buffer foo>

---------- Buffer: foo ----------
20

#<buffer foo>

---------- Buffer: foo ----------

Variabletemp-buffer-show-function
If this variable is non-nil, with-output-to-temp-buffer calls it as a function to do the
job of displaying a help buffer. The function gets one argument, which is the buffer it
should display.
In Emacs versions 18 and earlier, this variable was called temp-buffer-show-hook.

Functionmomentary-string-display string position &optional char message
This function momentarily displays string in the current buffer at position. It has no
effect on the undo list or on the buffer’s modification status.

594 XEmacs Lisp Reference Manual

The momentary display remains until the next input event. If the next input event is
char, momentary-string-display ignores it and returns. Otherwise, that event remains
buffered for subsequent use as input. Thus, typing char will simply remove the string
from the display, while typing (say) C-f will remove the string from the display and later
(presumably) move point forward. The argument char is a space by default.
The return value of momentary-string-display is not meaningful.
You can do the same job in a more general way by creating an extent with a begin-glyph
property. See Section 40.6 [Extent Properties], page 534.
If message is non-nil, it is displayed in the echo area while string is displayed in the
buffer. If it is nil, a default message says to type char to continue.
In this example, point is initially located at the beginning of the second line:

---------- Buffer: foo ----------
This is the contents of foo.
?Second line.
---------- Buffer: foo ----------

(momentary-string-display
"**** Important Message! ****"
(point) ?\r
"Type RET when done reading")

⇒ t

---------- Buffer: foo ----------
This is the contents of foo.
**** Important Message! ****Second line.
---------- Buffer: foo ----------

---------- Echo Area ----------
Type RET when done reading
---------- Echo Area ----------

This function works by actually changing the text in the buffer. As a result, if you later
undo in this buffer, you will see the message come and go.

45.9 Blinking Parentheses

This section describes the mechanism by which XEmacs shows a matching open parenthesis
when the user inserts a close parenthesis.

Variableblink-paren-function
The value of this variable should be a function (of no arguments) to be called whenever a
character with close parenthesis syntax is inserted. The value of blink-paren-function
may be nil, in which case nothing is done.

Please note: This variable was named blink-paren-hook in older Emacs
versions, but since it is not called with the standard convention for hooks, it
was renamed to blink-paren-function in version 19.

Variableblink-matching-paren
If this variable is nil, then blink-matching-open does nothing.

Variableblink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching parenthesis before
giving up.

Chapter 45: Emacs Display 595

Variableblink-matching-paren-delay
This variable specifies the number of seconds for the cursor to remain at the matching
parenthesis. A fraction of a second often gives good results, but the default is 1, which
works on all systems.

Functionblink-matching-open
This function is the default value of blink-paren-function. It assumes that point fol-
lows a character with close parenthesis syntax and moves the cursor momentarily to the
matching opening character. If that character is not already on the screen, it displays the
character’s context in the echo area. To avoid long delays, this function does not search
farther than blink-matching-paren-distance characters.
Here is an example of calling this function explicitly.

(defun interactive-blink-matching-open ()
"Indicate momentarily the start of sexp before point."
(interactive)
(let ((blink-matching-paren-distance

(buffer-size))
(blink-matching-paren t))

(blink-matching-open)))

45.10 Usual Display Conventions

The usual display conventions define how to display each character code. You can override
these conventions by setting up a display table (see Section 45.11 [Display Tables], page 596).
Here are the usual display conventions:
• Character codes 32 through 126 map to glyph codes 32 through 126. Normally this means

they display as themselves.
• Character code 9 is a horizontal tab. It displays as whitespace up to a position determined

by tab-width.
• Character code 10 is a newline.
• All other codes in the range 0 through 31, and code 127, display in one of two ways according

to the value of ctl-arrow. If it is non-nil, these codes map to sequences of two glyphs,
where the first glyph is the ASCII code for ‘^’. (A display table can specify a glyph to use
instead of ‘^’.) Otherwise, these codes map just like the codes in the range 128 to 255.

• Character codes 128 through 255 map to sequences of four glyphs, where the first glyph is
the ASCII code for ‘\’, and the others are digit characters representing the code in octal.
(A display table can specify a glyph to use instead of ‘\’.)

The usual display conventions apply even when there is a display table, for any character
whose entry in the active display table is nil. Thus, when you set up a display table, you need
only specify the characters for which you want unusual behavior.

These variables affect the way certain characters are displayed on the screen. Since they
change the number of columns the characters occupy, they also affect the indentation functions.

User Optionctl-arrow
This buffer-local variable controls how control characters are displayed. If it is non-nil,
they are displayed as a caret followed by the character: ‘^A’. If it is nil, they are displayed
as a backslash followed by three octal digits: ‘\001’.

596 XEmacs Lisp Reference Manual

Variabledefault-ctl-arrow
The value of this variable is the default value for ctl-arrow in buffers that do not override
it. See Section 10.9.3 [Default Value], page 144.

User Optiontab-width
The value of this variable is the spacing between tab stops used for displaying tab char-
acters in Emacs buffers. The default is 8. Note that this feature is completely inde-
pendent from the user-settable tab stops used by the command tab-to-tab-stop. See
Section 36.16.5 [Indent Tabs], page 486.

45.11 Display Tables

You can use the display table feature to control how all 256 possible character codes display
on the screen. This is useful for displaying European languages that have letters not in the
ASCII character set.

The display table maps each character code into a sequence of runes, each rune being an
image that takes up one character position on the screen. You can also define how to display
each rune on your terminal, using the rune table.

45.11.1 Display Table Format

A display table is an array of 256 elements. (In FSF Emacs, a display table is 262 elements.
The six extra elements specify the truncation and continuation glyphs, etc. This method is very
kludgey, and in XEmacs the variables truncation-glyph, continuation-glyph, etc. are used.
See Section 45.2 [Truncation], page 586.)

Functionmake-display-table
This creates and returns a display table. The table initially has nil in all elements.

The 256 elements correspond to character codes; the nth element says how to display the
character code n. The value should be nil, a string, a glyph, or a vector of strings and glyphs
(see Section 45.11.3 [Character Descriptors], page 597). If an element is nil, it says to display
that character according to the usual display conventions (see Section 45.10 [Usual Display],
page 595).

If you use the display table to change the display of newline characters, the whole buffer will
be displayed as one long “line.”

For example, here is how to construct a display table that mimics the effect of setting ctl-
arrow to a non-nil value:

(setq disptab (make-display-table))
(let ((i 0))
(while (< i 32)

(or (= i ?\t) (= i ?\n)
(aset disptab i (concat "^" (char-to-string (+ i 64)))))

(setq i (1+ i)))
(aset disptab 127 "^?"))

Chapter 45: Emacs Display 597

45.11.2 Active Display Table

The active display table is controlled by the variable current-display-table. This is a
specifier, which means that you can specify separate values for it in individual buffers, windows,
frames, and devices, as well as a global value. It also means that you cannot set this variable
using setq; use set-specifier instead. See Chapter 41 [Specifiers], page 541. (FSF Emacs uses
window-display-table, buffer-display-table, standard-display-table, etc. to control
the display table. However, specifiers are a cleaner and more powerful way of doing the same
thing. FSF Emacs also uses a different format for the contents of a display table, using additional
indirection to a “glyph table” and such. Note that “glyph” has a different meaning in XEmacs.)

Individual faces can also specify an overriding display table; this is set using set-face-
display-table. See Section 42.1 [Faces], page 555.

If no display table can be determined for a particular window, then XEmacs uses the usual
display conventions. See Section 45.10 [Usual Display], page 595.

45.11.3 Character Descriptors

Each element of the display-table vector describes how to display a particular character and
is called a character descriptor. A character descriptor can be:

a string Display this particular string wherever the character is to be displayed.

a glyph Display this particular glyph wherever the character is to be displayed.

a vector The vector may contain strings and/or glyphs. Display the elements of the vector
one after another wherever the character is to be displayed.

nil Display according to the standard interpretation (see Section 45.10 [Usual Display],
page 595).

45.12 Beeping

You can make XEmacs ring a bell, play a sound, or blink the screen to attract the user’s
attention. Be conservative about how often you do this; frequent bells can become irritating.
Also be careful not to use beeping alone when signaling an error is appropriate. (See Section 9.5.3
[Errors], page 124.)

Functionding &optional dont-terminate sound device
This function beeps, or flashes the screen (see visible-bell below). It also terminates
any keyboard macro currently executing unless dont-terminate is non-nil. If sound is
specified, it should be a symbol specifying which sound to make. This sound will be
played if visible-bell is nil. (This only works if sound support was compiled into the
executable and you are running on the console of a Sun SparcStation, SGI, HP9000s700,
or Linux PC. Otherwise you just get a beep.) The optional third argument specifies what
device to make the sound on, and defaults to the selected device.

Functionbeep &optional dont-terminate sound device
This is a synonym for ding.

598 XEmacs Lisp Reference Manual

User Optionvisible-bell
This variable determines whether XEmacs should flash the screen to represent a bell.
Non-nil means yes, nil means no. On TTY devices, this is effective only if the Termcap
entry for the terminal type has the visible bell flag (‘vb’) set.

Variablesound-alist
This variable holds an alist associating names with sounds. When beep or ding is called
with one of the name symbols, the associated sound will be generated instead of the
standard beep.
Each element of sound-alist is a list describing a sound. The first element of the list
is the name of the sound being defined. Subsequent elements of the list are alternating
keyword/value pairs:

sound A string of raw sound data, or the name of another sound to play. The symbol
t here means use the default X beep.

volume An integer from 0-100, defaulting to bell-volume.

pitch If using the default X beep, the pitch (Hz) to generate.

duration If using the default X beep, the duration (milliseconds).

For compatibility, elements of ‘sound-alist’ may also be:
• (sound-name . <sound>)

• (sound-name <volume> <sound>)

You should probably add things to this list by calling the function load-sound-file.
Caveats:
− You can only play audio data if running on the console screen of a Sun SparcStation,

SGI, or HP9000s700.
− The pitch, duration, and volume options are available everywhere, but many X servers

ignore the ‘pitch’ option.

The following beep-types are used by XEmacs itself:

auto-save-error
when an auto-save does not succeed

command-error
when the XEmacs command loop catches an error

undefined-key
when you type a key that is undefined

undefined-click
when you use an undefined mouse-click combination

no-completion
during completing-read

y-or-n-p when you type something other than ’y’ or ’n’

yes-or-no-p
when you type something other than ’yes’ or ’no’

default used when nothing else is appropriate.

Other lisp packages may use other beep types, but these are the ones that the C kernel of
XEmacs uses.

Chapter 45: Emacs Display 599

User Optionbell-volume
This variable specifies the default volume for sounds, from 0 to 100.

Commandload-default-sounds
This function loads and installs some sound files as beep-types.

Commandload-sound-file filename sound-name &optional volume
This function reads in an audio file and adds it to sound-alist. The sound file must be
in the Sun/NeXT U-LAW format. sound-name should be a symbol, specifying the name
of the sound. If volume is specified, the sound will be played at that volume; otherwise,
the value of bell-volume will be used.

Functionplay-sound sound &optional volume device
This function plays sound sound, which should be a symbol mentioned in sound-alist.
If volume is specified, it overrides the value (if any) specified in sound-alist. device
specifies the device to play the sound on, and defaults to the selected device.

Commandplay-sound-file file &optional volume device
This function plays the named sound file at volume volume, which defaults to bell-
volume. device specifies the device to play the sound on, and defaults to the selected
device.

600 XEmacs Lisp Reference Manual

Chapter 46: Hash Tables 601

46 Hash Tables

Functionhashtablep object
This function returns non-nil if object is a hash table.

46.1 Introduction to Hash Tables

A hash table is a data structure that provides mappings from arbitrary Lisp objects (called
keys) to other arbitrary Lisp objects (called values). There are many ways other than hash tables
of implementing the same sort of mapping, e.g. association lists (see Section 5.8 [Association
Lists], page 85) and property lists (see Section 5.9 [Property Lists], page 88), but hash tables
provide much faster lookup.

When you create a hash table, you specify a size, which indicates the expected number
of elements that the table will hold. You are not bound by this size, however; hash tables
automatically resize themselves if the number of elements becomes too large.

(Internally, hash tables are hashed using a modification of the linear probing hash table
method. This method hashes each key to a particular spot in the hash table, and then scans
forward sequentially until a blank entry is found. To look up a key, hash to the appropriate spot,
then search forward for the key until either a key is found or a blank entry stops the search.
The modification actually used is called double hashing and involves moving forward by a fixed
increment, whose value is computed from the original hash value, rather than always moving
forward by one. This eliminates problems with clustering that can arise from the simple linear
probing method. For more information, see Algorithms (second edition) by Robert Sedgewick,
pp. 236-241.)

Functionmake-hashtable size &optional test-fun
This function makes a hash table of initial size size. Comparison between keys is normally
done with eql; i.e. two keys must be the same object to be considered equivalent. However,
you can explicitly specify the comparison function using test-fun, which must be one of
eq, eql, or equal.
Note that currently, eq and eql are the same. This will change when bignums are imple-
mented.

Functioncopy-hashtable old-table
This function makes a new hash table which contains the same keys and values as the
given table. The keys and values will not themselves be copied.

Functionhashtable-fullness table
This function returns number of entries in table.

46.2 Working With Hash Tables

Functionputhash key val table
This function hashes key to val in table.

602 XEmacs Lisp Reference Manual

Functiongethash key table &optional default
This function finds the hash value for key in table. If there is no corresponding value,
default is returned (defaults to nil).

Functionremhash key table
This function removes the hash value for key in table.

Functionclrhash table
This function flushes table. Afterwards, the hash table will contain no entries.

Functionmaphash function table
This function maps function over entries in table, calling it with two args, each key and
value in the table.

46.3 Weak Hash Tables

A weak hash table is a special variety of hash table whose elements do not count as GC
referents. For any key-value pair in such a hash table, if either the key or value (or in some
cases, if one particular one of the two) has no references to it outside of weak hash tables (and
similar structures such as weak lists), the pair will be removed from the table, and the key and
value collected. A non-weak hash table (or any other pointer) would prevent the objects from
being collected.

Weak hash tables are useful for keeping track of information in a non-obtrusive way, for
example to implement caching. If the cache contains objects such as buffers, markers, image
instances, etc. that will eventually disappear and get garbage-collected, using a weak hash table
ensures that these objects are collected normally rather than remaining around forever, long
past their actual period of use. (Otherwise, you’d have to explicitly map over the hash table
every so often and remove unnecessary elements.)

There are three types of weak hash tables:
fully weak hash tables

In these hash tables, a pair disappears if either the key or the value is unreferenced
outside of the table.

key-weak hash tables
In these hash tables, a pair disappears if the key is unreferenced outside of the table,
regardless of how the value is referenced.

value-weak hash tables
In these hash tables, a pair disappears if the value is unreferenced outside of the
table, regardless of how the key is referenced.

Also see Section 5.10 [Weak Lists], page 91.

Functionmake-weak-hashtable size &optional test-fun
This function makes a fully weak hash table of initial size size. test-fun is as in make-
hashtable.

Functionmake-key-weak-hashtable size &optional test-fun
This function makes a key-weak hash table of initial size size. test-fun is as in make-
hashtable.

Functionmake-value-weak-hashtable size &optional test-fun
This function makes a value-weak hash table of initial size size. test-fun is as in make-
hashtable.

Chapter 47: Range Tables 603

47 Range Tables

A range table is a table that efficiently associated values with ranges of integers.
Note that range tables have a read syntax, like this:

#s(range-table data ((-3 2) foo (5 20) bar))

This maps integers in the range (-3, 2) to foo and integers in the range (5, 20) to bar.

Functionrange-table-p object
Return non-nil if object is a range table.

47.1 Introduction to Range Tables

Functionmake-range-table
Make a new, empty range table.

Functioncopy-range-table old-table
Make a new range table which contains the same values for the same ranges as the given
table. The values will not themselves be copied.

47.2 Working With Range Tables

Functionget-range-table pos table &optional default
This function finds value for position pos in table. If there is no corresponding value,
return default (defaults to nil).

Functionput-range-table start end val table
This function sets the value for range (start, end) to be val in table.

Functionremove-range-table start end table
This function removes the value for range (start, end) in table.

Functionclear-range-table table
This function flushes table.

Functionmap-range-table function table
This function maps function over entries in table, calling it with three args, the beginning
and end of the range and the corresponding value.

604 XEmacs Lisp Reference Manual

Chapter 48: Databases 605

48 Databases

Functiondatabasep object
This function returns non-nil if object is a database.

48.1 Connecting to a Database

Functionopen-database file &optional type subtype access mode
This function opens database file, using database method type and subtype, with access
rights access and permissions mode. access can be any combination of r w and +, for read,
write, and creation flags.
type can have the value ’dbm or ’berkeley_db to select the type of database file to use.
(Note: XEmacs may not support both of these types.)
For a type of ’dbm, there are no subtypes, so subtype should by nil.
For a type of ’berkeley_db, the following subtypes are available: ’hash, ’btree, and
’recno. See the manpages for the Berkeley DB functions to more information about these
types.

Functionclose-database obj
This function closes database obj.

Functiondatabase-live-p obj
This function returns t iff obj is an active database, else nil.

48.2 Working With a Database

Functionget-database key dbase &optional default
This function finds the value for key in database. If there is no corresponding value,
default is returned (nil if default is omitted).

Functionmap-database function dbase
This function maps function over entries in database, calling it with two args, each key
and value in the database.

Functionput-database key val dbase &optional replace
This function stores key and val in database. If optional fourth arg replace is non-nil,
replace any existing entry in the database.

Functionremove-database key dbase
This function removes key from database.

606 XEmacs Lisp Reference Manual

48.3 Other Database Functions

Functiondatabase-file-name obj
This function returns the filename associated with the database obj.

Functiondatabase-last-error &optional obj
This function returns the last error associated with database obj.

Functiondatabase-subtype obj
This function returns the subtype of database obj, if any.

Functiondatabase-type obj
This function returns the type of database obj.

Chapter 49: Processes 607

49 Processes

In the terminology of operating systems, a process is a space in which a program can execute.
XEmacs runs in a process. XEmacs Lisp programs can invoke other programs in processes of
their own. These are called subprocesses or child processes of the XEmacs process, which is
their parent process.

A subprocess of XEmacs may be synchronous or asynchronous, depending on how it is cre-
ated. When you create a synchronous subprocess, the Lisp program waits for the subprocess
to terminate before continuing execution. When you create an asynchronous subprocess, it can
run in parallel with the Lisp program. This kind of subprocess is represented within XEmacs
by a Lisp object which is also called a “process”. Lisp programs can use this object to com-
municate with the subprocess or to control it. For example, you can send signals, obtain status
information, receive output from the process, or send input to it.

Functionprocessp object
This function returns t if object is a process, nil otherwise.

49.1 Functions that Create Subprocesses

There are three functions that create a new subprocess in which to run a program. One
of them, start-process, creates an asynchronous process and returns a process object (see
Section 49.4 [Asynchronous Processes], page 610). The other two, call-process and call-
process-region, create a synchronous process and do not return a process object (see Sec-
tion 49.2 [Synchronous Processes], page 608).

Synchronous and asynchronous processes are explained in following sections. Since the three
functions are all called in a similar fashion, their common arguments are described here.

In all cases, the function’s program argument specifies the program to be run. An error is
signaled if the file is not found or cannot be executed. If the file name is relative, the variable
exec-path contains a list of directories to search. Emacs initializes exec-path when it starts up,
based on the value of the environment variable PATH. The standard file name constructs, ‘~’, ‘.’,
and ‘..’, are interpreted as usual in exec-path, but environment variable substitutions (‘$HOME’,
etc.) are not recognized; use substitute-in-file-name to perform them (see Section 28.8.4
[File Name Expansion], page 371).

Each of the subprocess-creating functions has a buffer-or-name argument which specifies
where the standard output from the program will go. If buffer-or-name is nil, that says to
discard the output unless a filter function handles it. (See Section 49.9.2 [Filter Functions],
page 617, and Chapter 17 [Read and Print], page 227.) Normally, you should avoid having
multiple processes send output to the same buffer because their output would be intermixed
randomly.

All three of the subprocess-creating functions have a &rest argument, args. The args must
all be strings, and they are supplied to program as separate command line arguments. Wildcard
characters and other shell constructs are not allowed in these strings, since they are passed
directly to the specified program.

Please note: The argument program contains only the name of the program; it may not
contain any command-line arguments. You must use args to provide those.

The subprocess gets its current directory from the value of default-directory (see Sec-
tion 28.8.4 [File Name Expansion], page 371).

The subprocess inherits its environment from XEmacs; but you can specify overrides for it
with process-environment. See Section 50.3 [System Environment], page 629.

608 XEmacs Lisp Reference Manual

Variableexec-directory
The value of this variable is the name of a directory (a string) that contains programs
that come with XEmacs, that are intended for XEmacs to invoke. The program wakeup
is an example of such a program; the display-time command uses it to get a reminder
once per minute.

User Optionexec-path
The value of this variable is a list of directories to search for programs to run in subpro-
cesses. Each element is either the name of a directory (i.e., a string), or nil, which stands
for the default directory (which is the value of default-directory).
The value of exec-path is used by call-process and start-process when the program
argument is not an absolute file name.

49.2 Creating a Synchronous Process

After a synchronous process is created, XEmacs waits for the process to terminate before
continuing. Starting Dired is an example of this: it runs ls in a synchronous process, then
modifies the output slightly. Because the process is synchronous, the entire directory listing
arrives in the buffer before XEmacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by typing
C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits until the
subprocess actually terminates before quitting. If during that time the user types another C-
g, that kills the subprocess instantly with SIGKILL and quits immediately. See Section 19.8
[Quitting], page 278.

The synchronous subprocess functions returned nil in version 18. In version 19, they return
an indication of how the process terminated.

Functioncall-process program &optional infile destination display &rest args
This function calls program in a separate process and waits for it to finish.
The standard input for the process comes from file infile if infile is not nil and from
‘/dev/null’ otherwise. The argument destination says where to put the process output.
Here are the possibilities:

a buffer Insert the output in that buffer, before point. This includes both the standard
output stream and the standard error stream of the process.

a string Find or create a buffer with that name, then insert the output in that buffer,
before point.

t Insert the output in the current buffer, before point.

nil Discard the output.

0 Discard the output, and return immediately without waiting for the subpro-
cess to finish.
In this case, the process is not truly synchronous, since it can run in parallel
with Emacs; but you can think of it as synchronous in that Emacs is essentially
finished with the subprocess as soon as this function returns.

(real-destination error-destination)
Keep the standard output stream separate from the standard error stream;
deal with the ordinary output as specified by real-destination, and dispose of
the error output according to error-destination. The value nil means discard

Chapter 49: Processes 609

it, t means mix it with the ordinary output, and a string specifies a file name
to redirect error output into.
You can’t directly specify a buffer to put the error output in; that is too
difficult to implement. But you can achieve this result by sending the error
output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted.
Otherwise the function does no redisplay, and the results become visible on the screen
only when XEmacs redisplays that buffer in the normal course of events.
The remaining arguments, args, are strings that specify command line arguments for the
program.
The value returned by call-process (unless you told it not to wait) indicates the reason
for process termination. A number gives the exit status of the subprocess; 0 means success,
and any other value means failure. If the process terminated with a signal, call-process
returns a string describing the signal.
In the examples below, the buffer ‘foo’ is current.

(call-process "pwd" nil t)
⇒ nil

---------- Buffer: foo ----------
/usr/user/lewis/manual
---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
⇒ nil

---------- Buffer: bar ----------
lewis:5LTsHm66CSWKg:398:21:Bil Lewis:/user/lewis:/bin/csh

---------- Buffer: bar ----------

The insert-directory function contains a good example of the use of call-process:
(call-process insert-directory-program nil t nil switches

(if full-directory-p
(concat (file-name-as-directory file) ".")

file))

Functioncall-process-region start end program &optional delete destination display
&rest args

This function sends the text between start to end as standard input to a process running
program. It deletes the text sent if delete is non-nil; this is useful when buffer is t, to
insert the output in the current buffer.
The arguments destination and display control what to do with the output from the sub-
process, and whether to update the display as it comes in. For details, see the description
of call-process, above. If destination is the integer 0, call-process-region discards
the output and returns nil immediately, without waiting for the subprocess to finish.
The remaining arguments, args, are strings that specify command line arguments for the
program.
The return value of call-process-region is just like that of call-process: nil if you
told it to return without waiting; otherwise, a number or string which indicates how the
subprocess terminated.
In the following example, we use call-process-region to run the cat utility, with stan-
dard input being the first five characters in buffer ‘foo’ (the word ‘input’). cat copies its

610 XEmacs Lisp Reference Manual

standard input into its standard output. Since the argument destination is t, this output
is inserted in the current buffer.

---------- Buffer: foo ----------
input?
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
⇒ nil

---------- Buffer: foo ----------
inputinput?
---------- Buffer: foo ----------

The shell-command-on-region command uses call-process-region like this:

(call-process-region
start end
shell-file-name ; Name of program.
nil ; Do not delete region.
buffer ; Send output to buffer.
nil ; No redisplay during output.
"-c" command) ; Arguments for the shell.

49.3 MS-DOS Subprocesses

On MS-DOS, you must indicate whether the data going to and from a synchronous subprocess
are text or binary. Text data requires translation between the end-of-line convention used within
Emacs (a single newline character) and the convention used outside Emacs (the two-character
sequence, crlf).

The variable binary-process-input applies to input sent to the subprocess, and binary-
process-output applies to output received from it. A non-nil value means the data is non-text;
nil means the data is text, and calls for conversion.

Variablebinary-process-input
If this variable is nil, convert newlines to crlf sequences in the input to a synchronous
subprocess.

Variablebinary-process-output
If this variable is nil, convert crlf sequences to newlines in the output from a synchronous
subprocess.

See Section 28.14 [Files and MS-DOS], page 380, for related information.

49.4 Creating an Asynchronous Process

After an asynchronous process is created, Emacs and the Lisp program both continue running
immediately. The process may thereafter run in parallel with Emacs, and the two may commu-
nicate with each other using the functions described in following sections. Here we describe how
to create an asynchronous process with start-process.

Chapter 49: Processes 611

Functionstart-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program
running in it. It returns a process object that stands for the new subprocess in Lisp.
The argument name specifies the name for the process object; if a process with this name
already exists, then name is modified (by adding ‘<1>’, etc.) to be unique. The buffer
buffer-or-name is the buffer to associate with the process.
The remaining arguments, args, are strings that specify command line arguments for the
program.
In the example below, the first process is started and runs (rather, sleeps) for 100 seconds.
Meanwhile, the second process is started, and given the name ‘my-process<1>’ for the
sake of uniqueness. It inserts the directory listing at the end of the buffer ‘foo’, before
the first process finishes. Then it finishes, and a message to that effect is inserted in the
buffer. Much later, the first process finishes, and another message is inserted in the buffer
for it.

(start-process "my-process" "foo" "sleep" "100")
⇒ #<process my-process>

(start-process "my-process" "foo" "ls" "-l" "/user/lewis/bin")
⇒ #<process my-process<1>>

---------- Buffer: foo ----------
total 2
lrwxrwxrwx 1 lewis 14 Jul 22 10:12 gnuemacs --> /emacs
-rwxrwxrwx 1 lewis 19 Jul 30 21:02 lemon

Process my-process<1> finished

Process my-process finished
---------- Buffer: foo ----------

Functionstart-process-shell-command name buffer-or-name command &rest
command-args

This function is like start-process except that it uses a shell to execute the specified
command. The argument command is a shell command name, and command-args are the
arguments for the shell command.

Variableprocess-connection-type
This variable controls the type of device used to communicate with asynchronous sub-
processes. If it is non-nil, then ptys are used, when available. Otherwise, pipes are
used.
ptys are usually preferable for processes visible to the user, as in Shell mode, because they
allow job control (C-c, C-z, etc.) to work between the process and its children whereas
pipes do not. For subprocesses used for internal purposes by programs, it is often better
to use a pipe, because they are more efficient. In addition, the total number of ptys is
limited on many systems and it is good not to waste them.
The value process-connection-type is used when start-process is called. So you can
specify how to communicate with one subprocess by binding the variable around the call
to start-process.

(let ((process-connection-type nil)) ; Use a pipe.
(start-process ...))

To determine whether a given subprocess actually got a pipe or a pty, use the function
process-tty-name (see Section 49.6 [Process Information], page 612).

612 XEmacs Lisp Reference Manual

49.5 Deleting Processes

Deleting a process disconnects XEmacs immediately from the subprocess, and removes it
from the list of active processes. It sends a signal to the subprocess to make the subprocess
terminate, but this is not guaranteed to happen immediately. The process object itself continues
to exist as long as other Lisp objects point to it.

You can delete a process explicitly at any time. Processes are deleted automatically after
they terminate, but not necessarily right away. If you delete a terminated process explicitly
before it is deleted automatically, no harm results.

Variabledelete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to calling
exit or to a signal). If it is nil, then they continue to exist until the user runs list-
processes. Otherwise, they are deleted immediately after they exit.

Functiondelete-process name
This function deletes the process associated with name, killing it with a SIGHUP signal.
The argument name may be a process, the name of a process, a buffer, or the name of a
buffer.

(delete-process "*shell*")
⇒ nil

Functionprocess-kill-without-query process &optional require-query-p
This function declares that XEmacs need not query the user if process is still running when
XEmacs is exited. The process will be deleted silently. If require-query-p is non-nil, then
XEmacs will query the user (this is the default). The return value is t if a query was
formerly required, and nil otherwise.

(process-kill-without-query (get-process "shell"))
⇒ t

49.6 Process Information

Several functions return information about processes. list-processes is provided for inter-
active use.

Commandlist-processes
This command displays a listing of all living processes. In addition, it finally deletes any
process whose status was ‘Exited’ or ‘Signaled’. It returns nil.

Functionprocess-list
This function returns a list of all processes that have not been deleted.

(process-list)
⇒ (#<process display-time> #<process shell>)

Functionget-process name
This function returns the process named name, or nil if there is none. An error is signaled
if name is not a string.

(get-process "shell")
⇒ #<process shell>

Chapter 49: Processes 613

Functionprocess-command process
This function returns the command that was executed to start process. This is a list of
strings, the first string being the program executed and the rest of the strings being the
arguments that were given to the program.

(process-command (get-process "shell"))
⇒ ("/bin/csh" "-i")

Functionprocess-id process
This function returns the pid of process. This is an integer that distinguishes the process
process from all other processes running on the same computer at the current time. The
pid of a process is chosen by the operating system kernel when the process is started and
remains constant as long as the process exists.

Functionprocess-name process
This function returns the name of process.

Functionprocess-status process-name
This function returns the status of process-name as a symbol. The argument process-name
must be a process, a buffer, a process name (string) or a buffer name (string).
The possible values for an actual subprocess are:

run for a process that is running.

stop for a process that is stopped but continuable.

exit for a process that has exited.

signal for a process that has received a fatal signal.

open for a network connection that is open.

closed for a network connection that is closed. Once a connection is closed, you
cannot reopen it, though you might be able to open a new connection to the
same place.

nil if process-name is not the name of an existing process.
(process-status "shell")

⇒ run
(process-status (get-buffer "*shell*"))

⇒ run
x

⇒ #<process xx<1>>
(process-status x)

⇒ exit

For a network connection, process-status returns one of the symbols open or closed.
The latter means that the other side closed the connection, or XEmacs did delete-
process.
In earlier Emacs versions (prior to version 19), the status of a network connection was run
if open, and exit if closed.

Functionprocess-kill-without-query-p process
This function returns whether process will be killed without querying the user, if it is
running when XEmacs is exited. The default value is nil.

614 XEmacs Lisp Reference Manual

Functionprocess-exit-status process
This function returns the exit status of process or the signal number that killed it. (Use
the result of process-status to determine which of those it is.) If process has not yet
terminated, the value is 0.

Functionprocess-tty-name process
This function returns the terminal name that process is using for its communication with
Emacs—or nil if it is using pipes instead of a terminal (see process-connection-type
in Section 49.4 [Asynchronous Processes], page 610).

49.7 Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by XEmacs, which is done
with the functions in this section. You must specify the process to send input to, and the input
data to send. The data appears on the “standard input” of the subprocess.

Some operating systems have limited space for buffered input in a pty. On these systems,
Emacs sends an eof periodically amidst the other characters, to force them through. For most
programs, these eofs do no harm.

Functionprocess-send-string process-name string
This function sends process-name the contents of string as standard input. The argument
process-name must be a process or the name of a process. If it is nil, the current buffer’s
process is used.
The function returns nil.

(process-send-string "shell<1>" "ls\n")
⇒ nil

---------- Buffer: *shell* ----------
...
introduction.texi syntax-tables.texi~
introduction.texi~ text.texi
introduction.txt text.texi~
...
---------- Buffer: *shell* ----------

Commandprocess-send-region process-name start end
This function sends the text in the region defined by start and end as standard input to
process-name, which is a process or a process name. (If it is nil, the current buffer’s
process is used.)
An error is signaled unless both start and end are integers or markers that indicate posi-
tions in the current buffer. (It is unimportant which number is larger.)

Functionprocess-send-eof &optional process-name
This function makes process-name see an end-of-file in its input. The eof comes after
any text already sent to it.
If process-name is not supplied, or if it is nil, then this function sends the eof to the
current buffer’s process. An error is signaled if the current buffer has no process.
The function returns process-name.

(process-send-eof "shell")
⇒ "shell"

Chapter 49: Processes 615

49.8 Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several
different signals, each with its own meaning. The set of signals and their names is defined by
the operating system. For example, the signal SIGINT means that the user has typed C-c, or
that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess, but
some stop or resume execution instead. Most signals can optionally be handled by programs; if
the program handles the signal, then we can say nothing in general about its effects.

The set of signals and their names is defined by the operating system; XEmacs has facilities
for sending only a few of the signals that are defined. XEmacs can send signals only to its own
subprocesses.

You can send signals explicitly by calling the functions in this section. XEmacs also sends
signals automatically at certain times: killing a buffer sends a SIGHUP signal to all its associated
processes; killing XEmacs sends a SIGHUP signal to all remaining processes. (SIGHUP is a signal
that usually indicates that the user hung up the phone.)

Each of the signal-sending functions takes two optional arguments: process-name and current-
group.

The argument process-name must be either a process, the name of one, or nil. If it is nil,
the process defaults to the process associated with the current buffer. An error is signaled if
process-name does not identify a process.

The argument current-group is a flag that makes a difference when you are running a job-
control shell as an XEmacs subprocess. If it is non-nil, then the signal is sent to the current
process-group of the terminal that XEmacs uses to communicate with the subprocess. If the
process is a job-control shell, this means the shell’s current subjob. If it is nil, the signal is sent
to the process group of the immediate subprocess of XEmacs. If the subprocess is a job-control
shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the subprocess,
because the operating system does not support the distinction in the case of pipes. For the same
reason, job-control shells won’t work when a pipe is used. See process-connection-type in
Section 49.4 [Asynchronous Processes], page 610.

Functioninterrupt-process &optional process-name current-group
This function interrupts the process process-name by sending the signal SIGINT. Outside
of XEmacs, typing the “interrupt character” (normally C-c on some systems, and DEL on
others) sends this signal. When the argument current-group is non-nil, you can think of
this function as “typing C-c” on the terminal by which XEmacs talks to the subprocess.

Functionkill-process &optional process-name current-group
This function kills the process process-name by sending the signal SIGKILL. This signal
kills the subprocess immediately, and cannot be handled by the subprocess.

Functionquit-process &optional process-name current-group
This function sends the signal SIGQUIT to the process process-name. This signal is the
one sent by the “quit character” (usually C-b or C-\) when you are not inside XEmacs.

Functionstop-process &optional process-name current-group
This function stops the process process-name by sending the signal SIGTSTP. Use
continue-process to resume its execution.
On systems with job control, the “stop character” (usually C-z) sends this signal (outside
of XEmacs). When current-group is non-nil, you can think of this function as “typing
C-z” on the terminal XEmacs uses to communicate with the subprocess.

616 XEmacs Lisp Reference Manual

Functioncontinue-process &optional process-name current-group
This function resumes execution of the process process by sending it the signal SIGCONT.
This presumes that process-name was stopped previously.

Functionsignal-process pid signal
This function sends a signal to process pid, which need not be a child of XEmacs. The
argument signal specifies which signal to send; it should be an integer.

49.9 Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output
stream. The output can be inserted in a buffer, which is called the associated buffer of the
process, or a function called the filter function can be called to act on the output. If the process
has no buffer and no filter function, its output is discarded.

49.9.1 Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs
buffer that is used for two purposes: storing the output from the process, and deciding when to
kill the process. You can also use the buffer to identify a process to operate on, since in normal
practice only one process is associated with any given buffer. Many applications of processes
also use the buffer for editing input to be sent to the process, but this is not built into XEmacs
Lisp.

Unless the process has a filter function (see Section 49.9.2 [Filter Functions], page 617), its
output is inserted in the associated buffer. The position to insert the output is determined by
the process-mark, which is then updated to point to the end of the text just inserted. Usually,
but not always, the process-mark is at the end of the buffer.

Functionprocess-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
⇒ #<buffer *shell*>

Functionprocess-mark process
This function returns the process marker for process, which is the marker that says where
to insert output from the process.
If process does not have a buffer, process-mark returns a marker that points nowhere.
Insertion of process output in a buffer uses this marker to decide where to insert, and
updates it to point after the inserted text. That is why successive batches of output are
inserted consecutively.
Filter functions normally should use this marker in the same fashion as is done by direct
insertion of output in the buffer. A good example of a filter function that uses process-
mark is found at the end of the following section.
When the user is expected to enter input in the process buffer for transmission to the
process, the process marker is useful for distinguishing the new input from previous output.

Functionset-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the process
becomes associated with no buffer.

Chapter 49: Processes 617

Functionget-buffer-process buffer-or-name
This function returns the process associated with buffer-or-name. If there are several
processes associated with it, then one is chosen. (Presently, the one chosen is the one
most recently created.) It is usually a bad idea to have more than one process associated
with the same buffer.

(get-buffer-process "*shell*")
⇒ #<process shell>

Killing the process’s buffer deletes the process, which kills the subprocess with a SIGHUP
signal (see Section 49.8 [Signals to Processes], page 615).

49.9.2 Process Filter Functions

A process filter function is a function that receives the standard output from the associated
process. If a process has a filter, then all output from that process is passed to the filter. The
process buffer is used directly for output from the process only when there is no filter.

A filter function must accept two arguments: the associated process and a string, which is
the output. The function is then free to do whatever it chooses with the output.

A filter function runs only while XEmacs is waiting (e.g., for terminal input, or for time to
elapse, or for process output). This avoids the timing errors that could result from running fil-
ters at random places in the middle of other Lisp programs. You may explicitly cause Emacs to
wait, so that filter functions will run, by calling sit-for or sleep-for (see Section 19.7 [Wait-
ing], page 277), or accept-process-output (see Section 49.9.3 [Accepting Output], page 619).
Emacs is also waiting when the command loop is reading input.

Quitting is normally inhibited within a filter function—otherwise, the effect of typing C-g at
command level or to quit a user command would be unpredictable. If you want to permit quitting
inside a filter function, bind inhibit-quit to nil. See Section 19.8 [Quitting], page 278.

If an error happens during execution of a filter function, it is caught automatically, so that
it doesn’t stop the execution of whatever program was running when the filter function was
started. However, if debug-on-error is non-nil, the error-catching is turned off. This makes
it possible to use the Lisp debugger to debug the filter function. See Section 16.1 [Debugger],
page 197.

Many filter functions sometimes or always insert the text in the process’s buffer, mimicking
the actions of XEmacs when there is no filter. Such filter functions need to use set-buffer in
order to be sure to insert in that buffer. To avoid setting the current buffer semipermanently,
these filter functions must use unwind-protect to make sure to restore the previous current
buffer. They should also update the process marker, and in some cases update the value of
point. Here is how to do these things:

(defun ordinary-insertion-filter (proc string)
(let ((old-buffer (current-buffer)))

(unwind-protect
(let (moving)

(set-buffer (process-buffer proc))
(setq moving (= (point) (process-mark proc)))
(save-excursion

;; Insert the text, moving the process-marker.
(goto-char (process-mark proc))
(insert string)
(set-marker (process-mark proc) (point)))

(if moving (goto-char (process-mark proc))))
(set-buffer old-buffer))))

618 XEmacs Lisp Reference Manual

The reason to use an explicit unwind-protect rather than letting save-excursion restore the
current buffer is so as to preserve the change in point made by goto-char.

To make the filter force the process buffer to be visible whenever new text arrives, insert the
following line just before the unwind-protect:

(display-buffer (process-buffer proc))

To force point to move to the end of the new output no matter where it was previously,
eliminate the variable moving and call goto-char unconditionally.

In earlier Emacs versions, every filter function that did regexp searching or matching had to
explicitly save and restore the match data. Now Emacs does this automatically; filter functions
never need to do it explicitly. See Section 37.6 [Match Data], page 506.

A filter function that writes the output into the buffer of the process should check whether
the buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer is
dead, (buffer-name (process-buffer process)) returns nil.

The output to the function may come in chunks of any size. A program that produces the
same output twice in a row may send it as one batch of 200 characters one time, and five batches
of 40 characters the next.

Functionset-process-filter process filter
This function gives process the filter function filter. If filter is nil, then the process will
have no filter. If filter is t, then no output from the process will be accepted until the
filter is changed. (Output received during this time is not discarded, but is queued, and
will be processed as soon as the filter is changed.)

Functionprocess-filter process
This function returns the filter function of process, or nil if it has none. t means that
output processing has been stopped.

Here is an example of use of a filter function:

(defun keep-output (process output)
(setq kept (cons output kept)))
⇒ keep-output

(setq kept nil)
⇒ nil

(set-process-filter (get-process "shell") ’keep-output)
⇒ keep-output

(process-send-string "shell" "ls ~/other\n")
⇒ nil

kept
⇒ ("lewis@slug[8] % "

"FINAL-W87-SHORT.MSS backup.otl kolstad.mss~
address.txt backup.psf kolstad.psf
backup.bib~ david.mss resume-Dec-86.mss~
backup.err david.psf resume-Dec.psf
backup.mss dland syllabus.mss
"
"#backups.mss# backup.mss~ kolstad.mss
")

Chapter 49: Processes 619

49.9.3 Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while XEmacs is waiting for
some sort of external event, such as elapsed time or terminal input. Occasionally it is useful in
a Lisp program to explicitly permit output to arrive at a specific point, or even to wait until
output arrives from a process.

Functionaccept-process-output &optional process seconds millisec
This function allows XEmacs to read pending output from processes. The output is
inserted in the associated buffers or given to their filter functions. If process is non-nil
then this function does not return until some output has been received from process.
The arguments seconds and millisec let you specify timeout periods. The former specifies
a period measured in seconds and the latter specifies one measured in milliseconds. The
two time periods thus specified are added together, and accept-process-output returns
after that much time whether or not there has been any subprocess output. Note that
seconds is allowed to be a floating-point number; thus, there is no need to ever use millisec.
(It is retained for compatibility purposes.)
The function accept-process-output returns non-nil if it did get some output, or nil
if the timeout expired before output arrived.

49.10 Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes status
for any reason, including signals (whether sent by XEmacs or caused by the process’s own
actions) that terminate, stop, or continue the process. The process sentinel is also called if the
process exits. The sentinel receives two arguments: the process for which the event occurred,
and a string describing the type of event.

The string describing the event looks like one of the following:
• "finished\n".
• "exited abnormally with code exitcode\n".
• "name-of-signal\n".
• "name-of-signal (core dumped)\n".

A sentinel runs only while XEmacs is waiting (e.g., for terminal input, or for time to elapse,
or for process output). This avoids the timing errors that could result from running them at
random places in the middle of other Lisp programs. A program can wait, so that sentinels
will run, by calling sit-for or sleep-for (see Section 19.7 [Waiting], page 277), or accept-
process-output (see Section 49.9.3 [Accepting Output], page 619). Emacs is also waiting when
the command loop is reading input.

Quitting is normally inhibited within a sentinel—otherwise, the effect of typing C-g at com-
mand level or to quit a user command would be unpredictable. If you want to permit quitting
inside a sentinel, bind inhibit-quit to nil. See Section 19.8 [Quitting], page 278.

A sentinel that writes the output into the buffer of the process should check whether the
buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer is
dead, (buffer-name (process-buffer process)) returns nil.

If an error happens during execution of a sentinel, it is caught automatically, so that it doesn’t
stop the execution of whatever programs was running when the sentinel was started. However,
if debug-on-error is non-nil, the error-catching is turned off. This makes it possible to use
the Lisp debugger to debug the sentinel. See Section 16.1 [Debugger], page 197.

620 XEmacs Lisp Reference Manual

In earlier Emacs versions, every sentinel that did regexp searching or matching had to ex-
plicitly save and restore the match data. Now Emacs does this automatically; sentinels never
need to do it explicitly. See Section 37.6 [Match Data], page 506.

Functionset-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will
have no sentinel. The default behavior when there is no sentinel is to insert a message in
the process’s buffer when the process status changes.

(defun msg-me (process event)
(princ
(format "Process: %s had the event ‘%s’" process event)))

(set-process-sentinel (get-process "shell") ’msg-me)
⇒ msg-me

(kill-process (get-process "shell"))
a Process: #<process shell> had the event ‘killed’
⇒ #<process shell>

Functionprocess-sentinel process
This function returns the sentinel of process, or nil if it has none.

Functionwaiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if XEmacs was
waiting for keyboard input from the user at the time the sentinel or filter function was
called, nil if it was not.

49.11 Process Window Size

Functionset-process-window-size process height width
This function tells process that its logical window size is height by width characters. This
is principally useful with pty’s.

49.12 Transaction Queues

You can use a transaction queue for more convenient communication with subprocesses using
transactions. First use tq-create to create a transaction queue communicating with a specified
process. Then you can call tq-enqueue to send a transaction.

Functiontq-create process
This function creates and returns a transaction queue communicating with process. The
argument process should be a subprocess capable of sending and receiving streams of
bytes. It may be a child process, or it may be a TCP connection to a server, possibly on
another machine.

Functiontq-enqueue queue question regexp closure fn
This function sends a transaction to queue queue. Specifying the queue has the effect of
specifying the subprocess to talk to.
The argument question is the outgoing message that starts the transaction. The argument
fn is the function to call when the corresponding answer comes back; it is called with two
arguments: closure, and the answer received.

Chapter 49: Processes 621

The argument regexp is a regular expression that should match the entire answer, but
nothing less; that’s how tq-enqueue determines where the answer ends.
The return value of tq-enqueue itself is not meaningful.

Functiontq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete, and
then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See Section 49.9.2 [Filter
Functions], page 617.

49.13 Network Connections

XEmacs Lisp programs can open TCP network connections to other processes on the same
machine or other machines. A network connection is handled by Lisp much like a subprocess,
and is represented by a process object. However, the process you are communicating with is not
a child of the XEmacs process, so you can’t kill it or send it signals. All you can do is send and
receive data. delete-process closes the connection, but does not kill the process at the other
end; that process must decide what to do about closure of the connection.

You can distinguish process objects representing network connections from those representing
subprocesses with the process-status function. It always returns either open or closed for
a network connection, and it never returns either of those values for a real subprocess. See
Section 49.6 [Process Information], page 612.

Functionopen-network-stream name buffer-or-name host service
This function opens a TCP connection for a service to a host. It returns a process object
to represent the connection.
The name argument specifies the name for the process object. It is modified as necessary
to make it unique.
The buffer-or-name argument is the buffer to associate with the connection. Output from
the connection is inserted in the buffer, unless you specify a filter function to handle the
output. If buffer-or-name is nil, it means that the connection is not associated with any
buffer.
The arguments host and service specify where to connect to; host is the host name or IP
address (a string), and service is the name of a defined network service (a string) or a port
number (an integer).

622 XEmacs Lisp Reference Manual

Chapter 50: Operating System Interface 623

50 Operating System Interface

This chapter is about starting and getting out of Emacs, access to values in the operating
system environment, and terminal input, output, and flow control.

See Section B.1 [Building XEmacs], page 693, for related information. See also Chapter 45
[Display], page 585, for additional operating system status information pertaining to the terminal
and the screen.

50.1 Starting Up XEmacs

This section describes what XEmacs does when it is started, and how you can customize
these actions.

50.1.1 Summary: Sequence of Actions at Start Up

The order of operations performed (in ‘startup.el’) by XEmacs when it is started up is as
follows:
1. It loads the initialization library for the window system, if you are using a window system.

This library’s name is ‘term/windowsystem-win.el’.
2. It processes the initial options. (Some of them are handled even earlier than this.)
3. It initializes the X window frame and faces, if appropriate.
4. It runs the normal hook before-init-hook.
5. It loads the library ‘site-start’, unless the option ‘-no-site-file’ was specified. The

library’s file name is usually ‘site-start.el’.
6. It loads the file ‘~/.emacs’ unless ‘-q’ was specified on the command line. (This is not done

in ‘-batch’ mode.) The ‘-u’ option can specify the user name whose home directory should
be used instead of ‘~’.

7. It loads the library ‘default’ unless inhibit-default-init is non-nil. (This is not done
in ‘-batch’ mode or if ‘-q’ was specified on the command line.) The library’s file name is
usually ‘default.el’.

8. It runs the normal hook after-init-hook.
9. It sets the major mode according to initial-major-mode, provided the buffer ‘*scratch*’

is still current and still in Fundamental mode.
10. It loads the terminal-specific Lisp file, if any, except when in batch mode or using a window

system.
11. It displays the initial echo area message, unless you have suppressed that with inhibit-

startup-echo-area-message.
12. It processes the action arguments from the command line.
13. It runs term-setup-hook.
14. It calls frame-notice-user-settings, which modifies the parameters of the selected frame

according to whatever the init files specify.
15. It runs window-setup-hook. See Section 50.1.3 [Terminal-Specific], page 625.
16. It displays copyleft, nonwarranty, and basic use information, provided there were no re-

maining command line arguments (a few steps above) and the value of inhibit-startup-
message is nil.

624 XEmacs Lisp Reference Manual

User Optioninhibit-startup-message
This variable inhibits the initial startup messages (the nonwarranty, etc.). If it is non-nil,
then the messages are not printed.
This variable exists so you can set it in your personal init file, once you are familiar with
the contents of the startup message. Do not set this variable in the init file of a new user,
or in a way that affects more than one user, because that would prevent new users from
receiving the information they are supposed to see.

User Optioninhibit-startup-echo-area-message
This variable controls the display of the startup echo area message. You can suppress the
startup echo area message by adding text with this form to your ‘.emacs’ file:

(setq inhibit-startup-echo-area-message
"your-login-name")

Simply setting inhibit-startup-echo-area-message to your login name is not sufficient
to inhibit the message; Emacs explicitly checks whether ‘.emacs’ contains an expression
as shown above. Your login name must appear in the expression as a Lisp string constant.
This way, you can easily inhibit the message for yourself if you wish, but thoughtless
copying of your ‘.emacs’ file will not inhibit the message for someone else.

50.1.2 The Init File: ‘.emacs’

When you start XEmacs, it normally attempts to load the file ‘.emacs’ from your home
directory. This file, if it exists, must contain Lisp code. It is called your init file. The command
line switches ‘-q’ and ‘-u’ affect the use of the init file; ‘-q’ says not to load an init file, and ‘-u’
says to load a specified user’s init file instead of yours. See section “Entering XEmacs” in The
XEmacs User’s Manual.

A site may have a default init file, which is the library named ‘default.el’. XEmacs finds
the ‘default.el’ file through the standard search path for libraries (see Section 14.1 [How
Programs Do Loading], page 177). The XEmacs distribution does not come with this file; sites
may provide one for local customizations. If the default init file exists, it is loaded whenever
you start Emacs, except in batch mode or if ‘-q’ is specified. But your own personal init file, if
any, is loaded first; if it sets inhibit-default-init to a non-nil value, then XEmacs does not
subsequently load the ‘default.el’ file.

Another file for site-customization is ‘site-start.el’. Emacs loads this before the user’s
init file. You can inhibit the loading of this file with the option ‘-no-site-file’.

Variablesite-run-file
This variable specifies the site-customization file to load before the user’s init file. Its
normal value is "site-start".

If there is a great deal of code in your ‘.emacs’ file, you should move it into another file named
‘something.el’, byte-compile it (see Chapter 15 [Byte Compilation], page 187), and make your
‘.emacs’ file load the other file using load (see Chapter 14 [Loading], page 177).

See section “Init File Examples” in The XEmacs User’s Manual, for examples of how to make
various commonly desired customizations in your ‘.emacs’ file.

User Optioninhibit-default-init
This variable prevents XEmacs from loading the default initialization library file for your
session of XEmacs. If its value is non-nil, then the default library is not loaded. The
default value is nil.

Chapter 50: Operating System Interface 625

Variablebefore-init-hook
Variableafter-init-hook

These two normal hooks are run just before, and just after, loading of the user’s init file,
‘default.el’, and/or ‘site-start.el’.

50.1.3 Terminal-Specific Initialization

Each terminal type can have its own Lisp library that XEmacs loads when run on that type of
terminal. For a terminal type named termtype, the library is called ‘term/termtype’. XEmacs
finds the file by searching the load-path directories as it does for other files, and trying the ‘.elc’
and ‘.el’ suffixes. Normally, terminal-specific Lisp library is located in ‘emacs/lisp/term’, a
subdirectory of the ‘emacs/lisp’ directory in which most XEmacs Lisp libraries are kept.

The library’s name is constructed by concatenating the value of the variable term-file-
prefix and the terminal type. Normally, term-file-prefix has the value "term/"; changing
this is not recommended.

The usual function of a terminal-specific library is to enable special keys to send sequences
that XEmacs can recognize. It may also need to set or add to function-key-map if the Termcap
entry does not specify all the terminal’s function keys. See Section 50.8 [Terminal Input],
page 636.

When the name of the terminal type contains a hyphen, only the part of the name before
the first hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’ and
‘aaa-30-rv’ both use the ‘term/aaa’ library. If necessary, the library can evaluate (getenv
"TERM") to find the full name of the terminal type.

Your ‘.emacs’ file can prevent the loading of the terminal-specific library by setting the
variable term-file-prefix to nil. This feature is useful when experimenting with your own
peculiar customizations.

You can also arrange to override some of the actions of the terminal-specific library by setting
the variable term-setup-hook. This is a normal hook which XEmacs runs using run-hooks at
the end of XEmacs initialization, after loading both your ‘.emacs’ file and any terminal-specific
libraries. You can use this variable to define initializations for terminals that do not have their
own libraries. See Section 26.4 [Hooks], page 342.

Variableterm-file-prefix
If the term-file-prefix variable is non-nil, XEmacs loads a terminal-specific initializa-
tion file as follows:

(load (concat term-file-prefix (getenv "TERM")))

You may set the term-file-prefix variable to nil in your ‘.emacs’ file if you do not
wish to load the terminal-initialization file. To do this, put the following in your ‘.emacs’
file: (setq term-file-prefix nil).

Variableterm-setup-hook
This variable is a normal hook that XEmacs runs after loading your ‘.emacs’ file, the
default initialization file (if any) and the terminal-specific Lisp file.
You can use term-setup-hook to override the definitions made by a terminal-specific file.

Variablewindow-setup-hook
This variable is a normal hook which XEmacs runs after loading your ‘.emacs’ file and
the default initialization file (if any), after loading terminal-specific Lisp code, and after
running the hook term-setup-hook.

626 XEmacs Lisp Reference Manual

50.1.4 Command Line Arguments

You can use command line arguments to request various actions when you start XEmacs.
Since you do not need to start XEmacs more than once per day, and will often leave your XEmacs
session running longer than that, command line arguments are hardly ever used. As a practical
matter, it is best to avoid making the habit of using them, since this habit would encourage
you to kill and restart XEmacs unnecessarily often. These options exist for two reasons: to be
compatible with other editors (for invocation by other programs) and to enable shell scripts to
run specific Lisp programs.

This section describes how Emacs processes command line arguments, and how you can
customize them.

Functioncommand-line
This function parses the command line that XEmacs was called with, processes it, loads
the user’s ‘.emacs’ file and displays the startup messages.

Variablecommand-line-processed
The value of this variable is t once the command line has been processed.
If you redump XEmacs by calling dump-emacs, you may wish to set this variable to nil first
in order to cause the new dumped XEmacs to process its new command line arguments.

Variablecommand-switch-alist
The value of this variable is an alist of user-defined command-line options and associated
handler functions. This variable exists so you can add elements to it.
A command line option is an argument on the command line of the form:

-option

The elements of the command-switch-alist look like this:
(option . handler-function)

The handler-function is called to handle option and receives the option name as its sole
argument.
In some cases, the option is followed in the command line by an argument. In these cases,
the handler-function can find all the remaining command-line arguments in the variable
command-line-args-left. (The entire list of command-line arguments is in command-
line-args.)
The command line arguments are parsed by the command-line-1 function in the
‘startup.el’ file. See also section “Command Line Switches and Arguments” in The
XEmacs User’s Manual.

Variablecommand-line-args
The value of this variable is the list of command line arguments passed to XEmacs.

Variablecommand-line-functions
This variable’s value is a list of functions for handling an unrecognized command-line
argument. Each time the next argument to be processed has no special meaning, the
functions in this list are called, in order of appearance, until one of them returns a non-
nil value.
These functions are called with no arguments. They can access the command-line ar-
gument under consideration through the variable argi. The remaining arguments (not
including the current one) are in the variable command-line-args-left.

Chapter 50: Operating System Interface 627

When a function recognizes and processes the argument in argi, it should return a non-nil
value to say it has dealt with that argument. If it has also dealt with some of the following
arguments, it can indicate that by deleting them from command-line-args-left.
If all of these functions return nil, then the argument is used as a file name to visit.

50.2 Getting out of XEmacs

There are two ways to get out of XEmacs: you can kill the XEmacs job, which exits per-
manently, or you can suspend it, which permits you to reenter the XEmacs process later. As a
practical matter, you seldom kill XEmacs—only when you are about to log out. Suspending is
much more common.

50.2.1 Killing XEmacs

Killing XEmacs means ending the execution of the XEmacs process. The parent process
normally resumes control. The low-level primitive for killing XEmacs is kill-emacs.

Functionkill-emacs &optional exit-data
This function exits the XEmacs process and kills it.
If exit-data is an integer, then it is used as the exit status of the XEmacs process. (This
is useful primarily in batch operation; see Section 50.11 [Batch Mode], page 641.)
If exit-data is a string, its contents are stuffed into the terminal input buffer so that the
shell (or whatever program next reads input) can read them.

All the information in the XEmacs process, aside from files that have been saved, is lost when
the XEmacs is killed. Because killing XEmacs inadvertently can lose a lot of work, XEmacs
queries for confirmation before actually terminating if you have buffers that need saving or
subprocesses that are running. This is done in the function save-buffers-kill-emacs.

Variablekill-emacs-query-functions
After asking the standard questions, save-buffers-kill-emacs calls the functions in the
list kill-buffer-query-functions, in order of appearance, with no arguments. These
functions can ask for additional confirmation from the user. If any of them returns non-
nil, XEmacs is not killed.

Variablekill-emacs-hook
This variable is a normal hook; once save-buffers-kill-emacs is finished with all file
saving and confirmation, it runs the functions in this hook.

50.2.2 Suspending XEmacs

Suspending XEmacs means stopping XEmacs temporarily and returning control to its su-
perior process, which is usually the shell. This allows you to resume editing later in the same
XEmacs process, with the same buffers, the same kill ring, the same undo history, and so on.
To resume XEmacs, use the appropriate command in the parent shell—most likely fg.

Some operating systems do not support suspension of jobs; on these systems, “suspension”
actually creates a new shell temporarily as a subprocess of XEmacs. Then you would exit the
shell to return to XEmacs.

628 XEmacs Lisp Reference Manual

Suspension is not useful with window systems such as X, because the XEmacs job may not
have a parent that can resume it again, and in any case you can give input to some other job
such as a shell merely by moving to a different window. Therefore, suspending is not allowed
when XEmacs is an X client.

Functionsuspend-emacs string
This function stops XEmacs and returns control to the superior process. If and when the
superior process resumes XEmacs, suspend-emacs returns nil to its caller in Lisp.
If string is non-nil, its characters are sent to be read as terminal input by XEmacs’s
superior shell. The characters in string are not echoed by the superior shell; only the
results appear.
Before suspending, suspend-emacs runs the normal hook suspend-hook. In Emacs ver-
sion 18, suspend-hook was not a normal hook; its value was a single function, and if its
value was non-nil, then suspend-emacs returned immediately without actually suspend-
ing anything.
After the user resumes XEmacs, suspend-emacs runs the normal hook suspend-resume-
hook. See Section 26.4 [Hooks], page 342.
The next redisplay after resumption will redraw the entire screen, unless the variable
no-redraw-on-reenter is non-nil (see Section 45.1 [Refresh Screen], page 585).
In the following example, note that ‘pwd’ is not echoed after XEmacs is suspended. But
it is read and executed by the shell.

(suspend-emacs)
⇒ nil

(add-hook ’suspend-hook
(function (lambda ()

(or (y-or-n-p
"Really suspend? ")

(error "Suspend cancelled")))))
⇒ (lambda nil

(or (y-or-n-p "Really suspend? ")
(error "Suspend cancelled")))

(add-hook ’suspend-resume-hook
(function (lambda () (message "Resumed!"))))

⇒ (lambda nil (message "Resumed!"))
(suspend-emacs "pwd")

⇒ nil
---------- Buffer: Minibuffer ----------
Really suspend? y
---------- Buffer: Minibuffer ----------

---------- Parent Shell ----------
lewis@slug[23] % /user/lewis/manual
lewis@slug[24] % fg

---------- Echo Area ----------
Resumed!

Variablesuspend-hook
This variable is a normal hook run before suspending.

Variablesuspend-resume-hook
This variable is a normal hook run after suspending.

Chapter 50: Operating System Interface 629

50.3 Operating System Environment

XEmacs provides access to variables in the operating system environment through various
functions. These variables include the name of the system, the user’s uid, and so on.

Variablesystem-type
The value of this variable is a symbol indicating the type of operating system XEmacs is
operating on. Here is a table of the possible values:

aix-v3 AIX.

berkeley-unix
Berkeley BSD.

dgux Data General DGUX operating system.

gnu A GNU system using the GNU HURD and Mach.

hpux Hewlett-Packard HPUX operating system.

irix Silicon Graphics Irix system.

linux A GNU system using the Linux kernel.

ms-dos Microsoft MS-DOS “operating system.”

next-mach
NeXT Mach-based system.

rtu Masscomp RTU, UCB universe.

unisoft-unix
UniSoft UniPlus.

usg-unix-v
AT&T System V.

vax-vms VAX VMS.

windows-nt
Microsoft windows NT.

xenix SCO Xenix 386.

We do not wish to add new symbols to make finer distinctions unless it is absolutely neces-
sary! In fact, we hope to eliminate some of these alternatives in the future. We recommend
using system-configuration to distinguish between different operating systems.

Variablesystem-configuration
This variable holds the three-part configuration name for the hardware/software configu-
ration of your system, as a string. The convenient way to test parts of this string is with
string-match.

Functionsystem-name
This function returns the name of the machine you are running on.

(system-name)
⇒ "prep.ai.mit.edu"

The symbol system-name is a variable as well as a function. In fact, the function returns
whatever value the variable system-name currently holds. Thus, you can set the variable
system-name in case Emacs is confused about the name of your system. The variable is also
useful for constructing frame titles (see Section 32.3 [Frame Titles], page 429).

630 XEmacs Lisp Reference Manual

Variablemail-host-address
If this variable is non-nil, it is used instead of system-name for purposes of generating
email addresses. For example, it is used when constructing the default value of user-
mail-address. See Section 50.4 [User Identification], page 631. (Since this is done when
XEmacs starts up, the value actually used is the one saved when XEmacs was dumped.
See Section B.1 [Building XEmacs], page 693.)

Functiongetenv var
This function returns the value of the environment variable var, as a string.
Within XEmacs, the environment variable values are kept in the Lisp variable
process-environment.

(getenv "USER")
⇒ "lewis"

lewis@slug[10] % printenv
PATH=.:/user/lewis/bin:/usr/bin:/usr/local/bin
USER=lewis
TERM=ibmapa16
SHELL=/bin/csh
HOME=/user/lewis

Commandsetenv variable value
This command sets the value of the environment variable named variable to value. Both
arguments should be strings. This function works by modifying process-environment;
binding that variable with let is also reasonable practice.

Variableprocess-environment
This variable is a list of strings, each describing one environment variable. The functions
getenv and setenv work by means of this variable.

process-environment
⇒ ("l=/usr/stanford/lib/gnuemacs/lisp"

"PATH=.:/user/lewis/bin:/usr/class:/nfsusr/local/bin"
"USER=lewis"
"TERM=ibmapa16"
"SHELL=/bin/csh"
"HOME=/user/lewis")

Variablepath-separator
This variable holds a string which says which character separates directories in a search
path (as found in an environment variable). Its value is ":" for Unix and GNU systems,
and ";" for MS-DOS and Windows NT.

Variableinvocation-name
This variable holds the program name under which Emacs was invoked. The value is a
string, and does not include a directory name.

Variableinvocation-directory
This variable holds the directory from which the Emacs executable was invoked, or perhaps
nil if that directory cannot be determined.

Chapter 50: Operating System Interface 631

Variableinstallation-directory
If non-nil, this is a directory within which to look for the ‘lib-src’ and ‘etc’ subdirec-
tories. This is non-nil when Emacs can’t find those directories in their standard installed
locations, but can find them in a directory related somehow to the one containing the
Emacs executable.

Functionload-average &optional use-floats
This function returns a list of the current 1-minute, 5-minute and 15-minute load averages.
The values are integers that are 100 times the system load averages. (The load averages
indicate the number of processes trying to run.)
When use-floats is non-nil, floats will be returned instead of integers. These floats are
not multiplied by 100.

(load-average)
⇒ (169 158 164)

(load-average t)
⇒ (1.69921875 1.58984375 1.640625)

lewis@rocky[5] % uptime
8:06pm up 16 day(s), 21:57, 40 users,

load average: 1.68, 1.59, 1.64

If the 5-minute or 15-minute load averages are not available, return a shortened list,
containing only those averages which are available.
On some systems, this function may require special privileges to run, or it may be unim-
plemented for the particular system type. In that case, the function will signal an error.

Functionemacs-pid
This function returns the process id of the Emacs process.

Functionsetprv privilege-name &optional setp getprv
This function sets or resets a VMS privilege. (It does not exist on Unix.) The first arg
is the privilege name, as a string. The second argument, setp, is t or nil, indicating
whether the privilege is to be turned on or off. Its default is nil. The function returns t
if successful, nil otherwise.
If the third argument, getprv, is non-nil, setprv does not change the privilege, but
returns t or nil indicating whether the privilege is currently enabled.

50.4 User Identification

Variableuser-mail-address
This holds the nominal email address of the user who is using Emacs. When Emacs starts
up, it computes a default value that is usually right, but users often set this themselves
when the default value is not right.

Functionuser-login-name &optional uid
If you don’t specify uid, this function returns the name under which the user is logged in. If
the environment variable LOGNAME is set, that value is used. Otherwise, if the environment
variable USER is set, that value is used. Otherwise, the value is based on the effective uid,
not the real uid.
If you specify uid, the value is the user name that corresponds to uid (which should be an
integer).

632 XEmacs Lisp Reference Manual

(user-login-name)
⇒ "lewis"

Functionuser-real-login-name
This function returns the user name corresponding to Emacs’s real uid. This ignores the
effective uid and ignores the environment variables LOGNAME and USER.

Variableuser-full-name
This variable holds the name of the user running this Emacs. It is initialized at startup
time from the value of NAME environment variable. You can change the value of this
variable to alter the result of the user-full-name function.

Functionuser-full-name &optional user
This function returns the full name of user. If user is nil, it defaults to the user running
this Emacs. In that case, the value of user-full-name variable, if non-nil, will be used.
If user is specified explicitly, user-full-name variable is ignored.

(user-full-name)
⇒ "Hrvoje Niksic"

(setq user-full-name "Hrvoje \"Niksa\" Niksic")
(user-full-name)

⇒ "Hrvoje \"Niksa\" Niksic"
(user-full-name "hniksic")

⇒ "Hrvoje Niksic"

The symbols user-login-name, user-real-login-name and user-full-name are variables
as well as functions. The functions return the same values that the variables hold. These
variables allow you to “fake out” Emacs by telling the functions what to return. The variables
are also useful for constructing frame titles (see Section 32.3 [Frame Titles], page 429).

Functionuser-real-uid
This function returns the real uid of the user.

(user-real-uid)
⇒ 19

Functionuser-uid
This function returns the effective uid of the user.

Functionuser-home-directory
This function returns the “HOME” directory of the user, and is intended to replace occur-
rences of “(getenv "HOME")”. Under Unix systems, the following is done:
1. Return the value of “(getenv "HOME")”, if set.
2. Return “/”, as a fallback, but issue a warning. (Future versions of XEmacs will also

attempt to lookup the HOME directory via getpwent(), but this has not yet been
implemented.)

Under MS Windows, this is done:
1. Return the value of “(getenv "HOME")”, if set.
2. If the environment variables HOMEDRIVE and HOMEDIR are both set, return the concate-

nation (the following description uses MS Windows environment variable substitution
syntax): %HOMEDRIVE%%HOMEDIR%.

3. Return “C:\”, as a fallback, but issue a warning.

Chapter 50: Operating System Interface 633

50.5 Time of Day

This section explains how to determine the current time and the time zone.

Functioncurrent-time-string &optional time-value
This function returns the current time and date as a humanly-readable string. The format
of the string is unvarying; the number of characters used for each part is always the same,
so you can reliably use substring to extract pieces of it. It is wise to count the characters
from the beginning of the string rather than from the end, as additional information may
be added at the end.
The argument time-value, if given, specifies a time to format instead of the current time.
The argument should be a list whose first two elements are integers. Thus, you can
use times obtained from current-time (see below) and from file-attributes (see Sec-
tion 28.6.4 [File Attributes], page 364).

(current-time-string)
⇒ "Wed Oct 14 22:21:05 1987"

Functioncurrent-time
This function returns the system’s time value as a list of three integers: (high low mi-
crosec). The integers high and low combine to give the number of seconds since 0:00
January 1, 1970, which is high ∗ 216 + low.
The third element, microsec, gives the microseconds since the start of the current second
(or 0 for systems that return time only on the resolution of a second).
The first two elements can be compared with file time values such as you get with the
function file-attributes. See Section 28.6.4 [File Attributes], page 364.

Functioncurrent-time-zone &optional time-value
This function returns a list describing the time zone that the user is in.
The value has the form (offset name). Here offset is an integer giving the number of
seconds ahead of UTC (east of Greenwich). A negative value means west of Greenwich.
The second element, name is a string giving the name of the time zone. Both elements
change when daylight savings time begins or ends; if the user has specified a time zone
that does not use a seasonal time adjustment, then the value is constant through time.
If the operating system doesn’t supply all the information necessary to compute the value,
both elements of the list are nil.
The argument time-value, if given, specifies a time to analyze instead of the current time.
The argument should be a cons cell containing two integers, or a list whose first two
elements are integers. Thus, you can use times obtained from current-time (see above)
and from file-attributes (see Section 28.6.4 [File Attributes], page 364).

50.6 Time Conversion

These functions convert time values (lists of two or three integers) to strings or to calendrical
information. There is also a function to convert calendrical information to a time value. You
can get time values from the functions current-time (see Section 50.5 [Time of Day], page 633)
and file-attributes (see Section 28.6.4 [File Attributes], page 364).

634 XEmacs Lisp Reference Manual

Functionformat-time-string format-string &optional time
This function converts time to a string according to format-string. If time is omitted,
it defaults to the current time. The argument format-string may contain ‘%’-sequences
which say to substitute parts of the time. Here is a table of what the ‘%’-sequences mean:

‘%a’ This stands for the abbreviated name of the day of week.

‘%A’ This stands for the full name of the day of week.

‘%b’ This stands for the abbreviated name of the month.

‘%B’ This stands for the full name of the month.

‘%c’ This is a synonym for ‘%x %X’.

‘%C’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%A, %B %e, %Y’.

‘%d’ This stands for the day of month, zero-padded.

‘%D’ This is a synonym for ‘%m/%d/%y’.

‘%e’ This stands for the day of month, blank-padded.

‘%h’ This is a synonym for ‘%b’.

‘%H’ This stands for the hour (00-23).

‘%I’ This stands for the hour (00-12).

‘%j’ This stands for the day of the year (001-366).

‘%k’ This stands for the hour (0-23), blank padded.

‘%l’ This stands for the hour (1-12), blank padded.

‘%m’ This stands for the month (01-12).

‘%M’ This stands for the minute (00-59).

‘%n’ This stands for a newline.

‘%p’ This stands for ‘AM’ or ‘PM’, as appropriate.

‘%r’ This is a synonym for ‘%I:%M:%S %p’.

‘%R’ This is a synonym for ‘%H:%M’.

‘%S’ This stands for the seconds (00-60).

‘%t’ This stands for a tab character.

‘%T’ This is a synonym for ‘%H:%M:%S’.

‘%U’ This stands for the week of the year (01-52), assuming that weeks start on
Sunday.

‘%w’ This stands for the numeric day of week (0-6). Sunday is day 0.

‘%W’ This stands for the week of the year (01-52), assuming that weeks start on
Monday.

‘%x’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%D’.

‘%X’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%T’.

‘%y’ This stands for the year without century (00-99).

‘%Y’ This stands for the year with century.

‘%Z’ This stands for the time zone abbreviation.

Chapter 50: Operating System Interface 635

Functiondecode-time time
This function converts a time value into calendrical information. The return value is a list
of nine elements, as follows:

(seconds minutes hour day month year dow dst zone)

Here is what the elements mean:

sec The number of seconds past the minute, as an integer between 0 and 59.

minute The number of minutes past the hour, as an integer between 0 and 59.

hour The hour of the day, as an integer between 0 and 23.

day The day of the month, as an integer between 1 and 31.

month The month of the year, as an integer between 1 and 12.

year The year, an integer typically greater than 1900.

dow The day of week, as an integer between 0 and 6, where 0 stands for Sunday.

dst t if daylight savings time is effect, otherwise nil.

zone An integer indicating the time zone, as the number of seconds east of Green-
wich.

Note that Common Lisp has different meanings for dow and zone.

Functionencode-time seconds minutes hour day month year &optional zone
This function is the inverse of decode-time. It converts seven items of calendrical data
into a time value. For the meanings of the arguments, see the table above under decode-
time.
Year numbers less than 100 are treated just like other year numbers. If you want them to
stand for years above 1900, you must alter them yourself before you call encode-time.
The optional argument zone defaults to the current time zone and its daylight savings
time rules. If specified, it can be either a list (as you would get from current-time-zone)
or an integer (as you would get from decode-time). The specified zone is used without
any further alteration for daylight savings time.

50.7 Timers for Delayed Execution

You can set up a timer to call a function at a specified future time.

Functionadd-timeout secs function object &optional resignal
This function adds a timeout, to be signaled after the timeout period has elapsed. secs is
a number of seconds, expressed as an integer or a float. function will be called after that
many seconds have elapsed, with one argument, the given object. If the optional resignal
argument is provided, then after this timeout expires, ‘add-timeout’ will automatically be
called again with resignal as the first argument.
This function returns an object which is the id of this particular timeout. You can pass
that object to disable-timeout to turn off the timeout before it has been signalled.
The number of seconds may be expressed as a floating-point number, in which case some
fractional part of a second will be used. Caveat: the usable timeout granularity will vary
from system to system.
Adding a timeout causes a timeout event to be returned by next-event, and the function
will be invoked by dispatch-event, so if XEmacs is in a tight loop, the function will not

636 XEmacs Lisp Reference Manual

be invoked until the next call to sit-for or until the return to top-level (the same is true
of process filters).
WARNING: if you are thinking of calling add-timeout from inside of a callback function
as a way of resignalling a timeout, think again. There is a race condition. That’s why the
resignal argument exists.
(NOTE: In FSF Emacs, this function is called run-at-time and has different semantics.)

Functiondisable-timeout id
Cancel the requested action for id, which should be a value previously returned by add-
timeout. This cancels the effect of that call to add-timeout; the arrival of the specified
time will not cause anything special to happen. (NOTE: In FSF Emacs, this function is
called cancel-timer.)

50.8 Terminal Input

This section describes functions and variables for recording or manipulating terminal input.
See Chapter 45 [Display], page 585, for related functions.

50.8.1 Input Modes

Functionset-input-mode interrupt flow meta quit-char
This function sets the mode for reading keyboard input. If interrupt is non-null, then
XEmacs uses input interrupts. If it is nil, then it uses cbreak mode. When XEmacs
communicates directly with X, it ignores this argument and uses interrupts if that is the
way it knows how to communicate.
If flow is non-nil, then XEmacs uses xon/xoff (C-q, C-s) flow control for output to the
terminal. This has no effect except in cbreak mode. See Section 50.10 [Flow Control],
page 640.
The default setting is system dependent. Some systems always use cbreak mode regard-
less of what is specified.
The argument meta controls support for input character codes above 127. If meta is t,
XEmacs converts characters with the 8th bit set into Meta characters. If meta is nil,
XEmacs disregards the 8th bit; this is necessary when the terminal uses it as a parity bit.
If meta is neither t nor nil, XEmacs uses all 8 bits of input unchanged. This is good for
terminals using European 8-bit character sets.
If quit-char is non-nil, it specifies the character to use for quitting. Normally this char-
acter is C-g. See Section 19.8 [Quitting], page 278.

The current-input-mode function returns the input mode settings XEmacs is currently
using.

Functioncurrent-input-mode
This function returns current mode for reading keyboard input. It returns a list, corre-
sponding to the arguments of set-input-mode, of the form (interrupt flow meta quit) in
which:

interrupt is non-nil when XEmacs is using interrupt-driven input. If nil, Emacs is
using cbreak mode.

Chapter 50: Operating System Interface 637

flow is non-nil if XEmacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This value has no effect unless interrupt is non-nil.

meta is t if XEmacs treats the eighth bit of input characters as the meta bit; nil
means XEmacs clears the eighth bit of every input character; any other value
means XEmacs uses all eight bits as the basic character code.

quit is the character XEmacs currently uses for quitting, usually C-g.

50.8.2 Translating Input Events

This section describes features for translating input events into other input events before
they become part of key sequences.

Variablefunction-key-map
This variable holds a keymap that describes the character sequences sent by function keys
on an ordinary character terminal. This keymap uses the same data structure as other
keymaps, but is used differently: it specifies translations to make while reading events.
If function-key-map “binds” a key sequence k to a vector v, then when k appears as a
subsequence anywhere in a key sequence, it is replaced with the events in v.
For example, VT100 terminals send 〈ESC〉 O P when the keypad PF1 key is pressed. There-
fore, we want XEmacs to translate that sequence of events into the single event pf1. We
accomplish this by “binding” 〈ESC〉 O P to [pf1] in function-key-map, when using a
VT100.
Thus, typing C-c 〈PF1〉 sends the character sequence C-c 〈ESC〉 O P; later the function read-
key-sequence translates this back into C-c 〈PF1〉, which it returns as the vector [?\C-c
pf1].
Entries in function-key-map are ignored if they conflict with bindings made in the minor
mode, local, or global keymaps. The intent is that the character sequences that function
keys send should not have command bindings in their own right.
The value of function-key-map is usually set up automatically according to the terminal’s
Terminfo or Termcap entry, but sometimes those need help from terminal-specific Lisp
files. XEmacs comes with terminal-specific files for many common terminals; their main
purpose is to make entries in function-key-map beyond those that can be deduced from
Termcap and Terminfo. See Section 50.1.3 [Terminal-Specific], page 625.
Emacs versions 18 and earlier used totally different means of detecting the character
sequences that represent function keys.

Variablekey-translation-map
This variable is another keymap used just like function-key-map to translate input events
into other events. It differs from function-key-map in two ways:
• key-translation-map goes to work after function-key-map is finished; it receives

the results of translation by function-key-map.
• key-translation-map overrides actual key bindings.

The intent of key-translation-map is for users to map one character set to another,
including ordinary characters normally bound to self-insert-command.

You can use function-key-map or key-translation-map for more than simple aliases, by
using a function, instead of a key sequence, as the “translation” of a key. Then this function is
called to compute the translation of that key.

638 XEmacs Lisp Reference Manual

The key translation function receives one argument, which is the prompt that was specified
in read-key-sequence—or nil if the key sequence is being read by the editor command loop.
In most cases you can ignore the prompt value.

If the function reads input itself, it can have the effect of altering the event that follows. For
example, here’s how to define C-c h to turn the character that follows into a Hyper character:

(defun hyperify (prompt)
(let ((e (read-event)))

(vector (if (numberp e)
(logior (lsh 1 20) e)

(if (memq ’hyper (event-modifiers e))
e

(add-event-modifier "H-" e))))))

(defun add-event-modifier (string e)
(let ((symbol (if (symbolp e) e (car e))))

(setq symbol (intern (concat string
(symbol-name symbol))))

(if (symbolp e)
symbol

(cons symbol (cdr e)))))

(define-key function-key-map "\C-ch" ’hyperify)

The ‘iso-transl’ library uses this feature to provide a way of inputting non-ASCII Latin-1
characters.

50.8.3 Recording Input

Functionrecent-keys &optional number
This function returns a vector containing recent input events from the keyboard or mouse.
By default, 100 events are recorded, which is how many recent-keys returns.

All input events are included, whether or not they were used as parts of key sequences.
Thus, you always get the last 100 inputs, not counting keyboard macros. (Events from
keyboard macros are excluded because they are less interesting for debugging; it should
be enough to see the events that invoked the macros.)

If number is specified, not more than number events will be returned. You may change
the number of stored events using set-recent-keys-ring-size.

Functionrecent-keys-ring-size
This function returns the number of recent events stored internally. This is also the
maximum number of events recent-keys can return. By default, 100 events are stored.

Functionset-recent-keys-ring-size size
This function changes the number of events stored by XEmacs and returned by recent-
keys.

For example, (set-recent-keys-ring-size 250) will make XEmacs remember last 250
events and will make recent-keys return last 250 events by default.

Chapter 50: Operating System Interface 639

Commandopen-dribble-file filename
This function opens a dribble file named filename. When a dribble file is open, each input
event from the keyboard or mouse (but not those from keyboard macros) is written in
that file. A non-character event is expressed using its printed representation surrounded
by ‘<...>’.
You close the dribble file by calling this function with an argument of nil.
This function is normally used to record the input necessary to trigger an XEmacs bug,
for the sake of a bug report.

(open-dribble-file "~/dribble")
⇒ nil

See also the open-termscript function (see Section 50.9 [Terminal Output], page 639).

50.9 Terminal Output

The terminal output functions send output to the terminal or keep track of output sent to the
terminal. The function device-baud-rate tells you what XEmacs thinks is the output speed
of the terminal.

Functiondevice-baud-rate &optional device
This function’s value is the output speed of the terminal associated with device, as far as
XEmacs knows. device defaults to the selected device (usually the only device) if omitted.
Changing this value does not change the speed of actual data transmission, but the value is
used for calculations such as padding. This value has no effect for window-system devices.
(This is different in FSF Emacs, where the baud rate also affects decisions about whether
to scroll part of the screen or repaint, even when using a window system.)
The value is measured in bits per second.

XEmacs attempts to automatically initialize the baud rate by querying the terminal. If you
are running across a network, however, and different parts of the network work are at different
baud rates, the value returned by XEmacs may be different from the value used by your local
terminal. Some network protocols communicate the local terminal speed to the remote machine,
so that XEmacs and other programs can get the proper value, but others do not. If XEmacs
has the wrong value, it makes decisions that are less than optimal. To fix the problem, use
set-device-baud-rate.

Functionset-device-baud-rate &optional device
This function sets the output speed of device. See device-baud-rate. device defaults to
the selected device (usually the only device) if omitted.

Functionsend-string-to-terminal char-or-string &optional stdout-p device
This function sends char-or-string to the terminal without alteration. Control characters
in char-or-string have terminal-dependent effects.
If device is nil, this function writes to XEmacs’s stderr, or to stdout if stdout-p is non-
nil. Otherwise, device should be a tty or stream device, and the function writes to the
device’s normal or error output, according to stdout-p.
One use of this function is to define function keys on terminals that have downloadable
function key definitions. For example, this is how on certain terminals to define function
key 4 to move forward four characters (by transmitting the characters C-u C-f to the
computer):

(send-string-to-terminal "\eF4\^U\^F")
⇒ nil

640 XEmacs Lisp Reference Manual

Commandopen-termscript filename
This function is used to open a termscript file that will record all the characters sent by
XEmacs to the terminal. (If there are multiple tty or stream devices, all characters sent
to all such devices are recorded.) The function returns nil. Termscript files are useful
for investigating problems where XEmacs garbles the screen, problems that are due to
incorrect Termcap entries or to undesirable settings of terminal options more often than
to actual XEmacs bugs. Once you are certain which characters were actually output, you
can determine reliably whether they correspond to the Termcap specifications in use.
A nil value for filename stops recording terminal output.
See also open-dribble-file in Section 50.8 [Terminal Input], page 636.

(open-termscript "../junk/termscript")
⇒ nil

50.10 Flow Control

This section attempts to answer the question “Why does XEmacs choose to use flow-control
characters in its command character set?” For a second view on this issue, read the comments
on flow control in the ‘emacs/INSTALL’ file from the distribution; for help with Termcap entries
and DEC terminal concentrators, see ‘emacs/etc/TERMS’.

At one time, most terminals did not need flow control, and none used C-s and C-q for
flow control. Therefore, the choice of C-s and C-q as command characters was uncontroversial.
XEmacs, for economy of keystrokes and portability, used nearly all the ASCII control characters,
with mnemonic meanings when possible; thus, C-s for search and C-q for quote.

Later, some terminals were introduced which required these characters for flow control. They
were not very good terminals for full-screen editing, so XEmacs maintainers did not pay atten-
tion. In later years, flow control with C-s and C-q became widespread among terminals, but by
this time it was usually an option. And the majority of users, who can turn flow control off,
were unwilling to switch to less mnemonic key bindings for the sake of flow control.

So which usage is “right”, XEmacs’s or that of some terminal and concentrator manufactur-
ers? This question has no simple answer.

One reason why we are reluctant to cater to the problems caused by C-s and C-q is that they
are gratuitous. There are other techniques (albeit less common in practice) for flow control that
preserve transparency of the character stream. Note also that their use for flow control is not
an official standard. Interestingly, on the model 33 teletype with a paper tape punch (which is
very old), C-s and C-q were sent by the computer to turn the punch on and off!

As X servers and other window systems replace character-only terminals, this problem is
gradually being cured. For the mean time, XEmacs provides a convenient way of enabling flow
control if you want it: call the function enable-flow-control.

Functionenable-flow-control
This function enables use of C-s and C-q for output flow control, and provides the charac-
ters C-\ and C-^ as aliases for them using keyboard-translate-table (see Section 50.8.2
[Translating Input], page 637).

You can use the function enable-flow-control-on in your ‘.emacs’ file to enable flow
control automatically on certain terminal types.

Functionenable-flow-control-on &rest termtypes
This function enables flow control, and the aliases C-\ and C-^, if the terminal type is one
of termtypes. For example:

(enable-flow-control-on "vt200" "vt300" "vt101" "vt131")

Chapter 50: Operating System Interface 641

Here is how enable-flow-control does its job:
1. It sets cbreak mode for terminal input, and tells the operating system to handle flow

control, with (set-input-mode nil t).
2. It sets up keyboard-translate-table to translate C-\ and C-^ into C-s and C-q. Except

at its very lowest level, XEmacs never knows that the characters typed were anything but
C-s and C-q, so you can in effect type them as C-\ and C-^ even when they are input for
other commands. See Section 50.8.2 [Translating Input], page 637.

If the terminal is the source of the flow control characters, then once you enable kernel flow
control handling, you probably can make do with less padding than normal for that terminal.
You can reduce the amount of padding by customizing the Termcap entry. You can also reduce
it by setting baud-rate to a smaller value so that XEmacs uses a smaller speed when calculating
the padding needed. See Section 50.9 [Terminal Output], page 639.

50.11 Batch Mode

The command line option ‘-batch’ causes XEmacs to run noninteractively. In this mode,
XEmacs does not read commands from the terminal, it does not alter the terminal modes, and
it does not expect to be outputting to an erasable screen. The idea is that you specify Lisp
programs to run; when they are finished, XEmacs should exit. The way to specify the programs
to run is with ‘-l file’, which loads the library named file, and ‘-f function’, which calls function
with no arguments.

Any Lisp program output that would normally go to the echo area, either using message
or using prin1, etc., with t as the stream, goes instead to XEmacs’s standard error descriptor
when in batch mode. Thus, XEmacs behaves much like a noninteractive application program.
(The echo area output that XEmacs itself normally generates, such as command echoing, is
suppressed entirely.)

Functionnoninteractive
This function returns non-nil when XEmacs is running in batch mode.

Variablenoninteractive
This variable is non-nil when XEmacs is running in batch mode. Setting this variable
to nil, however, will not change whether XEmacs is running in batch mode, and will not
change the return value of the noninteractive function.

642 XEmacs Lisp Reference Manual

Chapter 51: Functions Specific to the X Window System 643

51 Functions Specific to the X Window System

XEmacs provides the concept of devices, which generalizes connections to an X server, a TTY
device, etc. Most information about an X server that XEmacs is connected to can be determined
through general console and device functions. See Chapter 33 [Consoles and Devices], page 437.
However, there are some features of the X Window System that do not generalize well, and they
are covered specially here.

51.1 X Selections

The X server records a set of selections which permit transfer of data between application
programs. The various selections are distinguished by selection types, represented in XEmacs
by symbols. X clients including XEmacs can read or set the selection for any given type.

Functionx-own-selection data &optional type
This function sets a “selection” in the X server. It takes two arguments: a value, data,
and the selection type type to assign it to. data may be a string, a cons of two markers,
or an extent. In the latter cases, the selection is considered to be the text between the
markers, or between the extent’s endpoints.

Each possible type has its own selection value, which changes independently. The usual
values of type are PRIMARY and SECONDARY; these are symbols with upper-case names, in
accord with X Windows conventions. The default is PRIMARY.

(In FSF Emacs, this function is called x-set-selection and takes different arguments.)

Functionx-get-selection
This function accesses selections set up by XEmacs or by other X clients. It returns the
value of the current primary selection.

Functionx-disown-selection &optional secondary-p
Assuming we own the selection, this function disowns it. If secondary-p is non-nil, the
secondary selection instead of the primary selection is discarded.

The X server also has a set of numbered cut buffers which can store text or other data being
moved between applications. Cut buffers are considered obsolete, but XEmacs supports them
for the sake of X clients that still use them.

Functionx-get-cutbuffer &optional n
This function returns the contents of cut buffer number n. (This function is called x-get-
cut-buffer in FSF Emacs.)

Functionx-store-cutbuffer string
This function stores string into the first cut buffer (cut buffer 0), moving the other values
down through the series of cut buffers, kill-ring-style. (This function is called x-set-cut-
buffer in FSF Emacs.)

644 XEmacs Lisp Reference Manual

51.2 X Server

This section describes how to access and change the overall status of the X server XEmacs
is using.

51.2.1 Resources

Functiondefault-x-device
This function return the default X device for resourcing. This is the first-created X device
that still exists.

Functionx-get-resource name class type &optional locale device noerror
This function retrieves a resource value from the X resource manager.
• The first arg is the name of the resource to retrieve, such as ‘"font"’.
• The second arg is the class of the resource to retrieve, like ‘"Font"’.
• The third arg should be one of the symbols string, integer, natnum, or boolean,

specifying the type of object that the database is searched for.
• The fourth arg is the locale to search for the resources on, and can currently be a a

buffer, a frame, a device, or the symbol global. If omitted, it defaults to global.
• The fifth arg is the device to search for the resources on. (The resource database for a

particular device is constructed by combining non-device- specific resources such any
command-line resources specified and any app-defaults files found [or the fallback
resources supplied by XEmacs, if no app-defaults file is found] with device-specific
resources such as those supplied using ‘xrdb’.) If omitted, it defaults to the device of
locale, if a device can be derived (i.e. if locale is a frame or device), and otherwise
defaults to the value of default-x-device.

• The sixth arg noerror, if non-nil, means do not signal an error if a bogus resource
specification was retrieved (e.g. if a non-integer was given when an integer was re-
quested). In this case, a warning is issued instead.

The resource names passed to this function are looked up relative to the locale.
If you want to search for a subresource, you just need to specify the resource levels in
name and class. For example, name could be ‘"modeline.attributeFont"’, and class
‘"Face.AttributeFont"’.
Specifically,
1. If locale is a buffer, a call

(x-get-resource "foreground" "Foreground" ’string some-buffer)

is an interface to a C call something like
XrmGetResource (db, "xemacs.buffer.buffer-name.foreground",

"Emacs.EmacsLocaleType.EmacsBuffer.Foreground",
"String");

2. If locale is a frame, a call
(x-get-resource "foreground" "Foreground" ’string some-frame)

is an interface to a C call something like

XrmGetResource (db, "xemacs.frame.frame-name.foreground",
"Emacs.EmacsLocaleType.EmacsFrame.Foreground",
"String");

Chapter 51: Functions Specific to the X Window System 645

3. If locale is a device, a call
(x-get-resource "foreground" "Foreground" ’string some-device)

is an interface to a C call something like
XrmGetResource (db, "xemacs.device.device-name.foreground",

"Emacs.EmacsLocaleType.EmacsDevice.Foreground",
"String");

4. If locale is the symbol global, a call
(x-get-resource "foreground" "Foreground" ’string ’global)

is an interface to a C call something like
XrmGetResource (db, "xemacs.foreground",

"Emacs.Foreground",
"String");

Note that for global, no prefix is added other than that of the application itself; thus,
you can use this locale to retrieve arbitrary application resources, if you really want to.
The returned value of this function is nil if the queried resource is not found. If type
is string, a string is returned, and if it is integer, an integer is returned. If type is
boolean, then the returned value is the list (t) for true, (nil) for false, and is nil to
mean “unspecified”.

Functionx-put-resource resource-line &optional device
This function adds a resource to the resource database for device. resource-line specifies
the resource to add and should be a standard resource specification.

Variablex-emacs-application-class
This variable holds The X application class of the XEmacs process. This controls, among
other things, the name of the “app-defaults” file that XEmacs will use. For changes to
this variable to take effect, they must be made before the connection to the X server is
initialized, that is, this variable may only be changed before XEmacs is dumped, or by
setting it in the file ‘lisp/term/x-win.el’.
By default, this variable is nil at startup. When the connection to the X server is first
initialized, the X resource database will be consulted and the value will be set according
to whether any resources are found for the application class “XEmacs”.

51.2.2 Data about the X Server

This section describes functions and a variable that you can use to get information about
the capabilities and origin of the X server corresponding to a particular device. The device
argument is generally optional and defaults to the selected device.

Functionx-server-version &optional device
This function returns the list of version numbers of the X server device is on. The returned
value is a list of three integers: the major and minor version numbers of the X protocol
in use, and the vendor-specific release number.

Functionx-server-vendor &optional device
This function returns the vendor supporting the X server device is on.

646 XEmacs Lisp Reference Manual

Functionx-display-visual-class &optional device
This function returns the visual class of the display device is on. The value is one of
the symbols static-gray, gray-scale, static-color, pseudo-color, true-color, and
direct-color. (Note that this is different from previous versions of XEmacs, which
returned StaticGray, GrayScale, etc.)

51.2.3 Restricting Access to the Server by Other Apps

Functionx-grab-keyboard &optional device
This function grabs the keyboard on the given device (defaulting to the selected one).
So long as the keyboard is grabbed, all keyboard events will be delivered to XEmacs –
it is not possible for other X clients to eavesdrop on them. Ungrab the keyboard with
x-ungrab-keyboard (use an unwind-protect). Returns t if the grab was successful; nil
otherwise.

Functionx-ungrab-keyboard &optional device
This function releases a keyboard grab made with x-grab-keyboard.

Functionx-grab-pointer &optional device cursor ignore-keyboard
This function grabs the pointer and restricts it to its current window. If optional device
argument is nil, the selected device will be used. If optional cursor argument is non-nil,
change the pointer shape to that until x-ungrab-pointer is called (it should be an object
returned by the make-cursor function). If the second optional argument ignore-keyboard
is non-nil, ignore all keyboard events during the grab. Returns t if the grab is successful,
nil otherwise.

Functionx-ungrab-pointer &optional device
This function releases a pointer grab made with x-grab-pointer. If optional first arg
device is nil the selected device is used. If it is t the pointer will be released on all X
devices.

51.3 Miscellaneous X Functions and Variables

Variablex-bitmap-file-path
This variable holds a list of the directories in which X bitmap files may be found. If
nil, this is initialized from the ‘"*bitmapFilePath"’ resource. This is used by the make-
image-instance function (however, note that if the environment variable ‘XBMLANGPATH’
is set, it is consulted first).

Variablex-library-search-path
This variable holds the search path used by read-color to find ‘rgb.txt’.

Functionx-valid-keysym-name-p keysym
This function returns true if keysym names a keysym that the X library knows
about. Valid keysyms are listed in the files ‘/usr/include/X11/keysymdef.h’ and in
‘/usr/lib/X11/XKeysymDB’, or whatever the equivalents are on your system.

Chapter 51: Functions Specific to the X Window System 647

Functionx-window-id &optional frame
This function returns the ID of the X11 window. This gives us a chance to manipulate
the Emacs window from within a different program. Since the ID is an unsigned long, we
return it as a string.

Variablex-allow-sendevents
If non-nil, synthetic events are allowed. nil means they are ignored. Beware: allowing
XEmacs to process SendEvents opens a big security hole.

Functionx-debug-mode arg &optional device
With a true arg, make the connection to the X server synchronous. With false, make it
asynchronous. Synchronous connections are much slower, but are useful for debugging. (If
you get X errors, make the connection synchronous, and use a debugger to set a breakpoint
on x_error_handler. Your backtrace of the C stack will now be useful. In asynchronous
mode, the stack above x_error_handler isn’t helpful because of buffering.) If device is
not specified, the selected device is assumed.
Calling this function is the same as calling the C function XSynchronize, or starting the
program with the ‘-sync’ command line argument.

Variablex-debug-events
If non-zero, debug information about events that XEmacs sees is displayed. Information
is displayed on stderr. Currently defined values are:
• 1 == non-verbose output
• 2 == verbose output

648 XEmacs Lisp Reference Manual

Chapter 52: ToolTalk Support 649

52 ToolTalk Support

52.1 XEmacs ToolTalk API Summary

The XEmacs Lisp interface to ToolTalk is similar, at least in spirit, to the standard C
ToolTalk API. Only the message and pattern parts of the API are supported at present; more
of the API could be added if needed. The Lisp interface departs from the C API in a few ways:
• ToolTalk is initialized automatically at XEmacs startup-time. Messages can only be sent

other ToolTalk applications connected to the same X11 server that XEmacs is running on.
• There are fewer entry points; polymorphic functions with keyword arguments are used

instead.
• The callback interface is simpler and marginally less functional. A single callback may be

associated with a message or a pattern; the callback is specified with a Lisp symbol (the
symbol should have a function binding).

• The session attribute for messages and patterns is always initialized to the default session.
• Anywhere a ToolTalk enum constant, e.g. ‘TT_SESSION’, is valid, one can substitute the cor-

responding symbol, e.g. ’TT_SESSION. This simplifies building lists that represent messages
and patterns.

52.2 Sending Messages

52.2.1 Example of Sending Messages

Here’s a simple example that sends a query to another application and then displays its reply.
Both the query and the reply are stored in the first argument of the message.

(defun tooltalk-random-query-handler (msg)
(let ((state (get-tooltalk-message-attribute msg ’state)))

(cond
((eq state ’TT_HANDLED)
(message (get-tooltalk-message-attribute msg arg_val 0)))
((memq state ’(TT_FAILED TT_REJECTED))
(message "Random query turns up nothing")))))

(defvar random-query-message
’(class TT_REQUEST

scope TT_SESSION
address TT_PROCEDURE

op "random-query"
args ’((TT_INOUT "?" "string"))

callback tooltalk-random-query-handler))

(let ((m (make-tooltalk-message random-query-message)))
(send-tooltalk-message m))

650 XEmacs Lisp Reference Manual

52.2.2 Elisp Interface for Sending Messages

Functionmake-tooltalk-message attributes
Create a ToolTalk message and initialize its attributes. The value of attributes must be a
list of alternating keyword/values, where keywords are symbols that name valid message
attributes. For example:

(make-tooltalk-message
’(class TT_NOTICE
scope TT_SESSION
address TT_PROCEDURE
op "do-something"
args ("arg1" 12345 (TT_INOUT "arg3" "string"))))

Values must always be strings, integers, or symbols that represent ToolTalk constants.
Attribute names are the same as those supported by set-tooltalk-message-attribute,
plus args.
The value of args should be a list of message arguments where each message argument
has the following form:

‘(mode [value [type]])’ or just ‘value’
Where mode is one of TT_IN, TT_OUT, or TT_INOUT and type is a string. If type isn’t
specified then int is used if value is a number; otherwise string is used. If type is
string then value is converted to a string (if it isn’t a string already) with prin1-to-
string. If only a value is specified then mode defaults to TT_IN. If mode is TT_OUT then
value and type don’t need to be specified. You can find out more about the semantics and
uses of ToolTalk message arguments in chapter 4 of the ToolTalk Programmer’s Guide.

Functionsend-tooltalk-message msg
Send the message on its way. Once the message has been sent it’s almost always a good
idea to get rid of it with destroy-tooltalk-message.

Functionreturn-tooltalk-message msg &optional mode
Send a reply to this message. The second argument can be reply, reject or fail; the
default is reply. Before sending a reply, all message arguments whose mode is TT_INOUT
or TT_OUT should have been filled in – see set-tooltalk-message-attribute.

Functionget-tooltalk-message-attribute msg attribute &optional argn
Returns the indicated ToolTalk message attribute. Attributes are identified by
symbols with the same name (underscores and all) as the suffix of the ToolTalk
‘tt_message_<attribute>’ function that extracts the value. String attribute values
are copied and enumerated type values (except disposition) are converted to symbols;
e.g. ‘TT_HANDLER’ is ’TT_HANDLER, ‘uid’ and ‘gid’ are represented by fixnums (small
integers), ‘opnum’ is converted to a string, and ‘disposition’ is converted to a fixnum.
We convert ‘opnum’ (a C int) to a string (e.g. 123 ⇒ "123") because there’s no guarantee
that opnums will fit within the range of XEmacs Lisp integers.
[TBD] Use the plist attribute instead of C API user attribute for user-defined message
data. To retrieve the value of a message property, specify the indicator for argn. For
example, to get the value of a property called rflag, use

(get-tooltalk-message-attribute msg ’plist ’rflag)

To get the value of a message argument use one of the arg_val (strings), arg_ival
(integers), or arg_bval (strings with embedded nulls), attributes. For example, to get the
integer value of the third argument:

Chapter 52: ToolTalk Support 651

(get-tooltalk-message-attribute msg ’arg_ival 2)

As you can see, argument numbers are zero-based. The type of each arguments can be
retrieved with the arg_type attribute; however ToolTalk doesn’t define any semantics for
the string value of arg_type. Conventionally string is used for strings and int for 32
bit integers. Note that XEmacs Lisp stores the lengths of strings explicitly (unlike C) so
treating the value returned by arg_bval like a string is fine.

Functionset-tooltalk-message-attribute value msg attribute &optional argn
Initialize one ToolTalk message attribute.
Attribute names and values are the same as for get-tooltalk-message-attribute. A
property list is provided for user data (instead of the user message attribute); see get-
tooltalk-message-attribute.
Callbacks are handled slightly differently than in the C ToolTalk API. The value of callback
should be the name of a function of one argument. It will be called each time the state of
the message changes. This is usually used to notice when the message’s state has changed
to TT_HANDLED (or TT_FAILED), so that reply argument values can be used.
If one of the argument attributes is specified as arg_val, arg_ival, or arg_bval, then
argn must be the number of an already created argument. Arguments can be added to a
message with add-tooltalk-message-arg.

Functionadd-tooltalk-message-arg msg mode type &optional value
Append one new argument to the message. mode must be one of TT_IN, TT_INOUT, or
TT_OUT, type must be a string, and value can be a string or an integer. ToolTalk doesn’t
define any semantics for type, so only the participants in the protocol you’re using need to
agree what types mean (if anything). Conventionally string is used for strings and int
for 32 bit integers. Arguments can initialized by providing a value or with set-tooltalk-
message-attribute; the latter is necessary if you want to initialize the argument with a
string that can contain embedded nulls (use arg_bval).

Functioncreate-tooltalk-message
Create a new ToolTalk message. The message’s session attribute is initialized to the de-
fault session. Other attributes can be initialized with set-tooltalk-message-attribute.
make-tooltalk-message is the preferred way to create and initialize a message.

Functiondestroy-tooltalk-message msg
Apply ‘tt_message_destroy’ to the message. It’s not necessary to destroy messages
after they’ve been processed by a message or pattern callback, the Lisp/ToolTalk callback
machinery does this for you.

52.3 Receiving Messages

52.3.1 Example of Receiving Messages

Here’s a simple example of a handler for a message that tells XEmacs to display a string in
the mini-buffer area. The message operation is called ‘emacs-display-string’. Its first (0th)
argument is the string to display.

652 XEmacs Lisp Reference Manual

(defun tooltalk-display-string-handler (msg)
(message (get-tooltalk-message-attribute msg ’arg_val 0)))

(defvar display-string-pattern
’(category TT_HANDLE

scope TT_SESSION
op "emacs-display-string"

callback tooltalk-display-string-handler))

(let ((p (make-tooltalk-pattern display-string-pattern)))
(register-tooltalk-pattern p))

52.3.2 Elisp Interface for Receiving Messages

Functionmake-tooltalk-pattern attributes
Create a ToolTalk pattern and initialize its attributes. The value of attributes must be a
list of alternating keyword/values, where keywords are symbols that name valid pattern
attributes or lists of valid attributes. For example:

(make-tooltalk-pattern
’(category TT_OBSERVE

scope TT_SESSION
op ("operation1" "operation2")

args ("arg1" 12345 (TT_INOUT "arg3" "string"))))

Attribute names are the same as those supported by add-tooltalk-pattern-attribute,
plus ’args.
Values must always be strings, integers, or symbols that represent ToolTalk constants
or lists of same. When a list of values is provided all of the list elements are added to
the attribute. In the example above, messages whose ‘op’ attribute is ‘"operation1"’ or
‘"operation2"’ would match the pattern.
The value of args should be a list of pattern arguments where each pattern argument has
the following form:

‘(mode [value [type]])’ or just ‘value’
Where mode is one of TT_IN, TT_OUT, or TT_INOUT and type is a string. If type isn’t
specified then int is used if value is a number; otherwise string is used. If type is
string then value is converted to a string (if it isn’t a string already) with prin1-to-
string. If only a value is specified then mode defaults to TT_IN. If mode is TT_OUT then
value and type don’t need to be specified. You can find out more about the semantics and
uses of ToolTalk pattern arguments in chapter 3 of the ToolTalk Programmer’s Guide.

Functionregister-tooltalk-pattern pat
XEmacs will begin receiving messages that match this pattern.

Functionunregister-tooltalk-pattern pat
XEmacs will stop receiving messages that match this pattern.

Functionadd-tooltalk-pattern-attribute value pat indicator
Add one value to the indicated pattern attribute. The names of attributes are the same as
the ToolTalk accessors used to set them less the ‘tooltalk_pattern_’ prefix and the ‘_add’
suffix. For example, the name of the attribute for the ‘tt_pattern_disposition_add’

Chapter 52: ToolTalk Support 653

attribute is disposition. The category attribute is handled specially, since a pattern
can only be a member of one category (TT_OBSERVE or TT_HANDLE).
Callbacks are handled slightly differently than in the C ToolTalk API. The value of callback
should be the name of a function of one argument. It will be called each time the pattern
matches an incoming message.

Functionadd-tooltalk-pattern-arg pat mode type value
Add one fully-specified argument to a ToolTalk pattern. mode must be one of TT_IN,
TT_INOUT, or TT_OUT. type must be a string. value can be an integer, string or nil. If
value is an integer then an integer argument (‘tt_pattern_iarg_add’) is added; otherwise
a string argument is added. At present there’s no way to add a binary data argument.

Functioncreate-tooltalk-pattern
Create a new ToolTalk pattern and initialize its session attribute to be the default session.

Functiondestroy-tooltalk-pattern pat
Apply ‘tt_pattern_destroy’ to the pattern. This effectively unregisters the pattern.

Functiondescribe-tooltalk-message msg &optional stream
Print the message’s attributes and arguments to stream. This is often useful for debugging.

654 XEmacs Lisp Reference Manual

Chapter 53: LDAP Support 655

53 LDAP Support

XEmacs can be linked with a LDAP client library to provide Elisp primitives to access
directory servers using the Lightweight Directory Access Protocol.

53.1 Building XEmacs with LDAP support

LDAP support must be added to XEmacs at build time since it requires linking to an external
LDAP client library. As of 21.0, XEmacs has been successfully built and tested with
• University of Michigan’s LDAP 3.3 (http://www.umich.edu/~dirsvcs/ldap/)
• LDAP SDK 1.0 from Netscape Corp. (http://developer.netscape.com/)

Other libraries conforming to RFC 1823 will probably work also but may require some minor
tweaking at C level.

The standard XEmacs configure script autodetects an installed LDAP library provided the
library itself and the corresponding header files can be found in the library and include paths.
A successful detection will be signalled in the final output of the configure script.

53.2 XEmacs LDAP API

XEmacs LDAP API consists of two layers: a low-level layer which tries to stay as close as
possible to the C API (where practical) and a higher-level layer which provides more convenient
primitives to effectively use LDAP.

As of XEmacs 21.0, only interfaces to basic LDAP search functions are provided, broader
support is planned in future versions.

53.2.1 LDAP Variables

Variableldap-default-host
The default LDAP server

Variableldap-default-port
Default TCP port for LDAP connections. Initialized from the LDAP library. Default
value is 389.

Variableldap-default-base
Default base for LDAP searches. This is a string using the syntax of RFC 1779. For
instance, "oME, c" limits the search to the Acme organization in the United States.

Variableldap-host-parameters-alist
An alist of per host options for LDAP transactions. The list elements look like (HOST
PROP1 VAL1 PROP2 VAL2 ...) host is the name of an LDAP server. propn and valn are
property/value pairs describing parameters for the server. Valid properties:

binddn The distinguished name of the user to bind as. This may look like ‘c, ome,
cnnny Bugs’, see RFC 1779 for details.

http://www.umich.edu/~dirsvcs/ldap/
http://developer.netscape.com/

656 XEmacs Lisp Reference Manual

passwd The password to use for authentication.

auth The authentication method to use, possible values depend on the LDAP li-
brary XEmacs was compiled with, they may include simple, krbv41 and
krbv42.

base The base for the search. This may look like ‘c, ome’, see RFC 1779 for syntax
details.

scope One of the symbols base, onelevel or subtree indicating the scope of the
search limited to a base object, to a single level or to the whole subtree.

deref The dereference policy is one of the symbols never, always, search or find
and defines how aliases are dereferenced.

never Aliases are never dereferenced

always Aliases are always dereferenced

search Aliases are dereferenced when searching

find Aliases are dereferenced when locating the base object for the
search

timelimit
The timeout limit for the connection in seconds.

sizelimit
The maximum number of matches to return for searches performed on this
connection.

53.2.2 The High-Level LDAP API

As of this writing the high-level Lisp LDAP API only provides for LDAP searches. Further
support is planned in the future.

The ldap-search function provides the most convenient interface to perform LDAP searches.
It opens a connection to a host, performs the query and cleanly closes the connection thus
insulating the user from all the details of the low-level interface such as LDAP Lisp objects see
Section 53.2.3 [The Low-Level LDAP API], page 656

Functionldap-search filter &optional host attributes attrsonly
Perform an LDAP search. filter is the search filter see Section 53.3 [Syntax of Search
Filters], page 658 host is the LDAP host on which to perform the search attributes is
the specific attributes to retrieve, nil means retrieve all attrsonly if non-nil retrieves
the attributes only without their associated values. Additional search parameters can be
specified through ldap-host-parameters-alist.

53.2.3 The Low-Level LDAP API

53.2.3.1 The LDAP Lisp Object

An internal built-in ldap lisp object represents a LDAP connection.

Functionldapp object
This function returns non-nil if object is a ldap object.

Chapter 53: LDAP Support 657

Functionldap-host ldap
Return the server host of the connection represented by ldap

Functionldap-live-p ldap
Return non-nil if ldap is an active LDAP connection

53.2.3.2 Opening and Closing a LDAP Connection

Functionldap-open host &optional plist
Open a LDAP connection to host. plist is a property list containing additional parameters
for the connection. Valid keys in that list are:

port The TCP port to use for the connection if different from ldap-default-port
or the library builtin value

auth The authentication method to use, possible values depend on the LDAP li-
brary XEmacs was compiled with, they may include simple, krbv41 and
krbv42.

binddn The distinguished name of the user to bind as. This may look like ‘c, ome,
cnnny Bugs’, see RFC 1779 for details.

passwd The password to use for authentication.

deref The dereference policy is one of the symbols never, always, search or find
and defines how aliases are dereferenced.

never Aliases are never dereferenced

always Aliases are always dereferenced

search Aliases are dereferenced when searching

find Aliases are dereferenced when locating the base object for the
search

The default is never.

timelimit
The timeout limit for the connection in seconds.

sizelimit
The maximum number of matches to return for searches performed on this
connection.

Functionldap-close ldap
Close the connection represented by ldap

53.2.3.3 Searching on a LDAP Server (Low-level)

ldap-search-internal is the low-level primitive to perform a search on a LDAP server. It
works directly on an open LDAP connection thus requiring a preliminary call to ldap-open.
Multiple searches can be made on the same connection, then the session must be closed with
ldap-close.

658 XEmacs Lisp Reference Manual

Functionldap-search-internal ldap filter base scope attrs attrsonly
Perform a search on an open connection ldap created with ldap-open. filter is a filter
string for the search see Section 53.3 [Syntax of Search Filters], page 658 base is the dis-
tinguished name at which to start the search. scope is one of the symbols base, onelevel
or subtree indicating the scope of the search limited to a base object, to a single level or
to the whole subtree. The default is subtree. attrs is a list of strings indicating which
attributes to retrieve for each matching entry. If nil all available attributes are returned.
If attrsonly is non-nil then only the attributes are retrieved, not their associated val-
ues The function returns a list of matching entries. Each entry being itself an alist of
attribute/values.

53.3 Syntax of Search Filters

LDAP search functions use RFC1558 syntax to describe the search filter. In that syntax
simple filters have the form:

(<attr> <filtertype> <value>)

<attr> is an attribute name such as cn for Common Name, o for Organization, etc...
<value> is the corresponding value. This is generally an exact string but may also contain

* characters as wildcards
filtertype is one = ~=, <=, >= which respectively describe equality, approximate equality,

inferiority and superiority.
Thus (cn=John Smith) matches all records having a canonical name equal to John Smith.
A special case is the presence filter (<attr>=* which matches records containing a particular

attribute. For instance (mail=*) matches all records containing a mail attribute.
Simple filters can be connected together with the logical operators &, | and ! which stand

for the usual and, or and not operators.
(&(objectClass=Person)(mail=*)(|(sn=Smith)(givenname=John))) matches records of

class Person containing a mail attribute and corresponding to people whose last name is Smith
or whose first name is John.

Chapter 54: Internationalization 659

54 Internationalization

54.1 I18N Levels 1 and 2

XEmacs is now compliant with I18N levels 1 and 2. Specifically, this means that it is 8-bit
clean and correctly handles time and date functions. XEmacs will correctly display the entire
ISO-Latin 1 character set.

The compose key may now be used to create any character in the ISO-Latin 1 character set
not directly available via the keyboard.. In order for the compose key to work it is necessary
to load the file ‘x-compose.el’. At any time while composing a character, C-h will display all
valid completions and the character which would be produced.

54.2 I18N Level 3

54.2.1 Level 3 Basics

XEmacs now provides alpha-level functionality for I18N Level 3. This means that everything
necessary for full messaging is available, but not every file has been converted.

The two message files which have been created are ‘src/emacs.po’ and
‘lisp/packages/mh-e.po’. Both files need to be converted using msgfmt, and the
resulting ‘.mo’ files placed in some locale’s LC_MESSAGES directory. The test “translations” in
these files are the original messages prefixed by TRNSLT_.

The domain for a variable is stored on the variable’s property list under the property name
variable-domain. The function documentation-property uses this information when translating
a variable’s documentation.

54.2.2 Level 3 Primitives

Functiongettext string
This function looks up string in the default message domain and returns its translation.
If I18N3 was not enabled when XEmacs was compiled, it just returns string.

Functiondgettext domain string
This function looks up string in the specified message domain and returns its translation.
If I18N3 was not enabled when XEmacs was compiled, it just returns string.

Functionbind-text-domain domain pathname
This function associates a pathname with a message domain. Here’s how the path to
message file is constructed under SunOS 5.x:

{pathname}/{LANG}/LC_MESSAGES/{domain}.mo

If I18N3 was not enabled when XEmacs was compiled, this function does nothing.

660 XEmacs Lisp Reference Manual

Special Formdomain string
This function specifies the text domain used for translating documentation strings and
interactive prompts of a function. For example, write:

(defun foo (arg) "Doc string" (domain "emacs-foo") ...)

to specify emacs-foo as the text domain of the function foo. The “call” to domain is
actually a declaration rather than a function; when actually called, domain just returns
nil.

Functiondomain-of function
This function returns the text domain of function; it returns nil if it is the default domain.
If I18N3 was not enabled when XEmacs was compiled, it always returns nil.

54.2.3 Dynamic Messaging

The format function has been extended to permit you to change the order of parameter
insertion. For example, the conversion format %1$s inserts parameter one as a string, while
%2$s inserts parameter two. This is useful when creating translations which require you to
change the word order.

54.2.4 Domain Specification

The default message domain of XEmacs is ‘emacs’. For add-on packages, it is best to use a
different domain. For example, let us say we want to convert the “gorilla” package to use the
domain ‘emacs-gorilla’. To translate the message “What gorilla?”, use dgettext as follows:

(dgettext "emacs-gorilla" "What gorilla?")

A function (or macro) which has a documentation string or an interactive prompt needs to
be associated with the domain in order for the documentation or prompt to be translated. This
is done with the domain special form as follows:

Chapter 54: Internationalization 661

(defun scratch (location)
"Scratch the specified location."
(domain "emacs-gorilla")
(interactive "sScratch: ")
...)

It is most efficient to specify the domain in the first line of the function body, before the
interactive form.

For variables and constants which have documentation strings, specify the domain after the
documentation.

Special Formdefvar symbol [value [doc-string [domain]]]
Example:

(defvar weight 250 "Weight of gorilla, in pounds." "emacs-gorilla")

Special Formdefconst symbol [value [doc-string [domain]]]
Example:

(defconst limbs 4 "Number of limbs" "emacs-gorilla")

Autoloaded functions which are specified in ‘loaddefs.el’ do not need to have a domain
specification, because their documentation strings are extracted into the main message base.
However, for autoloaded functions which are specified in a separate package, use following syntax:

Functionautoload symbol filename &optional docstring interactive macro domain
Example:

(autoload ’explore "jungle" "Explore the jungle." nil nil "emacs-gorilla")

54.2.5 Documentation String Extraction

The utility ‘etc/make-po’ scans the file DOC to extract documentation strings and creates a
message file doc.po. This file may then be inserted within emacs.po.

Currently, make-po is hard-coded to read from DOC and write to doc.po. In order to extract
documentation strings from an add-on package, first run make-docfile on the package to pro-
duce the DOC file. Then run make-po -p with the -p argument to indicate that we are extracting
documentation for an add-on package.

(The -p argument is a kludge to make up for a subtle difference between pre-loaded doc-
umentation and add-on documentation: For add-on packages, the final carriage returns in the
strings produced by make-docfile must be ignored.)

54.3 I18N Level 4

The Asian-language support in XEmacs is called “MULE”. See Chapter 55 [MULE], page 663.

662 XEmacs Lisp Reference Manual

Chapter 55: MULE 663

55 MULE

MULE is the name originally given to the version of GNU Emacs extended for multi-lingual
(and in particular Asian-language) support. “MULE” is short for “MUlti-Lingual Emacs”. It
was originally called Nemacs (“Nihon Emacs” where “Nihon” is the Japanese word for “Japan”),
when it only provided support for Japanese. XEmacs refers to its multi-lingual support as MULE
support since it is based on MULE.

55.1 Internationalization Terminology

In internationalization terminology, a string of text is divided up into characters, which are
the printable units that make up the text. A single character is (for example) a capital ‘A’, the
number ‘2’, a Katakana character, a Kanji ideograph (an ideograph is a “picture” character, such
as is used in Japanese Kanji, Chinese Hanzi, and Korean Hangul; typically there are thousands
of such ideographs in each language), etc. The basic property of a character is its shape. Note
that the same character may be drawn by two different people (or in two different fonts) in
slightly different ways, although the basic shape will be the same.

In some cases, the differences will be significant enough that it is actually possible to identify
two or more distinct shapes that both represent the same character. For example, the lowercase
letters ‘a’ and ‘g’ each have two distinct possible shapes – the ‘a’ can optionally have a curved
tail projecting off the top, and the ‘g’ can be formed either of two loops, or of one loop and a
tail hanging off the bottom. Such distinct possible shapes of a character are called glyphs. The
important characteristic of two glyphs making up the same character is that the choice between
one or the other is purely stylistic and has no linguistic effect on a word (this is the reason why
a capital ‘A’ and lowercase ‘a’ are different characters rather than different glyphs – e.g. ‘Aspen’
is a city while ‘aspen’ is a kind of tree).

Note that character and glyph are used differently here than elsewhere in XEmacs.
A character set is simply a set of related characters. ASCII, for example, is a set of 94

characters (or 128, if you count non-printing characters). Other character sets are ISO8859-1
(ASCII plus various accented characters and other international symbols), JISX0201 (ASCII,
more or less, plus half-width Katakana), JISX0208 (Japanese Kanji), JISX0212 (a second set of
less-used Japanese Kanji), GB2312 (Mainland Chinese Hanzi), etc.

Every character set has one or more orderings, which can be viewed as a way of assigning
a number (or set of numbers) to each character in the set. For most character sets, there is
a standard ordering, and in fact all of the character sets mentioned above define a particular
ordering. ASCII, for example, places letters in their “natural” order, puts uppercase letters
before lowercase letters, numbers before letters, etc. Note that for many of the Asian character
sets, there is no natural ordering of the characters. The actual orderings are based on one or
more salient characteristic, of which there are many to choose from – e.g. number of strokes,
common radicals, phonetic ordering, etc.

The set of numbers assigned to any particular character are called the character’s position
codes. The number of position codes required to index a particular character in a character
set is called the dimension of the character set. ASCII, being a relatively small character set,
is of dimension one, and each character in the set is indexed using a single position code, in
the range 0 through 127 (if non-printing characters are included) or 33 through 126 (if only the
printing characters are considered). JISX0208, i.e. Japanese Kanji, has thousands of characters,
and is of dimension two – every character is indexed by two position codes, each in the range
33 through 126. (Note that the choice of the range here is somewhat arbitrary. Although a
character set such as JISX0208 defines an ordering of all its characters, it does not define the
actual mapping between numbers and characters. You could just as easily index the characters

664 XEmacs Lisp Reference Manual

in JISX0208 using numbers in the range 0 through 93, 1 through 94, 2 through 95, etc. The
reason for the actual range chosen is so that the position codes match up with the actual values
used in the common encodings.)

An encoding is a way of numerically representing characters from one or more character sets
into a stream of like-sized numerical values called words; typically these are 8-bit, 16-bit, or
32-bit quantities. If an encoding encompasses only one character set, then the position codes for
the characters in that character set could be used directly. (This is the case with ASCII, and as a
result, most people do not understand the difference between a character set and an encoding.)
This is not possible, however, if more than one character set is to be used in the encoding.
For example, printed Japanese text typically requires characters from multiple character sets
– ASCII, JISX0208, and JISX0212, to be specific. Each of these is indexed using one or more
position codes in the range 33 through 126, so the position codes could not be used directly or
there would be no way to tell which character was meant. Different Japanese encodings handle
this differently – JIS uses special escape characters to denote different character sets; EUC sets
the high bit of the position codes for JISX0208 and JISX0212, and puts a special extra byte
before each JISX0212 character; etc. (JIS, EUC, and most of the other encodings you will
encounter are 7-bit or 8-bit encodings. There is one common 16-bit encoding, which is Unicode;
this strives to represent all the world’s characters in a single large character set. 32-bit encodings
are generally used internally in programs to simplify the code that manipulates them; however,
they are not much used externally because they are not very space-efficient.)

Encodings are classified as either modal or non-modal. In a modal encoding, there are
multiple states that the encoding can be in, and the interpretation of the values in the stream
depends on the current global state of the encoding. Special values in the encoding, called
escape sequences, are used to change the global state. JIS, for example, is a modal encoding.
The bytes ‘ESC $ B’ indicate that, from then on, bytes are to be interpreted as position codes
for JISX0208, rather than as ASCII. This effect is cancelled using the bytes ‘ESC (B’, which
mean “switch from whatever the current state is to ASCII”. To switch to JISX0212, the escape
sequence ‘ESC $ (D’. (Note that here, as is common, the escape sequences do in fact begin with
‘ESC’. This is not necessarily the case, however.)

A non-modal encoding has no global state that extends past the character currently being
interpreted. EUC, for example, is a non-modal encoding. Characters in JISX0208 are encoded
by setting the high bit of the position codes, and characters in JISX0212 are encoded by doing
the same but also prefixing the character with the byte 0x8F.

The advantage of a modal encoding is that it is generally more space-efficient, and is easily
extendable because there are essentially an arbitrary number of escape sequences that can be
created. The disadvantage, however, is that it is much more difficult to work with if it is not
being processed in a sequential manner. In the non-modal EUC encoding, for example, the byte
0x41 always refers to the letter ‘A’; whereas in JIS, it could either be the letter ‘A’, or one of
the two position codes in a JISX0208 character, or one of the two position codes in a JISX0212
character. Determining exactly which one is meant could be difficult and time-consuming if the
previous bytes in the string have not already been processed.

Non-modal encodings are further divided into fixed-width and variable-width formats. A
fixed-width encoding always uses the same number of words per character, whereas a variable-
width encoding does not. EUC is a good example of a variable-width encoding: one to three
bytes are used per character, depending on the character set. 16-bit and 32-bit encodings are
nearly always fixed-width, and this is in fact one of the main reasons for using an encoding
with a larger word size. The advantages of fixed-width encodings should be obvious. The
advantages of variable-width encodings are that they are generally more space-efficient and
allow for compatibility with existing 8-bit encodings such as ASCII.

Note that the bytes in an 8-bit encoding are often referred to as octets rather than simply
as bytes. This terminology dates back to the days before 8-bit bytes were universal, when some
computers had 9-bit bytes, others had 10-bit bytes, etc.

Chapter 55: MULE 665

55.2 Charsets

A charset in MULE is an object that encapsulates a particular character set as well as an
ordering of those characters. Charsets are permanent objects and are named using symbols, like
faces.

Functioncharsetp object
This function returns non-nil if object is a charset.

55.2.1 Charset Properties

Charsets have the following properties:

name A symbol naming the charset. Every charset must have a different name; this allows
a charset to be referred to using its name rather than the actual charset object.

doc-string
A documentation string describing the charset.

registry A regular expression matching the font registry field for this character set. For
example, both the ascii and latin-iso8859-1 charsets use the registry "ISO8859-
1". This field is used to choose an appropriate font when the user gives a general
font specification such as ‘-*-courier-medium-r-*-140-*’, i.e. a 14-point upright
medium-weight Courier font.

dimension
Number of position codes used to index a character in the character set.
XEmacs/MULE can only handle character sets of dimension 1 or 2. This property
defaults to 1.

chars Number of characters in each dimension. In XEmacs/MULE, the only allowed values
are 94 or 96. (There are a couple of pre-defined character sets, such as ASCII, that
do not follow this, but you cannot define new ones like this.) Defaults to 94. Note
that if the dimension is 2, the character set thus described is 94x94 or 96x96.

columns Number of columns used to display a character in this charset. Only used in TTY
mode. (Under X, the actual width of a character can be derived from the font
used to display the characters.) If unspecified, defaults to the dimension. (This
is almost always the correct value, because character sets with dimension 2 are
usually ideograph character sets, which need two columns to display the intricate
ideographs.)

direction
A symbol, either l2r (left-to-right) or r2l (right-to-left). Defaults to l2r. This
specifies the direction that the text should be displayed in, and will be left-to-right
for most charsets but right-to-left for Hebrew and Arabic. (Right-to-left display is
not currently implemented.)

final Final byte of the standard ISO 2022 escape sequence designating this charset. Must
be supplied. Each combination of (dimension, chars) defines a separate namespace
for final bytes, and each charset within a particular namespace must have a different
final byte. Note that ISO 2022 restricts the final byte to the range 0x30 - 0x7E if
dimension == 1, and 0x30 - 0x5F if dimension == 2. Note also that final bytes in
the range 0x30 - 0x3F are reserved for user-defined (not official) character sets. For
more information on ISO 2022, see Section 55.6 [Coding Systems], page 672.

666 XEmacs Lisp Reference Manual

graphic 0 (use left half of font on output) or 1 (use right half of font on output). Defaults
to 0. This specifies how to convert the position codes that index a character in a
character set into an index into the font used to display the character set. With
graphic set to 0, position codes 33 through 126 map to font indices 33 through 126;
with it set to 1, position codes 33 through 126 map to font indices 161 through 254
(i.e. the same number but with the high bit set). For example, for a font whose
registry is ISO8859-1, the left half of the font (octets 0x20 - 0x7F) is the ascii
charset, while the right half (octets 0xA0 - 0xFF) is the latin-iso8859-1 charset.

ccl-program
A compiled CCL program used to convert a character in this charset into an index
into the font. This is in addition to the graphic property. If a CCL program is
defined, the position codes of a character will first be processed according to graphic
and then passed through the CCL program, with the resulting values used to index
the font.
This is used, for example, in the Big5 character set (used in Taiwan). This character
set is not ISO-2022-compliant, and its size (94x157) does not fit within the maximum
96x96 size of ISO-2022-compliant character sets. As a result, XEmacs/MULE splits
it (in a rather complex fashion, so as to group the most commonly used characters
together) into two charset objects (big5-1 and big5-2), each of size 94x94, and each
charset object uses a CCL program to convert the modified position codes back into
standard Big5 indices to retrieve a character from a Big5 font.

Most of the above properties can only be changed when the charset is created. See Sec-
tion 55.2.3 [Charset Property Functions], page 667.

55.2.2 Basic Charset Functions

Functionfind-charset charset-or-name
This function retrieves the charset of the given name. If charset-or-name is a charset
object, it is simply returned. Otherwise, charset-or-name should be a symbol. If there is
no such charset, nil is returned. Otherwise the associated charset object is returned.

Functionget-charset name
This function retrieves the charset of the given name. Same as find-charset except an
error is signalled if there is no such charset instead of returning nil.

Functioncharset-list
This function returns a list of the names of all defined charsets.

Functionmake-charset name doc-string props
This function defines a new character set. This function is for use with Mule support.
name is a symbol, the name by which the character set is normally referred. doc-string
is a string describing the character set. props is a property list, describing the specific
nature of the character set. The recognized properties are registry, dimension, columns,
chars, final, graphic, direction, and ccl-program, as previously described.

Functionmake-reverse-direction-charset charset new-name
This function makes a charset equivalent to charset but which goes in the opposite direc-
tion. new-name is the name of the new charset. The new charset is returned.

Chapter 55: MULE 667

Functioncharset-from-attributes dimension chars final &optional direction
This function returns a charset with the given dimension, chars, final, and direction.
If direction is omitted, both directions will be checked (left-to-right will be returned if
character sets exist for both directions).

Functioncharset-reverse-direction-charset charset
This function returns the charset (if any) with the same dimension, number of characters,
and final byte as charset, but which is displayed in the opposite direction.

55.2.3 Charset Property Functions

All of these functions accept either a charset name or charset object.

Functioncharset-property charset prop
This function returns property prop of charset. See Section 55.2.1 [Charset Properties],
page 665.

Convenience functions are also provided for retrieving individual properties of a charset.

Functioncharset-name charset
This function returns the name of charset. This will be a symbol.

Functioncharset-doc-string charset
This function returns the doc string of charset.

Functioncharset-registry charset
This function returns the registry of charset.

Functioncharset-dimension charset
This function returns the dimension of charset.

Functioncharset-chars charset
This function returns the number of characters per dimension of charset.

Functioncharset-columns charset
This function returns the number of display columns per character (in TTY mode) of
charset.

Functioncharset-direction charset
This function returns the display direction of charset – either l2r or r2l.

Functioncharset-final charset
This function returns the final byte of the ISO 2022 escape sequence designating charset.

Functioncharset-graphic charset
This function returns either 0 or 1, depending on whether the position codes of characters
in charset map to the left or right half of their font, respectively.

Functioncharset-ccl-program charset
This function returns the CCL program, if any, for converting position codes of characters
in charset into font indices.

668 XEmacs Lisp Reference Manual

The only property of a charset that can currently be set after the charset has been created
is the CCL program.

Functionset-charset-ccl-program charset ccl-program
This function sets the ccl-program property of charset to ccl-program.

55.2.4 Predefined Charsets

The following charsets are predefined in the C code.
Name Type Fi Gr Dir Registry
--
ascii 94 B 0 l2r ISO8859-1
control-1 94 0 l2r ---
latin-iso8859-1 94 A 1 l2r ISO8859-1
latin-iso8859-2 96 B 1 l2r ISO8859-2
latin-iso8859-3 96 C 1 l2r ISO8859-3
latin-iso8859-4 96 D 1 l2r ISO8859-4
cyrillic-iso8859-5 96 L 1 l2r ISO8859-5
arabic-iso8859-6 96 G 1 r2l ISO8859-6
greek-iso8859-7 96 F 1 l2r ISO8859-7
hebrew-iso8859-8 96 H 1 r2l ISO8859-8
latin-iso8859-9 96 M 1 l2r ISO8859-9
thai-tis620 96 T 1 l2r TIS620
katakana-jisx0201 94 I 1 l2r JISX0201.1976
latin-jisx0201 94 J 0 l2r JISX0201.1976
japanese-jisx0208-1978 94x94 @ 0 l2r JISX0208.1978
japanese-jisx0208 94x94 B 0 l2r JISX0208.19(83|90)
japanese-jisx0212 94x94 D 0 l2r JISX0212
chinese-gb2312 94x94 A 0 l2r GB2312
chinese-cns11643-1 94x94 G 0 l2r CNS11643.1
chinese-cns11643-2 94x94 H 0 l2r CNS11643.2
chinese-big5-1 94x94 0 0 l2r Big5
chinese-big5-2 94x94 1 0 l2r Big5
korean-ksc5601 94x94 C 0 l2r KSC5601
composite 96x96 0 l2r ---

The following charsets are predefined in the Lisp code.
Name Type Fi Gr Dir Registry
--
arabic-digit 94 2 0 l2r MuleArabic-0
arabic-1-column 94 3 0 r2l MuleArabic-1
arabic-2-column 94 4 0 r2l MuleArabic-2
sisheng 94 0 0 l2r sisheng_cwnn\|OMRON_UDC_ZH
chinese-cns11643-3 94x94 I 0 l2r CNS11643.1
chinese-cns11643-4 94x94 J 0 l2r CNS11643.1
chinese-cns11643-5 94x94 K 0 l2r CNS11643.1
chinese-cns11643-6 94x94 L 0 l2r CNS11643.1
chinese-cns11643-7 94x94 M 0 l2r CNS11643.1
ethiopic 94x94 2 0 l2r Ethio
ascii-r2l 94 B 0 r2l ISO8859-1
ipa 96 0 1 l2r MuleIPA

Chapter 55: MULE 669

vietnamese-lower 96 1 1 l2r VISCII1.1
vietnamese-upper 96 2 1 l2r VISCII1.1

For all of the above charsets, the dimension and number of columns are the same.
Note that ASCII, Control-1, and Composite are handled specially. This is why some of the

fields are blank; and some of the filled-in fields (e.g. the type) are not really accurate.

55.3 MULE Characters

Functionmake-char charset arg1 &optional arg2
This function makes a multi-byte character from charset and octets arg1 and arg2.

Functionchar-charset ch
This function returns the character set of char ch.

Functionchar-octet ch &optional n
This function returns the octet (i.e. position code) numbered n (should be 0 or 1) of char
ch. n defaults to 0 if omitted.

Functionfind-charset-region start end &optional buffer
This function returns a list of the charsets in the region between start and end. buffer
defaults to the current buffer if omitted.

Functionfind-charset-string string
This function returns a list of the charsets in string.

55.4 Composite Characters

Composite characters are not yet completely implemented.

Functionmake-composite-char string
This function converts a string into a single composite character. The character is the
result of overstriking all the characters in the string.

Functioncomposite-char-string ch
This function returns a string of the characters comprising a composite character.

Functioncompose-region start end &optional buffer
This function composes the characters in the region from start to end in buffer into one
composite character. The composite character replaces the composed characters. buffer
defaults to the current buffer if omitted.

Functiondecompose-region start end &optional buffer
This function decomposes any composite characters in the region from start to end in
buffer. This converts each composite character into one or more characters, the individual
characters out of which the composite character was formed. Non-composite characters
are left as-is. buffer defaults to the current buffer if omitted.

670 XEmacs Lisp Reference Manual

55.5 ISO 2022

This section briefly describes the ISO 2022 encoding standard. For more thorough under-
standing, please refer to the original document of ISO 2022.

Character sets (charsets) are classified into the following four categories, according to the
number of characters of charset: 94-charset, 96-charset, 94x94-charset, and 96x96-charset.

94-charset ASCII(B), left(J) and right(I) half of JISX0201, ...

96-charset Latin-1(A), Latin-2(B), Latin-3(C), ...

94x94-charset
GB2312(A), JISX0208(B), KSC5601(C), ...

96x96-charset
none for the moment

The character in parentheses after the name of each charset is the final character F, which
can be regarded as the identifier of the charset. ECMA allocates F to each charset. F is in the
range of 0x30..0x7F, but 0x30..0x3F are only for private use.

Note: ECMA = European Computer Manufacturers Association

There are four registers of charsets, called G0 thru G3. You can designate (or assign) any
charset to one of these registers.

The code space contained within one octet (of size 256) is divided into 4 areas: C0, GL, C1,
and GR. GL and GR are the areas into which a register of charset can be invoked into.

C0: 0x00 - 0x1F
GL: 0x20 - 0x7F
C1: 0x80 - 0x9F
GR: 0xA0 - 0xFF

Usually, in the initial state, G0 is invoked into GL, and G1 is invoked into GR.

ISO 2022 distinguishes 7-bit environments and 8-bit environments. In 7-bit environments,
only C0 and GL are used.

Charset designation is done by escape sequences of the form:

ESC [I] I F

where I is an intermediate character in the range 0x20 - 0x2F, and F is the final character
identifying this charset.

The meaning of intermediate characters are:

$ [0x24]: indicate charset of dimension 2 (94x94 or 96x96).
([0x28]: designate to G0 a 94-charset whose final byte is F.
) [0x29]: designate to G1 a 94-charset whose final byte is F.
* [0x2A]: designate to G2 a 94-charset whose final byte is F.
+ [0x2B]: designate to G3 a 94-charset whose final byte is F.
- [0x2D]: designate to G1 a 96-charset whose final byte is F.
. [0x2E]: designate to G2 a 96-charset whose final byte is F.
/ [0x2F]: designate to G3 a 96-charset whose final byte is F.

The following rule is not allowed in ISO 2022 but can be used in Mule.

, [0x2C]: designate to G0 a 96-charset whose final byte is F.

Here are examples of designations:

Chapter 55: MULE 671

ESC (B : designate to G0 ASCII
ESC - A : designate to G1 Latin-1
ESC $ (A or ESC $ A : designate to G0 GB2312
ESC $ (B or ESC $ B : designate to G0 JISX0208
ESC $) C : designate to G1 KSC5601

To use a charset designated to G2 or G3, and to use a charset designated to G1 in a 7-
bit environment, you must explicitly invoke G1, G2, or G3 into GL. There are two types of
invocation, Locking Shift (forever) and Single Shift (one character only).

Locking Shift is done as follows:
LS0 or SI (0x0F): invoke G0 into GL
LS1 or SO (0x0E): invoke G1 into GL
LS2: invoke G2 into GL
LS3: invoke G3 into GL
LS1R: invoke G1 into GR
LS2R: invoke G2 into GR
LS3R: invoke G3 into GR

Single Shift is done as follows:
SS2 or ESC N: invoke G2 into GL
SS3 or ESC O: invoke G3 into GL

(#### Ben says: I think the above is slightly incorrect. It appears that SS2 invokes G2 into
GR and SS3 invokes G3 into GR, whereas ESC N and ESC O behave as indicated. The above
definitions will not parse EUC-encoded text correctly, and it looks like the code in mule-coding.c
has similar problems.)

You may realize that there are a lot of ISO-2022-compliant ways of encoding multilingual text.
Now, in the world, there exist many coding systems such as X11’s Compound Text, Japanese
JUNET code, and so-called EUC (Extended UNIX Code); all of these are variants of ISO 2022.

In Mule, we characterize ISO 2022 by the following attributes:
1. Initial designation to G0 thru G3.
2. Allow designation of short form for Japanese and Chinese.
3. Should we designate ASCII to G0 before control characters?
4. Should we designate ASCII to G0 at the end of line?
5. 7-bit environment or 8-bit environment.
6. Use Locking Shift or not.
7. Use ASCII or JIS0201-1976-Roman.
8. Use JISX0208-1983 or JISX0208-1976.

(The last two are only for Japanese.)
By specifying these attributes, you can create any variant of ISO 2022.
Here are several examples:

junet -- Coding system used in JUNET.
1. G0 <- ASCII, G1..3 <- never used
2. Yes.
3. Yes.
4. Yes.
5. 7-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

672 XEmacs Lisp Reference Manual

ctext -- Compound Text
1. G0 <- ASCII, G1 <- Latin-1, G2,3 <- never used
2. No.
3. No.
4. Yes.
5. 8-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

euc-china -- Chinese EUC. Although many people call this
as "GB encoding", the name may cause misunderstanding.
1. G0 <- ASCII, G1 <- GB2312, G2,3 <- never used
2. No.
3. Yes.
4. Yes.
5. 8-bit environment
6. No.
7. Use ASCII
8. Use JISX0208-1983

korean-mail -- Coding system used in Korean network.
1. G0 <- ASCII, G1 <- KSC5601, G2,3 <- never used
2. No.
3. Yes.
4. Yes.
5. 7-bit environment
6. Yes.
7. No.
8. No.

Mule creates all these coding systems by default.

55.6 Coding Systems

A coding system is an object that defines how text containing multiple character sets is
encoded into a stream of (typically 8-bit) bytes. The coding system is used to decode the
stream into a series of characters (which may be from multiple charsets) when the text is read
from a file or process, and is used to encode the text back into the same format when it is written
out to a file or process.

For example, many ISO-2022-compliant coding systems (such as Compound Text, which is
used for inter-client data under the X Window System) use escape sequences to switch between
different charsets – Japanese Kanji, for example, is invoked with ‘ESC $ (B’; ASCII is invoked
with ‘ESC (B’; and Cyrillic is invoked with ‘ESC - L’. See make-coding-system for more infor-
mation.

Coding systems are normally identified using a symbol, and the symbol is accepted in place
of the actual coding system object whenever a coding system is called for. (This is similar to
how faces and charsets work.)

Functioncoding-system-p object
This function returns non-nil if object is a coding system.

Chapter 55: MULE 673

55.6.1 Coding System Types

nil
autodetect

Automatic conversion. XEmacs attempts to detect the coding system used in the
file.

no-conversion
No conversion. Use this for binary files and such. On output, graphic characters that
are not in ASCII or Latin-1 will be replaced by a ‘?’. (For a no-conversion-encoded
buffer, these characters will only be present if you explicitly insert them.)

shift-jis
Shift-JIS (a Japanese encoding commonly used in PC operating systems).

iso2022 Any ISO-2022-compliant encoding. Among other things, this includes JIS (the
Japanese encoding commonly used for e-mail), national variants of EUC (the stan-
dard Unix encoding for Japanese and other languages), and Compound Text (an
encoding used in X11). You can specify more specific information about the con-
version with the flags argument.

big5 Big5 (the encoding commonly used for Taiwanese).

ccl The conversion is performed using a user-written pseudo-code program. CCL (Code
Conversion Language) is the name of this pseudo-code.

internal Write out or read in the raw contents of the memory representing the buffer’s text.
This is primarily useful for debugging purposes, and is only enabled when XEmacs
has been compiled with DEBUG_XEMACS set (the ‘--debug’ configure option). Warn-
ing: Reading in a file using internal conversion can result in an internal inconsis-
tency in the memory representing a buffer’s text, which will produce unpredictable
results and may cause XEmacs to crash. Under normal circumstances you should
never use internal conversion.

55.6.2 EOL Conversion

nil Automatically detect the end-of-line type (LF, CRLF, or CR). Also generate sub-
sidiary coding systems named name-unix, name-dos, and name-mac, that are
identical to this coding system but have an EOL-TYPE value of lf, crlf, and
cr, respectively.

lf The end of a line is marked externally using ASCII LF. Since this is also the way
that XEmacs represents an end-of-line internally, specifying this option results in
no end-of-line conversion. This is the standard format for Unix text files.

crlf The end of a line is marked externally using ASCII CRLF. This is the standard
format for MS-DOS text files.

cr The end of a line is marked externally using ASCII CR. This is the standard format
for Macintosh text files.

t Automatically detect the end-of-line type but do not generate subsidiary coding sys-
tems. (This value is converted to nil when stored internally, and coding-system-
property will return nil.)

674 XEmacs Lisp Reference Manual

55.6.3 Coding System Properties

mnemonic String to be displayed in the modeline when this coding system is active.

eol-type End-of-line conversion to be used. It should be one of the types listed in Sec-
tion 55.6.2 [EOL Conversion], page 673.

post-read-conversion
Function called after a file has been read in, to perform the decoding. Called with
two arguments, beg and end, denoting a region of the current buffer to be decoded.

pre-write-conversion
Function called before a file is written out, to perform the encoding. Called with
two arguments, beg and end, denoting a region of the current buffer to be encoded.

The following additional properties are recognized if type is iso2022:

charset-g0
charset-g1
charset-g2
charset-g3

The character set initially designated to the G0 - G3 registers. The value should be
one of
• A charset object (designate that character set)
• nil (do not ever use this register)
• t (no character set is initially designated to the register, but may be later on;

this automatically sets the corresponding force-g*-on-output property)

force-g0-on-output
force-g1-on-output
force-g2-on-output
force-g3-on-output

If non-nil, send an explicit designation sequence on output before using the specified
register.

short If non-nil, use the short forms ‘ESC $ @’, ‘ESC $ A’, and ‘ESC $ B’ on output in place
of the full designation sequences ‘ESC $ (@’, ‘ESC $ (A’, and ‘ESC $ (B’.

no-ascii-eol
If non-nil, don’t designate ASCII to G0 at each end of line on output. Setting this
to non-nil also suppresses other state-resetting that normally happens at the end
of a line.

no-ascii-cntl
If non-nil, don’t designate ASCII to G0 before control chars on output.

seven If non-nil, use 7-bit environment on output. Otherwise, use 8-bit environment.

lock-shift
If non-nil, use locking-shift (SO/SI) instead of single-shift or designation by escape
sequence.

no-iso6429
If non-nil, don’t use ISO6429’s direction specification.

escape-quoted
If non-nil, literal control characters that are the same as the beginning of a recognized
ISO 2022 or ISO 6429 escape sequence (in particular, ESC (0x1B), SO (0x0E), SI

Chapter 55: MULE 675

(0x0F), SS2 (0x8E), SS3 (0x8F), and CSI (0x9B)) are “quoted” with an escape
character so that they can be properly distinguished from an escape sequence. (Note
that doing this results in a non-portable encoding.) This encoding flag is used for
byte-compiled files. Note that ESC is a good choice for a quoting character because
there are no escape sequences whose second byte is a character from the Control-0
or Control-1 character sets; this is explicitly disallowed by the ISO 2022 standard.

input-charset-conversion
A list of conversion specifications, specifying conversion of characters in one charset
to another when decoding is performed. Each specification is a list of two elements:
the source charset, and the destination charset.

output-charset-conversion
A list of conversion specifications, specifying conversion of characters in one charset
to another when encoding is performed. The form of each specification is the same
as for input-charset-conversion.

The following additional properties are recognized (and required) if type is ccl:

decode CCL program used for decoding (converting to internal format).

encode CCL program used for encoding (converting to external format).

55.6.4 Basic Coding System Functions

Functionfind-coding-system coding-system-or-name
This function retrieves the coding system of the given name.
If coding-system-or-name is a coding-system object, it is simply returned. Otherwise,
coding-system-or-name should be a symbol. If there is no such coding system, nil is
returned. Otherwise the associated coding system object is returned.

Functionget-coding-system name
This function retrieves the coding system of the given name. Same as find-coding-
system except an error is signalled if there is no such coding system instead of returning
nil.

Functioncoding-system-list
This function returns a list of the names of all defined coding systems.

Functioncoding-system-name coding-system
This function returns the name of the given coding system.

Functionmake-coding-system name type &optional doc-string props
This function registers symbol name as a coding system.
type describes the conversion method used and should be one of the types listed in Sec-
tion 55.6.1 [Coding System Types], page 673.
doc-string is a string describing the coding system.
props is a property list, describing the specific nature of the character set. Recognized
properties are as in Section 55.6.3 [Coding System Properties], page 674.

Functioncopy-coding-system old-coding-system new-name
This function copies old-coding-system to new-name. If new-name does not name an
existing coding system, a new one will be created.

676 XEmacs Lisp Reference Manual

Functionsubsidiary-coding-system coding-system eol-type
This function returns the subsidiary coding system of coding-system with eol type eol-type.

55.6.5 Coding System Property Functions

Functioncoding-system-doc-string coding-system
This function returns the doc string for coding-system.

Functioncoding-system-type coding-system
This function returns the type of coding-system.

Functioncoding-system-property coding-system prop
This function returns the prop property of coding-system.

55.6.6 Encoding and Decoding Text

Functiondecode-coding-region start end coding-system &optional buffer
This function decodes the text between start and end which is encoded in coding-system.
This is useful if you’ve read in encoded text from a file without decoding it (e.g. you read
in a JIS-formatted file but used the binary or no-conversion coding system, so that it
shows up as ‘^[$B!<!+^[(B’). The length of the encoded text is returned. buffer defaults
to the current buffer if unspecified.

Functionencode-coding-region start end coding-system &optional buffer
This function encodes the text between start and end using coding-system. This will, for
example, convert Japanese characters into stuff such as ‘^[$B!<!+^[(B’ if you use the JIS
encoding. The length of the encoded text is returned. buffer defaults to the current buffer
if unspecified.

55.6.7 Detection of Textual Encoding

Functioncoding-category-list
This function returns a list of all recognized coding categories.

Functionset-coding-priority-list list
This function changes the priority order of the coding categories. list should be a list of
coding categories, in descending order of priority. Unspecified coding categories will be
lower in priority than all specified ones, in the same relative order they were in previously.

Functioncoding-priority-list
This function returns a list of coding categories in descending order of priority.

Functionset-coding-category-system coding-category coding-system
This function changes the coding system associated with a coding category.

Chapter 55: MULE 677

Functioncoding-category-system coding-category
This function returns the coding system associated with a coding category.

Functiondetect-coding-region start end &optional buffer
This function detects coding system of the text in the region between start and end.
Returned value is a list of possible coding systems ordered by priority. If only ASCII
characters are found, it returns autodetect or one of its subsidiary coding systems ac-
cording to a detected end-of-line type. Optional arg buffer defaults to the current buffer.

55.6.8 Big5 and Shift-JIS Functions

These are special functions for working with the non-standard Shift-JIS and Big5 encodings.

Functiondecode-shift-jis-char code
This function decodes a JISX0208 character of Shift-JIS coding-system. code is the char-
acter code in Shift-JIS as a cons of type bytes. The corresponding character is returned.

Functionencode-shift-jis-char ch
This function encodes a JISX0208 character ch to SHIFT-JIS coding-system. The corre-
sponding character code in SHIFT-JIS is returned as a cons of two bytes.

Functiondecode-big5-char code
This function decodes a Big5 character code of BIG5 coding-system. code is the character
code in BIG5. The corresponding character is returned.

Functionencode-big5-char ch
This function encodes the Big5 character char to BIG5 coding-system. The corresponding
character code in Big5 is returned.

55.7 CCL

CCL (Code Conversion Language) is a simple structured programming language designed for
character coding conversions. A CCL program is compiled to CCL code (represented by a vector
of integers) and executed by the CCL interpreter embedded in Emacs. The CCL interpreter
implements a virtual machine with 8 registers called r0, ..., r7, a number of control structures,
and some I/O operators. Take care when using registers r0 (used in implicit set statements)
and especially r7 (used internally by several statements and operations, especially for multiple
return values and I/O operations).

CCL is used for code conversion during process I/O and file I/O for non-ISO2022 coding
systems. (It is the only way for a user to specify a code conversion function.) It is also used
for calculating the code point of an X11 font from a character code. However, since CCL is
designed as a powerful programming language, it can be used for more generic calculation where
efficiency is demanded. A combination of three or more arithmetic operations can be calculated
faster by CCL than by Emacs Lisp.

Warning: The code in ‘src/mule-ccl.c’ and ‘$packages/lisp/mule-base/mule-ccl.el’
is the definitive description of CCL’s semantics. The previous version of this section contained
several typos and obsolete names left from earlier versions of MULE, and many may remain.
(I am not an experienced CCL programmer; the few who know CCL well find writing English
painful.)

678 XEmacs Lisp Reference Manual

A CCL program transforms an input data stream into an output data stream. The input
stream, held in a buffer of constant bytes, is left unchanged. The buffer may be filled by an
external input operation, taken from an Emacs buffer, or taken from a Lisp string. The output
buffer is a dynamic array of bytes, which can be written by an external output operation, inserted
into an Emacs buffer, or returned as a Lisp string.

A CCL program is a (Lisp) list containing two or three members. The first member is
the buffer magnification, which indicates the required minimum size of the output buffer as a
multiple of the input buffer. It is followed by the main block which executes while there is input
remaining, and an optional EOF block which is executed when the input is exhausted. Both
the main block and the EOF block are CCL blocks.

A CCL block is either a CCL statement or list of CCL statements. A CCL statement is either
a set statement (either an integer or an assignment, which is a list of a register to receive the
assignment, an assignment operator, and an expression) or a control statement (a list starting
with a keyword, whose allowable syntax depends on the keyword).

55.7.1 CCL Syntax

The full syntax of a CCL program in BNF notation:
CCL PROGRAM :=

(BUFFER MAGNIFICATION
CCL MAIN BLOCK
[CCL EOF BLOCK])

BUFFER MAGNIFICATION := integer
CCL MAIN BLOCK := CCL BLOCK
CCL EOF BLOCK := CCL BLOCK

CCL BLOCK :=
STATEMENT | (STATEMENT [STATEMENT ...])

STATEMENT :=
SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE
| CALL | END

SET :=
(REG = EXPRESSION)
| (REG ASSIGNMENT OPERATOR EXPRESSION)
| integer

EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)

IF := (if EXPRESSION CCL BLOCK [CCL BLOCK])
BRANCH := (branch EXPRESSION CCL BLOCK [CCL BLOCK ...])
LOOP := (loop STATEMENT [STATEMENT ...])
BREAK := (break)
REPEAT :=

(repeat)
| (write-repeat [REG | integer | string])
| (write-read-repeat REG [integer | ARRAY])

READ :=
(read REG ...)

Chapter 55: MULE 679

| (read-if (REG OPERATOR ARG) CCL BLOCK CCL BLOCK)
| (read-branch REG CCL BLOCK [CCL BLOCK ...])

WRITE :=
(write REG ...)
| (write EXPRESSION)
| (write integer) | (write string) | (write REG ARRAY)
| string

CALL := (call ccl-program-name)
END := (end)

REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
ARG := REG | integer
OPERATOR :=

+ | - | * | / | % | & | ’|’ | ^ | << | >> | <8 | >8 | //
| < | > | == | <= | >= | != | de-sjis | en-sjis

ASSIGNMENT OPERATOR :=
+= | -= | *= | /= | %= | &= | ’|=’ | ^= | <<= | >>=

ARRAY := ’[’ integer ... ’]’

55.7.2 CCL Statements

The Emacs Code Conversion Language provides the following statement types: set, if, branch,
loop, repeat, break, read, write, call, and end.

Set statement:

The set statement has three variants with the syntaxes ‘(reg = expression)’, ‘(reg assign-
ment operator expression)’, and ‘integer’. The assignment operator variation of the set state-
ment works the same way as the corresponding C expression statement does. The assignment
operators are +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=, and they have the same meanings as
in C. A "naked integer" integer is equivalent to a set statement of the form (r0 = integer).

I/O statements:

The read statement takes one or more registers as arguments. It reads one byte (a C char)
from the input into each register in turn.

The write takes several forms. In the form ‘(write reg ...)’ it takes one or more registers
as arguments and writes each in turn to the output. The integer in a register (interpreted as an
Emchar) is encoded to multibyte form (ie, Bufbytes) and written to the current output buffer.
If it is less than 256, it is written as is. The forms ‘(write expression)’ and ‘(write integer)’
are treated analogously. The form ‘(write string)’ writes the constant string to the output. A
"naked string" ‘string ’ is equivalent to the statement ‘(write string)’. The form ‘(write reg
array)’ writes the regth element of the array to the output.

Conditional statements:

The if statement takes an expression, a CCL block, and an optional second CCL block as
arguments. If the expression evaluates to non-zero, the first CCL block is executed. Otherwise,
if there is a second CCL block, it is executed.

The read-if variant of the if statement takes an expression, a CCL block, and an optional
second CCL block as arguments. The expression must have the form (reg operator operand)

680 XEmacs Lisp Reference Manual

(where operand is a register or an integer). The read-if statement first reads from the input
into the first register operand in the expression, then conditionally executes a CCL block just
as the if statement does.

The branch statement takes an expression and one or more CCL blocks as arguments. The
CCL blocks are treated as a zero-indexed array, and the branch statement uses the expression
as the index of the CCL block to execute. Null CCL blocks may be used as no-ops, continuing
execution with the statement following the branch statement in the containing CCL block.
Out-of-range values for the EXPRESSION are also treated as no-ops.

The read-branch variant of the branch statement takes an register, a CCL block, and an
optional second CCL block as arguments. The read-branch statement first reads from the
input into the register, then conditionally executes a CCL block just as the branch statement
does.

Loop control statements:

The loop statement creates a block with an implied jump from the end of the block back to
its head. The loop is exited on a break statement, and continued without executing the tail by
a repeat statement.

The break statement, written ‘(break)’, terminates the current loop and continues with the
next statement in the current block.

The repeat statement has three variants, repeat, write-repeat, and write-read-repeat.
Each continues the current loop from its head, possibly after performing I/O. repeat takes no
arguments and does no I/O before jumping. write-repeat takes a single argument (a register,
an integer, or a string), writes it to the output, then jumps. write-read-repeat takes one or
two arguments. The first must be a register. The second may be an integer or an array; if
absent, it is implicitly set to the first (register) argument. write-read-repeat writes its second
argument to the output, then reads from the input into the register, and finally jumps. See the
write and read statements for the semantics of the I/O operations for each type of argument.

Other control statements:

The call statement, written ‘(call ccl-program-name)’, executes a CCL program as a sub-
routine. It does not return a value to the caller, but can modify the register status.

The end statement, written ‘(end)’, terminates the CCL program successfully, and returns
to caller (which may be a CCL program). It does not alter the status of the registers.

55.7.3 CCL Expressions

CCL, unlike Lisp, uses infix expressions. The simplest CCL expressions consist of a single
operand, either a register (one of r0, ..., r0) or an integer. Complex expressions are lists of the
form (expression operator operand). Unlike C, assignments are not expressions.

In the following table, X is the target resister for a set. In subexpressions, this is implicitly
r7. This means that >8, //, de-sjis, and en-sjis cannot be used freely in subexpressions,
since they return parts of their values in r7. Y may be an expression, register, or integer, while
Z must be a register or an integer.
Name Operator Code C-like Description
CCL PLUS + 0x00 X = Y + Z
CCL MINUS - 0x01 X = Y - Z
CCL MUL * 0x02 X = Y * Z
CCL DIV / 0x03 X = Y / Z

Chapter 55: MULE 681

CCL MOD % 0x04 X = Y % Z
CCL AND & 0x05 X = Y & Z
CCL OR | 0x06 X = Y | Z
CCL XOR ^ 0x07 X = Y ^ Z
CCL LSH << 0x08 X = Y << Z
CCL RSH >> 0x09 X = Y >> Z
CCL LSH8 <8 0x0A X = (Y << 8) | Z
CCL RSH8 >8 0x0B X = Y >> 8, r[7] = Y & 0xFF
CCL DIVMOD // 0x0C X = Y / Z, r[7] = Y % Z
CCL LS < 0x10 X = (X < Y)
CCL GT > 0x11 X = (X > Y)
CCL EQ == 0x12 X = (X == Y)
CCL LE <= 0x13 X = (X <= Y)
CCL GE >= 0x14 X = (X >= Y)
CCL NE != 0x15 X = (X != Y)
CCL ENCODE SJIS en-sjis 0x16 X = HIGHER BYTE (SJIS (Y, Z))

r[7] = LOWER BYTE (SJIS (Y, Z)
CCL DECODE SJIS de-sjis 0x17 X = HIGHER BYTE (DE-SJIS (Y, Z))

r[7] = LOWER BYTE (DE-SJIS (Y, Z))
The CCL operators are as in C, with the addition of CCL LSH8, CCL RSH8,

CCL DIVMOD, CCL ENCODE SJIS, and CCL DECODE SJIS. The CCL ENCODE SJIS
and CCL DECODE SJIS treat their first and second bytes as the high and low bytes of a
two-byte character code. (SJIS stands for Shift JIS, an encoding of Japanese characters used
by Microsoft. CCL ENCODE SJIS is a complicated transformation of the Japanese standard
JIS encoding to Shift JIS. CCL DECODE SJIS is its inverse.) It is somewhat odd to represent
the SJIS operations in infix form.

55.7.4 Calling CCL

CCL programs are called automatically during Emacs buffer I/O when the external repre-
sentation has a coding system type of shift-jis, big5, or ccl. The program is specified by the
coding system (see Section 55.6 [Coding Systems], page 672). You can also call CCL programs
from other CCL programs, and from Lisp using these functions:

Functionccl-execute ccl-program status
Execute ccl-program with registers initialized by status. ccl-program is a vector of com-
piled CCL code created by ccl-compile. It is an error for the program to try to execute
a CCL I/O command. status must be a vector of nine values, specifying the initial value
for the R0, R1 .. R7 registers and for the instruction counter IC. A nil value for a regis-
ter initializer causes the register to be set to 0. A nil value for the IC initializer causes
execution to start at the beginning of the program. When the program is done, status is
modified (by side-effect) to contain the ending values for the corresponding registers and
IC.

Functionccl-execute-on-string ccl-program status str &optional continue
Execute ccl-program with initial status on string. ccl-program is a vector of compiled
CCL code created by ccl-compile. status must be a vector of nine values, specifying
the initial value for the R0, R1 .. R7 registers and for the instruction counter IC. A nil
value for a register initializer causes the register to be set to 0. A nil value for the IC
initializer causes execution to start at the beginning of the program. An optional fourth
argument continue, if non-nil, causes the IC to remain on the unsatisfied read operation
if the program terminates due to exhaustion of the input buffer. Otherwise the IC is set

682 XEmacs Lisp Reference Manual

to the end of the program. When the program is done, status is modified (by side-effect)
to contain the ending values for the corresponding registers and IC. Returns the resulting
string.

To call a CCL program from another CCL program, it must first be registered:

Functionregister-ccl-program name ccl-program
Register name for CCL program program in ccl-program-table. program should be the
compiled form of a CCL program, or nil. Return index number of the registered CCL
program.

Information about the processor time used by the CCL interpreter can be obtained using
these functions:

Functionccl-elapsed-time
Returns the elapsed processor time of the CCL interpreter as cons of user and system
time, as floating point numbers measured in seconds. If only one overall value can be
determined, the return value will be a cons of that value and 0.

Functionccl-reset-elapsed-time
Resets the CCL interpreter’s internal elapsed time registers.

55.7.5 CCL Examples

This section is not yet written.

55.8 Category Tables

A category table is a type of char table used for keeping track of categories. Categories are
used for classifying characters for use in regexps – you can refer to a category rather than having
to use a complicated [] expression (and category lookups are significantly faster).

There are 95 different categories available, one for each printable character (including space)
in the ASCII charset. Each category is designated by one such character, called a category des-
ignator. They are specified in a regexp using the syntax ‘\cX’, where X is a category designator.
(This is not yet implemented.)

A category table specifies, for each character, the categories that the character is in. Note
that a character can be in more than one category. More specifically, a category table maps from
a character to either the value nil (meaning the character is in no categories) or a 95-element
bit vector, specifying for each of the 95 categories whether the character is in that category.

Special Lisp functions are provided that abstract this, so you do not have to directly manip-
ulate bit vectors.

Functioncategory-table-p obj
This function returns t if arg is a category table.

Functioncategory-table &optional buffer
This function returns the current category table. This is the one specified by the current
buffer, or by buffer if it is non-nil.

Chapter 55: MULE 683

Functionstandard-category-table
This function returns the standard category table. This is the one used for new buffers.

Functioncopy-category-table &optional table
This function constructs a new category table and return it. It is a copy of the table,
which defaults to the standard category table.

Functionset-category-table table &optional buffer
This function selects a new category table for buffer. One argument, a category table.
buffer defaults to the current buffer if omitted.

Functioncategory-designator-p obj
This function returns t if arg is a category designator (a char in the range ‘’ ’’ to ‘’~’’).

Functioncategory-table-value-p obj
This function returns t if arg is a category table value. Valid values are nil or a bit vector
of size 95.

684 XEmacs Lisp Reference Manual

Appendix A: Tips and Standards 685

Appendix A Tips and Standards

This chapter describes no additional features of XEmacs Lisp. Instead it gives advice on
making effective use of the features described in the previous chapters.

A.1 Writing Clean Lisp Programs

Here are some tips for avoiding common errors in writing Lisp code intended for widespread
use:
• Since all global variables share the same name space, and all functions share another name

space, you should choose a short word to distinguish your program from other Lisp pro-
grams. Then take care to begin the names of all global variables, constants, and functions
with the chosen prefix. This helps avoid name conflicts.
This recommendation applies even to names for traditional Lisp primitives that are not
primitives in XEmacs Lisp—even to cadr. Believe it or not, there is more than one plausible
way to define cadr. Play it safe; append your name prefix to produce a name like foo-cadr
or mylib-cadr instead.
If you write a function that you think ought to be added to Emacs under a certain name,
such as twiddle-files, don’t call it by that name in your program. Call it mylib-twiddle-
files in your program, and send mail to ‘bug-gnu-emacs@prep.ai.mit.edu’ suggesting
we add it to Emacs. If and when we do, we can change the name easily enough.
If one prefix is insufficient, your package may use two or three alternative common prefixes,
so long as they make sense.
Separate the prefix from the rest of the symbol name with a hyphen, ‘-’. This will be
consistent with XEmacs itself and with most Emacs Lisp programs.

• It is often useful to put a call to provide in each separate library program, at least if there
is more than one entry point to the program.

• If a file requires certain other library programs to be loaded beforehand, then the comments
at the beginning of the file should say so. Also, use require to make sure they are loaded.

• If one file foo uses a macro defined in another file bar, foo should contain this expression
before the first use of the macro:

(eval-when-compile (require ’bar))

(And bar should contain (provide ’bar), to make the require work.) This will cause bar
to be loaded when you byte-compile foo. Otherwise, you risk compiling foo without the
necessary macro loaded, and that would produce compiled code that won’t work right. See
Section 12.3 [Compiling Macros], page 162.
Using eval-when-compile avoids loading bar when the compiled version of foo is used.

• If you define a major mode, make sure to run a hook variable using run-hooks, just as the
existing major modes do. See Section 26.4 [Hooks], page 342.

• If the purpose of a function is to tell you whether a certain condition is true or false, give
the function a name that ends in ‘p’. If the name is one word, add just ‘p’; if the name is
multiple words, add ‘-p’. Examples are framep and frame-live-p.

• If a user option variable records a true-or-false condition, give it a name that ends in ‘-flag’.
• Please do not define C-c letter as a key in your major modes. These sequences are reserved

for users; they are the only sequences reserved for users, so we cannot do without them.
Instead, define sequences consisting of C-c followed by a non-letter. These sequences are
reserved for major modes.

686 XEmacs Lisp Reference Manual

Changing all the major modes in Emacs 18 so they would follow this convention was a lot
of work. Abandoning this convention would make that work go to waste, and inconvenience
users.

• Sequences consisting of C-c followed by {, }, <, >, : or ; are also reserved for major modes.
• Sequences consisting of C-c followed by any other punctuation character are allocated for

minor modes. Using them in a major mode is not absolutely prohibited, but if you do that,
the major mode binding may be shadowed from time to time by minor modes.

• You should not bind C-h following any prefix character (including C-c). If you don’t bind
C-h, it is automatically available as a help character for listing the subcommands of the
prefix character.

• You should not bind a key sequence ending in 〈ESC〉 except following another 〈ESC〉. (That
is, it is ok to bind a sequence ending in 〈ESC〉 〈ESC〉.)
The reason for this rule is that a non-prefix binding for 〈ESC〉 in any context prevents
recognition of escape sequences as function keys in that context.

• Applications should not bind mouse events based on button 1 with the shift key held down.
These events include S-mouse-1, M-S-mouse-1, C-S-mouse-1, and so on. They are reserved
for users.

• Modes should redefine mouse-2 as a command to follow some sort of reference in the text
of a buffer, if users usually would not want to alter the text in that buffer by hand. Modes
such as Dired, Info, Compilation, and Occur redefine it in this way.

• When a package provides a modification of ordinary Emacs behavior, it is good to in-
clude a command to enable and disable the feature, Provide a command named whatever-
mode which turns the feature on or off, and make it autoload (see Section 14.2 [Autoload],
page 180). Design the package so that simply loading it has no visible effect—that should
not enable the feature. Users will request the feature by invoking the command.

• It is a bad idea to define aliases for the Emacs primitives. Use the standard names instead.
• Redefining an Emacs primitive is an even worse idea. It may do the right thing for a

particular program, but there is no telling what other programs might break as a result.
• If a file does replace any of the functions or library programs of standard XEmacs, prominent

comments at the beginning of the file should say which functions are replaced, and how the
behavior of the replacements differs from that of the originals.

• Please keep the names of your XEmacs Lisp source files to 13 characters or less. This way,
if the files are compiled, the compiled files’ names will be 14 characters or less, which is
short enough to fit on all kinds of Unix systems.

• Don’t use next-line or previous-line in programs; nearly always, forward-line is more
convenient as well as more predictable and robust. See Section 34.2.4 [Text Lines], page 444.

• Don’t call functions that set the mark, unless setting the mark is one of the intended features
of your program. The mark is a user-level feature, so it is incorrect to change the mark
except to supply a value for the user’s benefit. See Section 35.6 [The Mark], page 457.
In particular, don’t use these functions:
• beginning-of-buffer, end-of-buffer
• replace-string, replace-regexp

If you just want to move point, or replace a certain string, without any of the other features
intended for interactive users, you can replace these functions with one or two lines of simple
Lisp code.

• Use lists rather than vectors, except when there is a particular reason to use a vector. Lisp
has more facilities for manipulating lists than for vectors, and working with lists is usually
more convenient.

Appendix A: Tips and Standards 687

Vectors are advantageous for tables that are substantial in size and are accessed in random
order (not searched front to back), provided there is no need to insert or delete elements
(only lists allow that).

• The recommended way to print a message in the echo area is with the message function,
not princ. See Section 45.3 [The Echo Area], page 586.

• When you encounter an error condition, call the function error (or signal). The function
error does not return. See Section 9.5.3.1 [Signaling Errors], page 124.
Do not use message, throw, sleep-for, or beep to report errors.

• An error message should start with a capital letter but should not end with a period.
• Try to avoid using recursive edits. Instead, do what the Rmail e command does: use a new

local keymap that contains one command defined to switch back to the old local keymap.
Or do what the edit-options command does: switch to another buffer and let the user
switch back at will. See Section 19.10 [Recursive Editing], page 281.

• In some other systems there is a convention of choosing variable names that begin and
end with ‘*’. We don’t use that convention in Emacs Lisp, so please don’t use it in your
programs. (Emacs uses such names only for program-generated buffers.) The users will
find Emacs more coherent if all libraries use the same conventions.

• Indent each function with C-M-q (indent-sexp) using the default indentation parameters.
• Don’t make a habit of putting close-parentheses on lines by themselves; Lisp programmers

find this disconcerting. Once in a while, when there is a sequence of many consecutive
close-parentheses, it may make sense to split them in one or two significant places.

• Please put a copyright notice on the file if you give copies to anyone. Use the same lines
that appear at the top of the Lisp files in XEmacs itself. If you have not signed papers to
assign the copyright to the Foundation, then place your name in the copyright notice in
place of the Foundation’s name.

A.2 Tips for Making Compiled Code Fast

Here are ways of improving the execution speed of byte-compiled Lisp programs.
• Use the ‘profile’ library to profile your program. See the file ‘profile.el’ for instructions.
• Use iteration rather than recursion whenever possible. Function calls are slow in XEmacs

Lisp even when a compiled function is calling another compiled function.
• Using the primitive list-searching functions memq, member, assq, or assoc is even faster

than explicit iteration. It may be worth rearranging a data structure so that one of these
primitive search functions can be used.

• Certain built-in functions are handled specially in byte-compiled code, avoiding the need for
an ordinary function call. It is a good idea to use these functions rather than alternatives.
To see whether a function is handled specially by the compiler, examine its byte-compile
property. If the property is non-nil, then the function is handled specially.
For example, the following input will show you that aref is compiled specially (see Sec-
tion 6.3 [Array Functions], page 96) while elt is not (see Section 6.1 [Sequence Functions],
page 93):

(get ’aref ’byte-compile)
⇒ byte-compile-two-args

(get ’elt ’byte-compile)
⇒ nil

• If calling a small function accounts for a substantial part of your program’s running time,
make the function inline. This eliminates the function call overhead. Since making a func-
tion inline reduces the flexibility of changing the program, don’t do it unless it gives a

688 XEmacs Lisp Reference Manual

noticeable speedup in something slow enough that users care about the speed. See Sec-
tion 11.9 [Inline Functions], page 158.

A.3 Tips for Documentation Strings

Here are some tips for the writing of documentation strings.
• Every command, function, or variable intended for users to know about should have a

documentation string.
• An internal variable or subroutine of a Lisp program might as well have a documentation

string. In earlier Emacs versions, you could save space by using a comment instead of a
documentation string, but that is no longer the case.

• The first line of the documentation string should consist of one or two complete sentences
that stand on their own as a summary. M-x apropos displays just the first line, and if it
doesn’t stand on its own, the result looks bad. In particular, start the first line with a
capital letter and end with a period.
The documentation string can have additional lines that expand on the details of how to
use the function or variable. The additional lines should be made up of complete sentences
also, but they may be filled if that looks good.

• For consistency, phrase the verb in the first sentence of a documentation string as an
infinitive with “to” omitted. For instance, use “Return the cons of A and B.” in preference
to “Returns the cons of A and B.” Usually it looks good to do likewise for the rest of the
first paragraph. Subsequent paragraphs usually look better if they have proper subjects.

• Write documentation strings in the active voice, not the passive, and in the present tense,
not the future. For instance, use “Return a list containing A and B.” instead of “A list
containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause Emacs
to display text in boldface,” write just “Display text in boldface.”

• Do not start or end a documentation string with whitespace.
• Format the documentation string so that it fits in an Emacs window on an 80-column screen.

It is a good idea for most lines to be no wider than 60 characters. The first line can be
wider if necessary to fit the information that ought to be there.
However, rather than simply filling the entire documentation string, you can make it much
more readable by choosing line breaks with care. Use blank lines between topics if the
documentation string is long.

• Do not indent subsequent lines of a documentation string so that the text is lined up in
the source code with the text of the first line. This looks nice in the source code, but looks
bizarre when users view the documentation. Remember that the indentation before the
starting double-quote is not part of the string!

• A variable’s documentation string should start with ‘*’ if the variable is one that users
would often want to set interactively. If the value is a long list, or a function, or if the
variable would be set only in init files, then don’t start the documentation string with ‘*’.
See Section 10.5 [Defining Variables], page 134.

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Non-nil means. . . ”, to make it clear that all non-nil values are equivalent and
indicate explicitly what nil and non-nil mean.

• When a function’s documentation string mentions the value of an argument of the function,
use the argument name in capital letters as if it were a name for that value. Thus, the
documentation string of the function / refers to its second argument as ‘DIVISOR’, because
the actual argument name is divisor.

Appendix A: Tips and Standards 689

Also use all caps for meta-syntactic variables, such as when you show the decomposition of
a list or vector into subunits, some of which may vary.

• When a documentation string refers to a Lisp symbol, write it as it would be printed (which
usually means in lower case), with single-quotes around it. For example: ‘‘lambda’’. There
are two exceptions: write t and nil without single-quotes.

• Don’t write key sequences directly in documentation strings. Instead, use the ‘\\[...]’ con-
struct to stand for them. For example, instead of writing ‘C-f’, write ‘\\[forward-char]’.
When Emacs displays the documentation string, it substitutes whatever key is currently
bound to forward-char. (This is normally ‘C-f’, but it may be some other character if the
user has moved key bindings.) See Section 27.3 [Keys in Documentation], page 348.

• In documentation strings for a major mode, you will want to refer to the key bindings of
that mode’s local map, rather than global ones. Therefore, use the construct ‘\\<...>’ once
in the documentation string to specify which key map to use. Do this before the first use
of ‘\\[...]’. The text inside the ‘\\<...>’ should be the name of the variable containing
the local keymap for the major mode.
It is not practical to use ‘\\[...]’ very many times, because display of the documentation
string will become slow. So use this to describe the most important commands in your
major mode, and then use ‘\\{...}’ to display the rest of the mode’s keymap.

A.4 Tips on Writing Comments

We recommend these conventions for where to put comments and how to indent them:

‘;’ Comments that start with a single semicolon, ‘;’, should all be aligned to the same
column on the right of the source code. Such comments usually explain how the code
on the same line does its job. In Lisp mode and related modes, the M-; (indent-
for-comment) command automatically inserts such a ‘;’ in the right place, or aligns
such a comment if it is already present.
This and following examples are taken from the Emacs sources.

(setq base-version-list ; there was a base
(assoc (substring fn 0 start-vn) ; version to which

file-version-assoc-list)) ; this looks like
; a subversion

‘;;’ Comments that start with two semicolons, ‘;;’, should be aligned to the same level
of indentation as the code. Such comments usually describe the purpose of the
following lines or the state of the program at that point. For example:

(prog1 (setq auto-fill-function
...
...

;; update modeline
(redraw-modeline)))

Every function that has no documentation string (because it is use only internally
within the package it belongs to), should have instead a two-semicolon comment
right before the function, explaining what the function does and how to call it prop-
erly. Explain precisely what each argument means and how the function interprets
its possible values.

‘;;;’ Comments that start with three semicolons, ‘;;;’, should start at the left margin.
Such comments are used outside function definitions to make general statements
explaining the design principles of the program. For example:

690 XEmacs Lisp Reference Manual

;;; This Lisp code is run in XEmacs
;;; when it is to operate as a server
;;; for other processes.

Another use for triple-semicolon comments is for commenting out lines within a
function. We use triple-semicolons for this precisely so that they remain at the left
margin.

(defun foo (a)
;;; This is no longer necessary.
;;; (force-mode-line-update)
(message "Finished with %s" a))

‘;;;;’ Comments that start with four semicolons, ‘;;;;’, should be aligned to the left
margin and are used for headings of major sections of a program. For example:

;;;; The kill ring

The indentation commands of the Lisp modes in XEmacs, such as M-; (indent-for-comment)
and 〈TAB〉 (lisp-indent-line) automatically indent comments according to these conventions,
depending on the number of semicolons. See section “Manipulating Comments” in The XEmacs
Reference Manual.

A.5 Conventional Headers for XEmacs Libraries

XEmacs has conventions for using special comments in Lisp libraries to divide them into
sections and give information such as who wrote them. This section explains these conventions.
First, an example:

;;; lisp-mnt.el --- minor mode for Emacs Lisp maintainers

;; Copyright (C) 1992 Free Software Foundation, Inc.

;; Author: Eric S. Raymond <esr@snark.thyrsus.com>
;; Maintainer: Eric S. Raymond <esr@snark.thyrsus.com>
;; Created: 14 Jul 1992
;; Version: 1.2
;; Keywords: docs

;; This file is part of XEmacs.
copying permissions...

The very first line should have this format:
;;; filename --- description

The description should be complete in one line.
After the copyright notice come several header comment lines, each beginning with ‘;;

header-name:’. Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the principal author of the
library.
If there are multiple authors, you can list them on continuation lines led by ;; and
a tab character, like this:

;; Author: Ashwin Ram <Ram-Ashwin@cs.yale.edu>
;; Dave Sill <de5@ornl.gov>
;; Dave Brennan <brennan@hal.com>
;; Eric Raymond <esr@snark.thyrsus.com>

Appendix A: Tips and Standards 691

‘Maintainer’
This line should contain a single name/address as in the Author line, or an address
only, or the string ‘FSF’. If there is no maintainer line, the person(s) in the Author
field are presumed to be the maintainers. The example above is mildly bogus because
the maintainer line is redundant.
The idea behind the ‘Author’ and ‘Maintainer’ lines is to make possible a Lisp
function to “send mail to the maintainer” without having to mine the name out by
hand.
Be sure to surround the network address with ‘<...>’ if you include the person’s
full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file. For historical interest
only.

‘Version’ If you wish to record version numbers for the individual Lisp program, put them in
this line.

‘Adapted-By’
In this header line, place the name of the person who adapted the library for instal-
lation (to make it fit the style conventions, for example).

‘Keywords’
This line lists keywords for the finder-by-keyword help command. This field is
important; it’s how people will find your package when they’re looking for things by
topic area. To separate the keywords, you can use spaces, commas, or both.

Just about every Lisp library ought to have the ‘Author’ and ‘Keywords’ header comment
lines. Use the others if they are appropriate. You can also put in header lines with other header
names—they have no standard meanings, so they can’t do any harm.

We use additional stylized comments to subdivide the contents of the library file. Here is a
table of them:

‘;;; Commentary:’
This begins introductory comments that explain how the library works. It should
come right after the copying permissions.

‘;;; Change log:’
This begins change log information stored in the library file (if you store the change
history there). For most of the Lisp files distributed with XEmacs, the change
history is kept in the file ‘ChangeLog’ and not in the source file at all; these files do
not have a ‘;;; Change log:’ line.

‘;;; Code:’
This begins the actual code of the program.

‘;;; filename ends here’
This is the footer line; it appears at the very end of the file. Its purpose is to enable
people to detect truncated versions of the file from the lack of a footer line.

692 XEmacs Lisp Reference Manual

Appendix B: Building XEmacs; Allocation of Objects 693

Appendix B Building XEmacs; Allocation of Objects

This chapter describes how the runnable XEmacs executable is dumped with the preloaded
Lisp libraries in it and how storage is allocated.

There is an entire separate document, the XEmacs Internals Manual, devoted to the inter-
nals of XEmacs from the perspective of the C programmer. It contains much more detailed
information about the build process, the allocation and garbage-collection process, and other
aspects related to the internals of XEmacs.

B.1 Building XEmacs

This section explains the steps involved in building the XEmacs executable. You don’t
have to know this material to build and install XEmacs, since the makefiles do all these things
automatically. This information is pertinent to XEmacs maintenance.

The XEmacs Internals Manual contains more information about this.
Compilation of the C source files in the ‘src’ directory produces an executable file called

‘temacs’, also called a bare impure XEmacs. It contains the XEmacs Lisp interpreter and I/O
routines, but not the editing commands.

Before XEmacs is actually usable, a number of Lisp files need to be loaded. These define all
the editing commands, plus most of the startup code and many very basic Lisp primitives. This
is accomplished by loading the file ‘loadup.el’, which in turn loads all of the other standardly-
loaded Lisp files.

It takes a substantial time to load the standard Lisp files. Luckily, you don’t have to do this
each time you run XEmacs; ‘temacs’ can dump out an executable program called ‘xemacs’ that
has these files preloaded. ‘xemacs’ starts more quickly because it does not need to load the files.
This is the XEmacs executable that is normally installed.

To create ‘xemacs’, use the command ‘temacs -batch -l loadup dump’. The purpose of
‘-batch’ here is to tell ‘temacs’ to run in non-interactive, command-line mode. (‘temacs’ can
only run in this fashion. Part of the code required to initialize frames and faces is in Lisp,
and must be loaded before XEmacs is able to create any frames.) The argument ‘dump’ tells
‘loadup.el’ to dump a new executable named ‘xemacs’.

The dumping process is highly system-specific, and some operating systems don’t support
dumping. On those systems, you must start XEmacs with the ‘temacs -batch -l loadup
run-temacs’ command each time you use it. This takes a substantial time, but since you
need to start Emacs once a day at most—or once a week if you never log out—the extra time is
not too severe a problem. (In older versions of Emacs, you started Emacs from ‘temacs’ using
‘temacs -l loadup’.)

You are free to start XEmacs directly from ‘temacs’ if you want, even if there is already
a dumped ‘xemacs’. Normally you wouldn’t want to do that; but the Makefiles do this when
you rebuild XEmacs using ‘make all-elc’, which builds XEmacs and simultaneously compiles
any out-of-date Lisp files. (You need ‘xemacs’ in order to compile Lisp files. However, you also
need the compiled Lisp files in order to dump out ‘xemacs’. If both of these are missing or
corrupted, you are out of luck unless you’re able to bootstrap ‘xemacs’ from ‘temacs’. Note
that ‘make all-elc’ actually loads the alternative loadup file ‘loadup-el.el’, which works like
‘loadup.el’ but disables the pure-copying process and forces XEmacs to ignore any compiled
Lisp files even if they exist.)

You can specify additional files to preload by writing a library named ‘site-load.el’ that
loads them. You may need to increase the value of PURESIZE, in ‘src/puresize.h’, to make

694 XEmacs Lisp Reference Manual

room for the additional files. You should not modify this file directly, however; instead, use the
‘--puresize’ configuration option. (If you run out of pure space while dumping ‘xemacs’, you
will be told how much pure space you actually will need.) However, the advantage of preloading
additional files decreases as machines get faster. On modern machines, it is often not advisable,
especially if the Lisp code is on a file system local to the machine running XEmacs.

You can specify other Lisp expressions to execute just before dumping by putting them in
a library named ‘site-init.el’. However, if they might alter the behavior that users expect
from an ordinary unmodified XEmacs, it is better to put them in ‘default.el’, so that users
can override them if they wish. See Section 50.1.1 [Start-up Summary], page 623.

Before ‘loadup.el’ dumps the new executable, it finds the documentation strings for primi-
tive and preloaded functions (and variables) in the file where they are stored, by calling Snarf-
documentation (see Section 27.2 [Accessing Documentation], page 346). These strings were
moved out of the ‘xemacs’ executable to make it smaller. See Section 27.1 [Documentation
Basics], page 345.

Functiondump-emacs to-file from-file
This function dumps the current state of XEmacs into an executable file to-file. It takes
symbols from from-file (this is normally the executable file ‘temacs’).
If you use this function in an XEmacs that was already dumped, you must set command-
line-processed to nil first for good results. See Section 50.1.4 [Command Line Argu-
ments], page 626.

Functionrun-emacs-from-temacs &rest args
This is the function that implements the ‘run-temacs’ command-line argument. It is called
from ‘loadup.el’ as appropriate. You should most emphatically not call this yourself; it
will reinitialize your XEmacs process and you’ll be sorry.

Commandemacs-version
This function returns a string describing the version of XEmacs that is running. It is
useful to include this string in bug reports.

(emacs-version)
⇒ "XEmacs 20.1 [Lucid] (i586-unknown-linux2.0.29)

of Mon Apr 7 1997 on altair.xemacs.org"

Called interactively, the function prints the same information in the echo area.

Variableemacs-build-time
The value of this variable is the time at which XEmacs was built at the local site.

emacs-build-time "Mon Apr 7 20:28:52 1997"
⇒

Variableemacs-version
The value of this variable is the version of Emacs being run. It is a string, e.g. "20.1
XEmacs Lucid".

The following two variables did not exist before FSF GNU Emacs version 19.23 and XEmacs
version 19.10, which reduces their usefulness at present, but we hope they will be convenient in
the future.

Variableemacs-major-version
The major version number of Emacs, as an integer. For XEmacs version 20.1, the value
is 20.

Appendix B: Building XEmacs; Allocation of Objects 695

Variableemacs-minor-version
The minor version number of Emacs, as an integer. For XEmacs version 20.1, the value
is 1.

B.2 Pure Storage

XEmacs Lisp uses two kinds of storage for user-created Lisp objects: normal storage and
pure storage. Normal storage is where all the new data created during an XEmacs session is
kept; see the following section for information on normal storage. Pure storage is used for certain
data in the preloaded standard Lisp files—data that should never change during actual use of
XEmacs.

Pure storage is allocated only while ‘temacs’ is loading the standard preloaded Lisp libraries.
In the file ‘xemacs’, it is marked as read-only (on operating systems that permit this), so that
the memory space can be shared by all the XEmacs jobs running on the machine at once.
Pure storage is not expandable; a fixed amount is allocated when XEmacs is compiled, and if
that is not sufficient for the preloaded libraries, ‘temacs’ aborts with an error message. If that
happens, you must increase the compilation parameter PURESIZE using the ‘--puresize’ option
to ‘configure’. This normally won’t happen unless you try to preload additional libraries or
add features to the standard ones.

Functionpurecopy object
This function makes a copy of object in pure storage and returns it. It copies strings by
simply making a new string with the same characters in pure storage. It recursively copies
the contents of vectors and cons cells. It does not make copies of other objects such as
symbols, but just returns them unchanged. It signals an error if asked to copy markers.
This function is a no-op except while XEmacs is being built and dumped; it is usually
called only in the file ‘xemacs/lisp/prim/loaddefs.el’, but a few packages call it just
in case you decide to preload them.

Variablepure-bytes-used
The value of this variable is the number of bytes of pure storage allocated so far. Typically,
in a dumped XEmacs, this number is very close to the total amount of pure storage
available—if it were not, we would preallocate less.

Variablepurify-flag
This variable determines whether defun should make a copy of the function definition in
pure storage. If it is non-nil, then the function definition is copied into pure storage.
This flag is t while loading all of the basic functions for building XEmacs initially (allowing
those functions to be sharable and non-collectible). Dumping XEmacs as an executable
always writes nil in this variable, regardless of the value it actually has before and after
dumping.
You should not change this flag in a running XEmacs.

B.3 Garbage Collection

When a program creates a list or the user defines a new function (such as by loading a
library), that data is placed in normal storage. If normal storage runs low, then XEmacs asks
the operating system to allocate more memory in blocks of 2k bytes. Each block is used for one
type of Lisp object, so symbols, cons cells, markers, etc., are segregated in distinct blocks in

696 XEmacs Lisp Reference Manual

memory. (Vectors, long strings, buffers and certain other editing types, which are fairly large,
are allocated in individual blocks, one per object, while small strings are packed into blocks of
8k bytes. [More correctly, a string is allocated in two sections: a fixed size chunk containing the
length, list of extents, etc.; and a chunk containing the actual characters in the string. It is this
latter chunk that is either allocated individually or packed into 8k blocks. The fixed size chunk
is packed into 2k blocks, as for conses, markers, etc.])

It is quite common to use some storage for a while, then release it by (for example) killing a
buffer or deleting the last pointer to an object. XEmacs provides a garbage collector to reclaim
this abandoned storage. (This name is traditional, but “garbage recycler” might be a more
intuitive metaphor for this facility.)

The garbage collector operates by finding and marking all Lisp objects that are still accessible
to Lisp programs. To begin with, it assumes all the symbols, their values and associated function
definitions, and any data presently on the stack, are accessible. Any objects that can be reached
indirectly through other accessible objects are also accessible.

When marking is finished, all objects still unmarked are garbage. No matter what the Lisp
program or the user does, it is impossible to refer to them, since there is no longer a way to reach
them. Their space might as well be reused, since no one will miss them. The second (“sweep”)
phase of the garbage collector arranges to reuse them.

The sweep phase puts unused cons cells onto a free list for future allocation; likewise for
symbols, markers, extents, events, floats, compiled-function objects, and the fixed-size portion of
strings. It compacts the accessible small string-chars chunks so they occupy fewer 8k blocks; then
it frees the other 8k blocks. Vectors, buffers, windows, and other large objects are individually
allocated and freed using malloc and free.

Common Lisp note: unlike other Lisps, XEmacs Lisp does not call the garbage
collector when the free list is empty. Instead, it simply requests the operating system
to allocate more storage, and processing continues until gc-cons-threshold bytes
have been used.

This means that you can make sure that the garbage collector will not run during
a certain portion of a Lisp program by calling the garbage collector explicitly just
before it (provided that portion of the program does not use so much space as to
force a second garbage collection).

Commandgarbage-collect
This command runs a garbage collection, and returns information on the amount of space
in use. (Garbage collection can also occur spontaneously if you use more than gc-cons-
threshold bytes of Lisp data since the previous garbage collection.)

garbage-collect returns a list containing the following information:

((used-conses . free-conses)
(used-syms . free-syms)
(used-markers . free-markers)
used-string-chars
used-vector-slots
(plist))

Appendix B: Building XEmacs; Allocation of Objects 697

⇒ ((73362 . 8325) (13718 . 164)
(5089 . 5098) 949121 118677
(conses-used 73362 conses-free 8329 cons-storage 658168
symbols-used 13718 symbols-free 164 symbol-storage 335216
bit-vectors-used 0 bit-vectors-total-length 0
bit-vector-storage 0 vectors-used 7882
vectors-total-length 118677 vector-storage 537764
compiled-functions-used 1336 compiled-functions-free 37
compiled-function-storage 44440 short-strings-used 28829
long-strings-used 2 strings-free 7722
short-strings-total-length 916657 short-string-storage 1179648
long-strings-total-length 32464 string-header-storage 441504
floats-used 3 floats-free 43 float-storage 2044 markers-used 5089
markers-free 5098 marker-storage 245280 events-used 103
events-free 835 event-storage 110656 extents-used 10519
extents-free 2718 extent-storage 372736
extent-auxiliarys-used 111 extent-auxiliarys-freed 3
extent-auxiliary-storage 4440 window-configurations-used 39
window-configurations-on-free-list 5
window-configurations-freed 10 window-configuration-storage 9492
popup-datas-used 3 popup-data-storage 72 toolbar-buttons-used 62
toolbar-button-storage 4960 toolbar-datas-used 12
toolbar-data-storage 240 symbol-value-buffer-locals-used 182
symbol-value-buffer-local-storage 5824
symbol-value-lisp-magics-used 22
symbol-value-lisp-magic-storage 1496
symbol-value-varaliases-used 43
symbol-value-varalias-storage 1032 opaque-lists-used 2
opaque-list-storage 48 color-instances-used 12
color-instance-storage 288 font-instances-used 5
font-instance-storage 180 opaques-used 11 opaque-storage 312
range-tables-used 1 range-table-storage 16 faces-used 34
face-storage 2584 glyphs-used 124 glyph-storage 4464
specifiers-used 775 specifier-storage 43869 weak-lists-used 786
weak-list-storage 18864 char-tables-used 40
char-table-storage 41920 buffers-used 25 buffer-storage 7000
extent-infos-used 457 extent-infos-freed 73
extent-info-storage 9140 keymaps-used 275 keymap-storage 12100
consoles-used 4 console-storage 384 command-builders-used 2
command-builder-storage 120 devices-used 2 device-storage 344
frames-used 3 frame-storage 624 image-instances-used 47
image-instance-storage 3008 windows-used 27 windows-freed 2
window-storage 9180 lcrecord-lists-used 15
lcrecord-list-storage 360 hashtables-used 631
hashtable-storage 25240 streams-used 1 streams-on-free-list 3
streams-freed 12 stream-storage 91))

Here is a table explaining each element:

used-conses
The number of cons cells in use.

698 XEmacs Lisp Reference Manual

free-conses
The number of cons cells for which space has been obtained from the operating
system, but that are not currently being used.

used-syms The number of symbols in use.

free-syms The number of symbols for which space has been obtained from the operating
system, but that are not currently being used.

used-markers
The number of markers in use.

free-markers
The number of markers for which space has been obtained from the operating
system, but that are not currently being used.

used-string-chars
The total size of all strings, in characters.

used-vector-slots
The total number of elements of existing vectors.

plist A list of alternating keyword/value pairs providing more detailed information.
(As you can see above, quite a lot of information is provided.)

User Optiongc-cons-threshold
The value of this variable is the number of bytes of storage that must be allocated for
Lisp objects after one garbage collection in order to trigger another garbage collection.
A cons cell counts as eight bytes, a string as one byte per character plus a few bytes of
overhead, and so on; space allocated to the contents of buffers does not count. Note that
the subsequent garbage collection does not happen immediately when the threshold is
exhausted, but only the next time the Lisp evaluator is called.
The initial threshold value is 500,000. If you specify a larger value, garbage collection will
happen less often. This reduces the amount of time spent garbage collecting, but increases
total memory use. You may want to do this when running a program that creates lots of
Lisp data.
You can make collections more frequent by specifying a smaller value, down to 10,000. A
value less than 10,000 will remain in effect only until the subsequent garbage collection, at
which time garbage-collect will set the threshold back to 10,000. (This does not apply
if XEmacs was configured with ‘--debug’. Therefore, be careful when setting gc-cons-
threshold in that case!)

Functionmemory-limit
This function returns the address of the last byte XEmacs has allocated, divided by 1024.
We divide the value by 1024 to make sure it fits in a Lisp integer.
You can use this to get a general idea of how your actions affect the memory usage.

Variablepre-gc-hook
This is a normal hook to be run just before each garbage collection. Interrupts, garbage
collection, and errors are inhibited while this hook runs, so be extremely careful in what
you add here. In particular, avoid consing, and do not interact with the user.

Variablepost-gc-hook
This is a normal hook to be run just after each garbage collection. Interrupts, garbage
collection, and errors are inhibited while this hook runs, so be extremely careful in what
you add here. In particular, avoid consing, and do not interact with the user.

Appendix B: Building XEmacs; Allocation of Objects 699

Variablegc-message
This is a string to print to indicate that a garbage collection is in progress. This is printed
in the echo area. If the selected frame is on a window system and gc-pointer-glyph
specifies a value (i.e. a pointer image instance) in the domain of the selected frame, the
mouse cursor will change instead of this message being printed.

Glyphgc-pointer-glyph
This holds the pointer glyph used to indicate that a garbage collection is in progress.
If the selected window is on a window system and this glyph specifies a value (i.e. a
pointer image instance) in the domain of the selected window, the cursor will be changed
as specified during garbage collection. Otherwise, a message will be printed in the echo
area, as controlled by gc-message. See Chapter 43 [Glyphs], page 565.

If XEmacs was configured with ‘--debug’, you can set the following two variables to get
direct information about all the allocation that is happening in a segment of Lisp code.

Variabledebug-allocation
If non-zero, print out information to stderr about all objects allocated.

Variabledebug-allocation-backtrace
Length (in stack frames) of short backtrace printed out by debug-allocation.

700 XEmacs Lisp Reference Manual

Appendix C: Standard Errors 701

Appendix C Standard Errors

Here is the complete list of the error symbols in standard Emacs, grouped by concept. The
list includes each symbol’s message (on the error-message property of the symbol) and a cross
reference to a description of how the error can occur.

Each error symbol has an error-conditions property that is a list of symbols. Normally this
list includes the error symbol itself and the symbol error. Occasionally it includes additional
symbols, which are intermediate classifications, narrower than error but broader than a single
error symbol. For example, all the errors in accessing files have the condition file-error.

As a special exception, the error symbol quit does not have the condition error, because
quitting is not considered an error.

See Section 9.5.3 [Errors], page 124, for an explanation of how errors are generated and
handled.

symbol string ; reference.

error "error"
See Section 9.5.3 [Errors], page 124.

quit "Quit"
See Section 19.8 [Quitting], page 278.

args-out-of-range
"Args out of range"
See Chapter 6 [Sequences Arrays Vectors], page 93.

arith-error
"Arithmetic error"
See / and % in Chapter 3 [Numbers], page 41.

beginning-of-buffer
"Beginning of buffer"
See Section 34.2 [Motion], page 442.

buffer-read-only
"Buffer is read-only"
See Section 30.7 [Read Only Buffers], page 397.

cyclic-function-indirection
"Symbol’s chain of function indirections contains a loop"
See Section 8.2.4 [Function Indirection], page 112.

domain-error
"Arithmetic domain error"

end-of-buffer
"End of buffer"
See Section 34.2 [Motion], page 442.

end-of-file
"End of file during parsing"
This is not a file-error.
See Section 17.3 [Input Functions], page 229.

file-error
This error and its subcategories do not have error-strings, because the error message
is constructed from the data items alone when the error condition file-error is

702 XEmacs Lisp Reference Manual

present.
See Chapter 28 [Files], page 355.

file-locked
This is a file-error.
See Section 28.5 [File Locks], page 361.

file-already-exists
This is a file-error.
See Section 28.4 [Writing to Files], page 360.

file-supersession
This is a file-error.
See Section 30.6 [Modification Time], page 396.

invalid-function
"Invalid function"
See Section 8.2.3 [Classifying Lists], page 112.

invalid-read-syntax
"Invalid read syntax"
See Section 17.3 [Input Functions], page 229.

invalid-regexp
"Invalid regexp"
See Section 37.2 [Regular Expressions], page 496.

mark-inactive
"The mark is not active now"

no-catch "No catch for tag"
See Section 9.5.1 [Catch and Throw], page 121.

overflow-error
"Arithmetic overflow error"

protected-field
"Attempt to modify a protected field"

range-error
"Arithmetic range error"

search-failed
"Search failed"
See Chapter 37 [Searching and Matching], page 495.

setting-constant
"Attempt to set a constant symbol"
See Section 10.2 [Variables that Never Change], page 131.

singularity-error
"Arithmetic singularity error"

tooltalk-error
"ToolTalk error"
See Chapter 52 [ToolTalk Support], page 649.

Appendix C: Standard Errors 703

undefined-keystroke-sequence
"Undefined keystroke sequence"

void-function
"Symbol’s function definition is void"
See Section 11.8 [Function Cells], page 156.

void-variable
"Symbol’s value as variable is void"
See Section 10.6 [Accessing Variables], page 137.

wrong-number-of-arguments
"Wrong number of arguments"
See Section 8.2.3 [Classifying Lists], page 112.

wrong-type-argument
"Wrong type argument"
See Section 2.7 [Type Predicates], page 32.

These error types, which are all classified as special cases of arith-error, can occur on
certain systems for invalid use of mathematical functions.

domain-error
"Arithmetic domain error"
See Section 3.9 [Math Functions], page 52.

overflow-error
"Arithmetic overflow error"
See Section 3.9 [Math Functions], page 52.

range-error
"Arithmetic range error"
See Section 3.9 [Math Functions], page 52.

singularity-error
"Arithmetic singularity error"
See Section 3.9 [Math Functions], page 52.

underflow-error
"Arithmetic underflow error"
See Section 3.9 [Math Functions], page 52.

704 XEmacs Lisp Reference Manual

Appendix D: Buffer-Local Variables 705

Appendix D Buffer-Local Variables

The table below lists the general-purpose Emacs variables that are automatically local (when
set) in each buffer. Many Lisp packages define such variables for their internal use; we don’t list
them here.

abbrev-mode
see Chapter 39 [Abbrevs], page 523

auto-fill-function
see Section 36.13 [Auto Filling], page 479

buffer-auto-save-file-name
see Section 29.2 [Auto-Saving], page 387

buffer-backed-up
see Section 29.1 [Backup Files], page 383

buffer-display-table
see Section 45.11 [Display Tables], page 596

buffer-file-format
see Section 28.13 [Format Conversion], page 378

buffer-file-name
see Section 30.4 [Buffer File Name], page 394

buffer-file-number
see Section 30.4 [Buffer File Name], page 394

buffer-file-truename
see Section 30.4 [Buffer File Name], page 394

buffer-file-type
see Section 28.14 [Files and MS-DOS], page 380

buffer-invisibility-spec
see Section 45.5 [Invisible Text], page 590

buffer-offer-save
see Section 28.2 [Saving Buffers], page 357

buffer-read-only
see Section 30.7 [Read Only Buffers], page 397

buffer-saved-size
see Section 34.1 [Point], page 441

buffer-undo-list
see Section 36.9 [Undo], page 474

cache-long-line-scans
see Section 34.2.4 [Text Lines], page 444

case-fold-search
see Section 37.7 [Searching and Case], page 509

ctl-arrow
see Section 45.10 [Usual Display], page 595

comment-column
see section “Comments” in The XEmacs User’s Manual

706 XEmacs Lisp Reference Manual

default-directory
see Section 50.3 [System Environment], page 629

defun-prompt-regexp
see Section 34.2.6 [List Motion], page 446

fill-column
see Section 36.13 [Auto Filling], page 479

goal-column
see section “Moving Point” in The XEmacs User’s Manual

left-margin
see Section 36.16 [Indentation], page 483

local-abbrev-table
see Chapter 39 [Abbrevs], page 523

local-write-file-hooks
see Section 28.2 [Saving Buffers], page 357

major-mode
see Section 26.1.4 [Mode Help], page 334

mark-active
see Section 35.6 [The Mark], page 457

mark-ring
see Section 35.6 [The Mark], page 457

minor-modes
see Section 26.2 [Minor Modes], page 335

modeline-format
see Section 26.3.1 [Modeline Data], page 337

modeline-buffer-identification
see Section 26.3.2 [Modeline Variables], page 339

modeline-format
see Section 26.3.1 [Modeline Data], page 337

modeline-modified
see Section 26.3.2 [Modeline Variables], page 339

modeline-process
see Section 26.3.2 [Modeline Variables], page 339

mode-name
see Section 26.3.2 [Modeline Variables], page 339

overwrite-mode
see Section 36.4 [Insertion], page 465

paragraph-separate
see Section 37.8 [Standard Regexps], page 510

paragraph-start
see Section 37.8 [Standard Regexps], page 510

point-before-scroll
Used for communication between mouse commands and scroll-bar commands.

require-final-newline
see Section 36.4 [Insertion], page 465

Appendix D: Buffer-Local Variables 707

selective-display
see Section 45.6 [Selective Display], page 591

selective-display-ellipses
see Section 45.6 [Selective Display], page 591

tab-width
see Section 45.10 [Usual Display], page 595

truncate-lines
see Section 45.2 [Truncation], page 586

vc-mode see Section 26.3.2 [Modeline Variables], page 339

708 XEmacs Lisp Reference Manual

Appendix E: Standard Keymaps 709

Appendix E Standard Keymaps

The following symbols are used as the names for various keymaps. Some of these exist when
XEmacs is first started, others are loaded only when their respective mode is used. This is not
an exhaustive list.

Almost all of these maps are used as local maps. Indeed, of the modes that presently exist,
only Vip mode and Terminal mode ever change the global keymap.

bookmark-map
A keymap containing bindings to bookmark functions.

Buffer-menu-mode-map
A keymap used by Buffer Menu mode.

c++-mode-map
A keymap used by C++ mode.

c-mode-map
A keymap used by C mode. A sparse keymap used by C mode.

command-history-map
A keymap used by Command History mode.

ctl-x-4-map
A keymap for subcommands of the prefix C-x 4.

ctl-x-5-map
A keymap for subcommands of the prefix C-x 5.

ctl-x-map
A keymap for C-x commands.

debugger-mode-map
A keymap used by Debugger mode.

dired-mode-map
A keymap for dired-mode buffers.

edit-abbrevs-map
A keymap used in edit-abbrevs.

edit-tab-stops-map
A keymap used in edit-tab-stops.

electric-buffer-menu-mode-map
A keymap used by Electric Buffer Menu mode.

electric-history-map
A keymap used by Electric Command History mode.

emacs-lisp-mode-map
A keymap used by Emacs Lisp mode.

help-map A keymap for characters following the Help key.

Helper-help-map
A keymap used by the help utility package.
It has the same keymap in its value cell and in its function cell.

Info-edit-map
A keymap used by the e command of Info.

710 XEmacs Lisp Reference Manual

Info-mode-map
A keymap containing Info commands.

isearch-mode-map
A keymap that defines the characters you can type within incremental search.

itimer-edit-map
A keymap used when in Itimer Edit mode.

lisp-interaction-mode-map
A keymap used by Lisp mode.

lisp-mode-map
A keymap used by Lisp mode.
A keymap for minibuffer input with completion.

minibuffer-local-isearch-map
A keymap for editing isearch strings in the minibuffer.

minibuffer-local-map
Default keymap to use when reading from the minibuffer.

minibuffer-local-must-match-map
A keymap for minibuffer input with completion, for exact match.

mode-specific-map
The keymap for characters following C-c. Note, this is in the global map. This map
is not actually mode specific: its name was chosen to be informative for the user in
C-h b (display-bindings), where it describes the main use of the C-c prefix key.

modeline-map
The keymap consulted for mouse-clicks on the modeline of a window.

objc-mode-map
A keymap used in Objective C mode as a local map.

occur-mode-map
A local keymap used by Occur mode.

overriding-local-map
A keymap that overrides all other local keymaps.

query-replace-map
A local keymap used for responses in query-replace and related commands; also
for y-or-n-p and map-y-or-n-p. The functions that use this map do not support
prefix keys; they look up one event at a time.

read-expression-map
The minibuffer keymap used for reading Lisp expressions.

read-shell-command-map
The minibuffer keymap used by shell-command and related commands.

shared-lisp-mode-map
A keymap for commands shared by all sorts of Lisp modes.

text-mode-map
A keymap used by Text mode.

toolbar-map
The keymap consulted for mouse-clicks over a toolbar.

view-mode-map
A keymap used by View mode.

Appendix F: Standard Hooks 711

Appendix F Standard Hooks

The following is a list of hook variables that let you provide functions to be called from within
Emacs on suitable occasions.

Most of these variables have names ending with ‘-hook’. They are normal hooks, run by
means of run-hooks. The value of such a hook is a list of functions. The recommended way to
put a new function on such a hook is to call add-hook. See Section 26.4 [Hooks], page 342, for
more information about using hooks.

The variables whose names end in ‘-function’ have single functions as their values. Usually
there is a specific reason why the variable is not a normal hook, such as the need to pass
arguments to the function. (In older Emacs versions, some of these variables had names ending
in ‘-hook’ even though they were not normal hooks.)

The variables whose names end in ‘-hooks’ or ‘-functions’ have lists of functions as their
values, but these functions are called in a special way (they are passed arguments, or else their
values are used).

activate-menubar-hook

activate-popup-menu-hook

ad-definition-hooks

adaptive-fill-function

add-log-current-defun-function

after-change-functions

after-delete-annotation-hook

after-init-hook

after-insert-file-functions

after-revert-hook

after-save-hook

after-set-visited-file-name-hooks

after-write-file-hooks

auto-fill-function

auto-save-hook

before-change-functions

before-delete-annotation-hook

before-init-hook

before-revert-hook

blink-paren-function

buffers-menu-switch-to-buffer-function

c++-mode-hook

c-delete-function

c-mode-common-hook

c-mode-hook

c-special-indent-hook

calendar-load-hook

change-major-mode-hook

command-history-hook

712 XEmacs Lisp Reference Manual

comment-indent-function

compilation-buffer-name-function

compilation-exit-message-function

compilation-finish-function

compilation-parse-errors-function

compilation-mode-hook

create-console-hook

create-device-hook

create-frame-hook

dabbrev-friend-buffer-function

dabbrev-select-buffers-function

delete-console-hook

delete-device-hook

delete-frame-hook

deselect-frame-hook

diary-display-hook

diary-hook

dired-after-readin-hook

dired-before-readin-hook

dired-load-hook

dired-mode-hook

disabled-command-hook

display-buffer-function

ediff-after-setup-control-frame-hook

ediff-after-setup-windows-hook

ediff-before-setup-control-frame-hook

ediff-before-setup-windows-hook

ediff-brief-help-message-function

ediff-cleanup-hook

ediff-control-frame-position-function

ediff-display-help-hook

ediff-focus-on-regexp-matches-function

ediff-forward-word-function

ediff-hide-regexp-matches-function

ediff-keymap-setup-hook

ediff-load-hook

ediff-long-help-message-function

ediff-make-wide-display-function

ediff-merge-split-window-function

ediff-meta-action-function

ediff-meta-redraw-function

ediff-mode-hook

ediff-prepare-buffer-hook

Appendix F: Standard Hooks 713

ediff-quit-hook

ediff-registry-setup-hook

ediff-select-hook

ediff-session-action-function

ediff-session-group-setup-hook

ediff-setup-diff-regions-function

ediff-show-registry-hook

ediff-show-session-group-hook

ediff-skip-diff-region-function

ediff-split-window-function

ediff-startup-hook

ediff-suspend-hook

ediff-toggle-read-only-function

ediff-unselect-hook

ediff-window-setup-function

edit-picture-hook

electric-buffer-menu-mode-hook

electric-command-history-hook

electric-help-mode-hook

emacs-lisp-mode-hook

fill-paragraph-function

find-file-hooks

find-file-not-found-hooks

first-change-hook

font-lock-after-fontify-buffer-hook

font-lock-beginning-of-syntax-function

font-lock-mode-hook

fume-found-function-hook

fume-list-mode-hook

fume-rescan-buffer-hook

fume-sort-function

gnus-startup-hook

hack-local-variables-hook

highlight-headers-follow-url-function

hyper-apropos-mode-hook

indent-line-function

indent-mim-hook

indent-region-function

initial-calendar-window-hook

isearch-mode-end-hook

isearch-mode-hook

java-mode-hook

kill-buffer-hook

kill-buffer-query-functions

714 XEmacs Lisp Reference Manual

kill-emacs-hook

kill-emacs-query-functions

kill-hooks

LaTeX-mode-hook

latex-mode-hook

ledit-mode-hook

lisp-indent-function

lisp-interaction-mode-hook

lisp-mode-hook

list-diary-entries-hook

load-read-function

log-message-filter-function

m2-mode-hook

mail-citation-hook

mail-mode-hook

mail-setup-hook

make-annotation-hook

makefile-mode-hook

map-frame-hook

mark-diary-entries-hook

medit-mode-hook

menu-no-selection-hook

mh-compose-letter-hook

mh-folder-mode-hook

mh-letter-mode-hook

mim-mode-hook

minibuffer-exit-hook

minibuffer-setup-hook

mode-motion-hook

mouse-enter-frame-hook

mouse-leave-frame-hook

mouse-track-cleanup-hook

mouse-track-click-hook

mouse-track-down-hook

mouse-track-drag-hook

mouse-track-drag-up-hook

mouse-track-up-hook

mouse-yank-function

news-mode-hook

news-reply-mode-hook

news-setup-hook

nongregorian-diary-listing-hook

nongregorian-diary-marking-hook

nroff-mode-hook

Appendix F: Standard Hooks 715

objc-mode-hook

outline-mode-hook

perl-mode-hook

plain-TeX-mode-hook

post-command-hook

post-gc-hook

pre-abbrev-expand-hook

pre-command-hook

pre-display-buffer-function

pre-gc-hook

pre-idle-hook

print-diary-entries-hook

prolog-mode-hook

protect-innocence-hook

remove-message-hook

revert-buffer-function

revert-buffer-insert-contents-function

rmail-edit-mode-hook

rmail-mode-hook

rmail-retry-setup-hook

rmail-summary-mode-hook

scheme-indent-hook

scheme-mode-hook

scribe-mode-hook

select-frame-hook

send-mail-function

shell-mode-hook

shell-set-directory-error-hook

special-display-function

suspend-hook

suspend-resume-hook

temp-buffer-show-function

term-setup-hook

terminal-mode-hook

terminal-mode-break-hook

TeX-mode-hook

tex-mode-hook

text-mode-hook

today-visible-calendar-hook

today-invisible-calendar-hook

tooltalk-message-handler-hook

tooltalk-pattern-handler-hook

tooltalk-unprocessed-message-hook

716 XEmacs Lisp Reference Manual

unmap-frame-hook

vc-checkin-hook

vc-checkout-writable-buffer-hook

vc-log-after-operation-hook

vc-make-buffer-writable-hook

view-hook

vm-arrived-message-hook

vm-arrived-messages-hook

vm-chop-full-name-function

vm-display-buffer-hook

vm-edit-message-hook

vm-forward-message-hook

vm-iconify-frame-hook

vm-inhibit-write-file-hook

vm-key-functions

vm-mail-hook

vm-mail-mode-hook

vm-menu-setup-hook

vm-mode-hook

vm-quit-hook

vm-rename-current-buffer-function

vm-reply-hook

vm-resend-bounced-message-hook

vm-resend-message-hook

vm-retrieved-spooled-mail-hook

vm-select-message-hook

vm-select-new-message-hook

vm-select-unread-message-hook

vm-send-digest-hook

vm-summary-mode-hook

vm-summary-pointer-update-hook

vm-summary-redo-hook

vm-summary-update-hook

vm-undisplay-buffer-hook

vm-visit-folder-hook

window-setup-hook

write-contents-hooks

write-file-data-hooks

write-file-hooks

write-region-annotate-functions

x-lost-selection-hooks

x-sent-selection-hooks

zmacs-activate-region-hook

zmacs-deactivate-region-hook

zmacs-update-region-hook

Index 717

Index

All variables, functions, keys, programs, files, and concepts are in this one index.
All names and concepts are permuted, so they appear several times, one for each permutation

of the parts of the name. For example, function-name would appear as function-name and
name, function-. Key entries are not permuted, however.

#
#$. 190

#@count . 190

$
$ in display . 586

$ in regexp . 498

%
% . 47

% in format . 62

&
& in replacement . 508

&define (Edebug) . 219

¬ (Edebug) . 219

&optional . 149

&optional (Edebug) . 219

&or (Edebug) . 219

&rest . 149

&rest (Edebug) . 219

’
’ for quoting . 116

(
(in regexp . 499

(?: in regexp . 499

(cf. no-redraw-on-reenter), resume 585

(cf. no-redraw-on-reenter), suspend 585

(documentation) file, DOC . 345

(Edebug), &define . 219

(Edebug), ¬ . 219

(Edebug), &optional . 219

(Edebug), &or . 219

(Edebug), &rest. 219

(Edebug), ‘ . 221

(Edebug), anonymous lambda expressions 208

(Edebug), backquote . 221

(Edebug), cl.el . 208

(Edebug), Common Lisp . 208

(Edebug), current buffer point and mark 217

(Edebug), dotted lists . 221

(Edebug), eval-current-buffer 207

(Edebug), eval-defun . 207

(Edebug), eval-expression . 208

(Edebug), eval-region . 207

(Edebug), evaluation list . 213

(Edebug), interactive commands 208

(Edebug), keyboard macros . 209

(Edebug), lambda-list . 220

(Edebug), lexical binding . 213

(Edebug), printing . 214

(Edebug), reading . 214

(Edebug), save-excursion . 217

(Edebug), special forms . 208

(Edebug), syntax error . 221

(Edebug), window configuration 217

(for printing), stream . 230

(for reading), stream . 227

(for X windows), selection . 643

(in a buffer), restriction . 449

(in a specifier), domain . 541

(in a specifier), fallback . 543

(in a specifier), inst-list . 541

(in a specifier), inst-pair . 541

(in a specifier), instance . 541

(in a specifier), instancing . 541

(in a specifier), instantiator . 541

(in a specifier), locale . 541

(in a specifier), specification. 541

(in a specifier), tag . 541

(in a specifier), tag set . 541

(in buffer), position . 441

(in file name), version number 368

(in obarray), bucket . 103

(in regexp), character set . 498

(input), ISO Latin-1 characters 638

(input), Latin-1 character set 638

(list substitution), ‘ . 163

(list substitution), backquote 163

(mouse), cursor . 577

(mouse), pointer . 577

(of a buffer), accessible portion 449

718 XEmacs Lisp Reference Manual

(of buffer), modification flag 395

(of file name), directory part 368

(of file name), nondirectory part. 368

(of file), truename . 364

(of list), element . 71

(symbol), property list cell . 101

(with Backquote), , . 163

(with Backquote), ,@ . 163

(with backquote), splicing . 163

)
) in regexp . 499

*
* . 46

* in interactive . 257

* in regexp . 497

*? in regexp . 497

scratch . 333

,
, (with Backquote) . 163

,@ (with Backquote) . 163

.

. in lists . 21

. in regexp . 497

.emacs . 624

.emacs customization . 329

/
/ . 46

/= . 44

;
; in comment . 14

?
? in character constant . 18

? in minibuffer . 239

? in regexp . 497

@
@ in interactive . 257

[

[in regexp . 498

]

] in regexp . 498

‘

‘ . 163

‘ (Edebug) . 221

‘ (list substitution) . 163

‘, edebug- . 221

in interactive . 257

"

" in printing . 232

" in strings . 22

{

{ in regexp . 499

+

+ . 46

+ in regexp . 497

+? in regexp . 498

=

= . 43

>

> . 44

>= . 44

^

^ in regexp . 498

Index 719

\
\ in character constant . 18

\ in display . 586

\ in printing . 232

\ in regexp . 498

\ in replacement . 508

\ in strings . 22

\ in symbols . 19

\%%%123n,m\%%%125 in regexp 498

\’ in regexp . 501

\‘ in regexp . 501

\= in regexp . 501

\> in regexp . 501

\< in regexp . 501

\a . 17

\b . 17

\b in regexp . 501

\B in regexp . 501

\e. 17

\f . 17

\n . 17

\n in print. 234

\n in replacement . 508

\r . 17

\s in regexp . 500

\S in regexp . 501

\t . 17

\v . 17

\w in regexp . 500

\W in regexp . 500

<
< . 44

<= . 44

1
1 character set (input), Latin- 638

1 characters (input), ISO Latin- 638

1, ISO Latin . 68

1- . 46

1+ . 45

4
4, C-x . 289

4-map, ctl-x- . 289, 709

5
5, C-x . 289

5-map, ctl-x- . 289, 709

A
abbrev . 523

abbrev table . 523

abbrev tables in modes . 328

abbrev, add- . 524

abbrev, define- . 524

abbrev, expand- . 525

abbrev, last- . 526

abbrev-alist, directory- . 370

abbrev-all-caps . 526

abbrev-expand-hook, pre- . 526

abbrev-expansion . 525

abbrev-file, quietly-read- . 525

abbrev-file, write- . 525

abbrev-file-name . 525

abbrev-location, last- . 526

abbrev-mode. 523

abbrev-mode, default- . 523

abbrev-prefix-mark . 526

abbrev-start-location . 526

abbrev-start-location-buffer . 526

abbrev-symbol . 525

abbrev-table, c-mode- . 527

abbrev-table, clear- . 523

abbrev-table, define-. 524

abbrev-table, fundamental-mode- 527

abbrev-table, global- . 527

abbrev-table, lisp-mode- . 527

abbrev-table, local- . 527

abbrev-table, make- . 523

abbrev-table, text-mode-. 527

abbrev-table-description, insert- 524

abbrev-table-name-list . 524

abbrev-text, last- . 526

abbreviate-file-name . 370

abbreviation, directory name 370

abbrevs, only-global- . 524

abbrevs, save- . 525

abbrevs-changed . 525

abbrevs-map, edit- . 709

abort-recursive-edit . 282

aborting . 281

about-lock, ask-user- . 361

about-supersession-threat, ask-user- 396

abs . 46

absolute file name . 371

absolute-p, file-name- . 371

accelerate-menu . 313

accelerator-enabled, menu- . 313

accelerator-map, menu- . 313

accelerator-modifiers, menu- 314

accelerator-prefix, menu- . 314

accelerators, keyboard menu 312

720 XEmacs Lisp Reference Manual

accelerators, menu . 312

accept-process-output . 619

access, environment variable 630

accessibility of a file . 362

accessibility, file . 362

accessible portion (of a buffer) 449

accessible-directory-p, file- . 363

accessible-keymaps . 300

according-to-mode, indent- . 484

acos . 52

acosh . 52

action, annotation- . 581

action, set-annotation- . 581

activate-menubar-hook . 309

activate-popup-menu-hook . 312

activate-region, zmacs- . 461

activate-region-hook, zmacs- 461

active display table . 597

active keymap . 290

active-minibuffer-window . 253

active-p, minibuffer-window- 253

active-p, region- . 461

add-abbrev . 524

add-hook . 343

add-menu . 310

add-menu-button . 309

add-menu-item . 310

add-name-to-file . 366

add-spec-list-to-specifier . 546

add-spec-to-specifier . 545

add-submenu . 309

add-text-properties . 489

add-timeout . 635

add-to-list . 138

add-tooltalk-message-arg . 651

add-tooltalk-pattern-arg . 653

add-tooltalk-pattern-attribute 652

address field of register . 20

address, mail-host- . 630

address, user-mail- . 631

after, char- . 463

after, edebug-print-trace- 215, 224

after-change-function . 494

after-change-functions . 494

after-find-file . 357

after-init-hook . 625

after-insert-file-functions . 492

after-load-alist . 185

after-revert-hook . 390

after-save-hook . 359

age, file . 363

alias, define-obsolete-function- 352

alias, define-obsolete-variable- 352

alias, variable- . 145

aliases, for variables . 145

aliases, variable . 145

alist . 85

alist, after-load- . 185

alist, auto-mode- . 333

alist, command-switch- . 626

alist, copy- . 88

alist, destructive-plist-to- . 91

alist, directory-abbrev- . 370

alist, file-name-buffer-file-type- 380

alist, format- . 378

alist, interpreter-mode- . 334

alist, ldap-host-parameters- . 655

alist, minor-mode-. 339

alist, minor-mode-map- . 292

alist, plist-to- . 91

alist, register- . 493

alist, sound- . 598

alist-to-plist . 90

alist-to-plist, destructive- . 91

alists, copying . 88

all, text-property-not- . 491

all-annotations . 582

all-caps, abbrev- . 526

all-completions . 243

all-completions, file-name- . 373

all-defs, edebug- . 207, 223

all-forms, edebug-. 207, 224

all-local-variables, kill- . 144

allocate more storage, CL note— 696

allocation, debug- . 699

allocation, memory . 695

allocation-backtrace, debug- 699

allow-sendevents, x- . 647

already-exists, file- . 368

alternative, regexp . 499

analysis, performance . 215

and . 120

and, bitwise . 50

and, logical . 50

and-compile, eval- . 191

and-eval-command, edit- . 240

and-exit, minibuffer-complete-. 245

and-exit, self-insert- . 252

and-indent, newline- . 484

and-indent, reindent-then-newline-. 484

and-init, make-specifier- . 552

and-mark, exchange-point- . 459

annotate-functions, write-region- 491

annotation. 579

annotation hooks. 583

annotation, delete- . 580

annotation, hide- . 581

annotation, make- . 580

Index 721

annotation, reveal- . 581

annotation-action . 581

annotation-action, set- . 581

annotation-data . 581

annotation-data, set- . 581

annotation-down-glyph . 581

annotation-down-glyph, set-. 581

annotation-face . 581

annotation-face, set- . 581

annotation-glyph . 580

annotation-glyph, set- . 580

annotation-layout . 581

annotation-layout, set-. 581

annotation-list . 582

annotation-menu . 581

annotation-menu, set- . 581

annotation-side . 581

annotation-visible . 581

annotation-width. 581

annotationp . 580

annotations, all- . 582

annotations-at . 582

annotations-in-region . 582

anonymous function . 155

anonymous lambda expressions (Edebug) 208

another buffer, changing to . 391

any, text-property- . 491

API, Drag . 326

API, Drop . 326

apostrophe for quoting . 116

apostrophe, quoting using . 116

append . 77

append, kill- . 472

append-to-file . 360

application-class, x-emacs- . 645

apply . 153

apply, and debugging . 204

apropos . 350

area, cursor-in-echo- . 588

area, echo . 586

area-message, inhibit-startup-echo- 624

area-p, event-over-text- . 268

area-pixel-edges, window-text- 422

area-pixel-height, window-text- 421

area-pixel-width, window-text- 421

aref . 96

arg, add-tooltalk-message- . 651

arg, add-tooltalk-pattern- . 653

arg, CL note—default optional 150

arg, current-prefix- . 280

arg, prefix- . 280

arglist, compiled-function- . 192

args, command-line- . 626

argument binding . 149

argument descriptors . 256

argument evaluation form . 256

argument evaluation, macro . 165

argument prompt . 257

argument string, default . 257

argument unreading, prefix . 276

argument usage, numeric prefix 258

argument usage, raw prefix . 258

argument, digit-. 280

argument, evaluated expression 259

argument, execute with prefix 261

argument, marker . 258

argument, negative- . 281

argument, numeric prefix . 279

argument, position . 258

argument, prefix . 279

argument, raw prefix . 279

argument, region . 259

argument, universal- . 280

argument, wrong-type- . 32

arguments, binding . 149

arguments, command line . 626

arguments, complex . 237

arguments, optional . 149

arguments, program . 607

arguments, reading . 237

arguments, reading interactive 258

arguments, repositioning format 64

arguments, rest . 149

arguments, wrong-number-of- 149

arith-error example . 127

arith-error in division . 47

arithmetic shift . 49

array . 95

array elements . 96

arrayp . 96

arrays, character . 55

arrow, ctl- . 595

arrow, default-ctl- . 596

arrow, overlay . 592

arrow-glyph, control- . 578

arrow-position, overlay- . 592

arrow-string, overlay- . 592

ascent, glyph- . 569

ASCII character codes . 16

aset . 96

ash . 49

asin . 52

asinh . 52

ask-user-about-lock . 361

ask-user-about-supersession-threat 396

asking the user questions . 249

asking, trim-versions-without- 385

assoc . 86

722 XEmacs Lisp Reference Manual

association list . 85

association lists, property lists vs 105

assq . 86

asynchronous subprocess . 610

at input, peeking . 276

at, annotations- . 582

at, extent- . 532

at, looking- . 504

at, posix-looking- . 505

at, text-properties- . 488

atan . 52

atanh . 52

atom . 20, 72

atomic extent . 540

atoms . 72

attribute, add-tooltalk-pattern- 652

attribute, get-tooltalk-message- 650

attribute, set-tooltalk-message- 651

attributes of text . 488

attributes, charset-from- . 667

attributes, file . 364

attributes, file- . 365

Auto Fill mode . 479

Auto Fill mode, newline and 467

auto-fill-function . 479

auto-help, completion- . 246

auto-lower-frame . 434

auto-mode, set- . 333

auto-mode-alist . 333

auto-raise-frame . 434

auto-save, do- . 389

auto-save-default . 389

auto-save-file, rename- . 389

auto-save-file-format . 380

auto-save-file-if-necessary, delete- 389

auto-save-file-name, buffer- . 387

auto-save-file-name, make- . 388

auto-save-file-name-p . 387

auto-save-files, delete- . 389

auto-save-hook . 389

auto-save-interval . 388

auto-save-list-file-name . 389

auto-save-mode . 387

auto-save-p, recent- . 388

auto-save-timeout . 388

auto-save-visited-file-name . 388

auto-saved, set-buffer- . 388

auto-saving . 387

autoload . 180, 661

autoload errors . 180

autoload, function cell in . 180

autoloads, update-directory- 181

autoloads, update-file- . 181

automatic, filling, . 479

automatically buffer-local . 142

available fonts . 561

available, closures not . 140

available, fonts . 561

average, load- . 631

avoidance, undo . 492

B
back-to-indentation . 486

backed-up, buffer- . 383

background pixmap . 555

background, face- . 559

background, image-instance- 576

background, set-face- . 559

background-instance, face- . 560

background-pixmap, face- . 559

background-pixmap, set-face- 559

background-pixmap-instance, face- 560

backquote (Edebug) . 221

backquote (list substitution) 163

Backquote), , (with . 163

Backquote), ,@ (with . 163

backquote), splicing (with . 163

backslash in character constant 18

backslash in strings. 22

backslash in symbols . 19

backspace . 17

backtrace . 203

backtrace, debug-allocation- 699

backtrace-debug . 204

backtrace-frame . 204

backtracking . 221

backtracking, preventing . 220

backup file. 383

backup files, how to make them 384

backup, file-newest- . 387

backup-buffer . 383

backup-by-copying . 384

backup-by-copying-when-linked 384

backup-by-copying-when-mismatch 385

backup-enable-predicate . 384

backup-file-name, find- . 386

backup-file-name, make- . 386

backup-file-name-p . 386

backup-files, make- . 383

backup-inhibited . 384

backward, posix-search- . 505

backward, re-search- . 503

backward, search- . 495

backward, skip-chars- . 448

backward, skip-syntax- . 519

backward, word-search- . 496

backward-char . 442

Index 723

backward-char, delete- . 468

backward-delete-char-untabify 468

backward-list . 446

backward-prefix-chars . 519

backward-sexp . 447

backward-to-indentation . 486

backward-word. 443

balancing parentheses . 594

barf-if-buffer-read-only . 397

base buffer . 401

base, ldap-default- . 655

base-buffer, buffer- . 401

baseline, glyph- . 569

baseline, set-glyph- . 569

baseline-instance, glyph- . 569

batch mode . 641

batch-byte-compile . 189

batch-byte-recompile-directory 189

baud-rate, device- . 440, 639

baud-rate, set-device- . 440, 639

beep . 597

beeping . 597

before point, insertion . 465

before, edebug-print-trace- 215, 224

before-change-function . 494

before-change-functions . 494

before-init-hook . 625

before-markers, insert- . 466

before-revert-hook . 390

begin-glyph, extent- . 537

begin-glyph, set-extent- . 538

begin-glyph-layout, extent-. 537

begin-glyph-layout, set-extent- 537

beginning of line . 444

beginning of line in regexp . 498

beginning, match- . 507

beginning, region- . 460

beginning-of-buffer . 443

beginning-of-defun . 447

beginning-of-line . 444

bell . 597

bell character . 17

bell, visible- . 598

bell-volume . 599

big5-char, decode- . 677

big5-char, encode- . 677

binary files and text files . 380

binary files, text files and . 380

binary, find-file- . 381

binary-process-input . 610

binary-process-output . 610

bind-text-domain . 659

binding (Edebug), lexical . 213

binding arguments . 149

binding local variables . 132

binding of a key . 285

binding, argument. 149

binding, current . 132

binding, deep . 140

binding, global . 132

binding, global-key- . 295

binding, key . 285

binding, key- . 295

binding, keymap-default- . 287

binding, local . 132

binding, local-key- . 295

binding, minor-mode-key- . 295

binding, set-keymap-default- 287

binding, shallow. 141

bindings, changing key . 296

bindings, describe- . 302

bindings, describe-prefix- . 352

bindings, Helper-describe- . 352

bindings, inheriting a keymap’s. 286

bindings, replace . 298

bindings-internal, describe- . 302

bit vector . 99

bit vector length . 94

bit vectors, copying . 100

bit-vector . 99

bit-vector, make- . 100

bit-vector-p . 99

bitmap-file-path, x- . 573, 646

bitp . 99

bits, event-modifier- . 270

bitwise and . 50

bitwise exclusive or . 51

bitwise not . 51

bitwise or . 51

blank-lines, delete- . 470

blanks-input, read-no- . 239

blink-matching-open. 595

blink-matching-paren . 594

blink-matching-paren-delay . 595

blink-matching-paren-distance. 594

blink-paren-function . 594

blink-paren-hook . 594

blinking . 594

bobp . 464

body of function . 149

bold . 562

bold, x-make-font- . 562

bold-italic, x-make-font- . 562

bolp . 464

bookmark-map. 709

boolean . 8

boolean-specifier-p . 544

boolean-specifier-p, face- . 545

724 XEmacs Lisp Reference Manual

bootstrapping XEmacs from temacs 693

border-p, event-over- . 269

bottom-toolbar . 319

bottom-toolbar-height . 320

bottom-toolbar-visible-p . 321

boundary, undo- . 474

boundp. 134

boundp, default- . 144

box diagrams, for lists . 20

box representation for lists . 71

box, cons cell as . 71

box, dialog . 315

box, popup-dialog- . 315

box, y-or-n-p-maybe-dialog- . 251

box, yes-or-no-p-dialog- . 251

box, yes-or-no-p-maybe-dialog- 251

boxed, for lists, diagrams, . 20

boxes, lists represented as . 71

break . 197

break condition, global . 211

break-condition, edebug-global- 211, 225

break-condition, edebug-set-global- 211

breakpoints . 210

breakpoints, embedded . 211

bucket (in obarray) . 103

buffer . 391

buffer (Edebug), eval-current- 207

buffer contents . 463

buffer contents, evaluation of 110

buffer excursion, current . 448

buffer file name . 394

buffer input stream . 227

buffer list . 398

buffer mark, current . 458

buffer marker, end of . 455

buffer modification . 395

buffer names . 393

buffer output stream . 230

buffer point and mark (Edebug), current 217

buffer position, current . 441

buffer text notation . 10

buffer text, comparing . 465

buffer), accessible portion (of a 449

buffer), modification flag (of 395

buffer), position (in . 441

buffer), restriction (in a . 449

buffer, abbrev-start-location- 526

buffer, backup- . 383

buffer, base . 401

buffer, beginning-of- . 443

buffer, buffer-base- . 401

buffer, bury- . 399

buffer, changing to another . 391

buffer, create-file- . 357

buffer, current . 391

buffer, current- . 392

buffer, cut . 643

buffer, display- . 412

buffer, displaying a . 410

buffer, end-of- . 443

buffer, erase- . 467

buffer, eval- . 110

buffer, event- . 268

buffer, file name of . 394

buffer, generate-new- . 399

buffer, get- . 393

buffer, get-file- . 395

buffer, insert- . 466

buffer, kill- . 400

buffer, lock- . 361

buffer, make-indirect- . 401

buffer, marker- . 456

buffer, mouse-grabbed- . 292

buffer, obsolete . 396

buffer, other- . 398

buffer, other-window-scroll- . 417

buffer, pop-to- . 411

buffer, process- . 616

buffer, read- . 246

buffer, read-only . 397

buffer, rename- . 393

buffer, revert- . 390

buffer, save- . 358

buffer, save-current- . 449

buffer, selecting a . 391

buffer, set- . 392

buffer, set-process- . 616

buffer, set-window- . 410

buffer, switch-to- . 410

buffer, switching to a . 410

buffer, unlock- . 361

buffer, window- . 410

buffer, with-current- . 449

buffer, with-output-to-temp- 593

buffer-auto-save-file-name . 387

buffer-auto-saved, set- . 388

buffer-backed-up . 383

buffer-base-buffer . 401

buffer-case-table, describe- . 68

buffer-create, get- . 399

buffer-dedicated, set-window- 412

buffer-disable-undo . 475

buffer-enable-undo . 475

buffer-end . 441

buffer-file-format . 379

buffer-file-name . 394

buffer-file-number . 394

buffer-file-truename . 394

Index 725

buffer-file-type . 380

buffer-file-type, default- . 381

buffer-file-type, find- . 380

buffer-file-type-alist, file-name- 380

buffer-flush-undo . 475

buffer-function, buffers-menu-switch-to- 314

buffer-function, display- . 414

buffer-function, revert- . 390

buffer-glyph-p . 576

buffer-hook, kill- . 401

buffer-identification, modeline- 339

buffer-in-windows, replace- . 411

buffer-insert-file-contents-function, revert- 390

buffer-invisibility-spec . 590

buffer-list . 398

buffer-live-p . 400

buffer-local variables . 141

buffer-local variables in modes 328

buffer-local, automatically . 142

buffer-local, make-variable- . 143

buffer-local, variables, . 141

buffer-local-variables . 143

buffer-major-mode, set- . 333

buffer-menu, popup- . 312

Buffer-menu-mode-map . 709

buffer-menu-mode-map, electric- 709

buffer-menubar, set- . 308

buffer-modified-p . 395

buffer-modified-p, set- . 395

buffer-modified-tick . 396

buffer-name. 393

buffer-name, generate-new- . 394

buffer-names, same-window- 414

buffer-names, special-display- 413

buffer-offer-save . 358, 401

buffer-other-window, switch-to-. 411

buffer-points, edebug-save-displayed- 217, 224

buffer-process, get- . 617

buffer-query-functions, kill- . 401

buffer-read-only . 397

buffer-read-only, barf-if- . 397

buffer-saved-size . 389, 442

buffer-show-function, temp- . 593

buffer-size . 442

buffer-string . 464

buffer-substring . 464

buffer-substring, insert- . 466

buffer-substrings, compare- . 465

buffer-undo-list . 474

buffer-window, get- . 410

bufferp . 391

buffers in interactive, read-only. 257

buffers menu . 314

buffers, controlled in windows 410

buffers, creating . 399

buffers, indirect . 401

buffers, killing . 400

buffers, list- . 399

buffers, save-some- . 358

buffers-directory, list- . 395

buffers-menu-filter . 311

buffers-menu-line, format- . 314

buffers-menu-max-size . 314

buffers-menu-p, complex- . 314

buffers-menu-switch-to-buffer-function 314

build-time, emacs- . 694

building lists . 76

building XEmacs . 693

built-in function . 147

bury-buffer . 399

busy-pointer-glyph . 577

button type, toolbar . 31

button, add-menu- . 309

button, event- . 270

button, event-toolbar- . 269

button-event-p . 266

button-list, toolbar-make- . 318

button-press-event-p . 266

button-release-event-p . 266

button-syntax, check-toolbar- 318

buttons-captioned-p, toolbar- 321

bvconcat . 100

byte-code . 187, 189

byte-code function . 191

byte-code interpreter . 189

byte-code, disassembled . 193

byte-code, make- . 192

byte-compile . 188

byte-compile, batch- . 189

byte-compile-dynamic . 191

byte-compile-dynamic-docstrings 190

byte-compile-file . 189

byte-compiling macros . 162

byte-compiling require . 183

byte-recompile-directory . 189

byte-recompile-directory, batch- 189

byte-recompile-directory-ignore-errors-p 189

bytecode, fetch- . 191

bytes . 55

bytes-used, pure- . 695

726 XEmacs Lisp Reference Manual

C
c, C- . 289

C-c . 289

C-g . 278

C-h . 289

C-M-x. 207

c-mode-abbrev-table . 527

c-mode-map . 709

c-mode-syntax-table . 521

C-q . 640

C-s . 640

C-x . 289

C-x 4 . 289

C-x 5 . 289

C-x a . 289

C-x n . 289

C-x r . 289

c++-mode-map . 709

caaaar . 75

caaadr . 75

caaar . 75

caadar . 75

caaddr . 75

caadr . 75

caar . 74

cadaar . 75

cadadr . 75

cadar . 75

caddar . 75

cadddr . 75

caddr . 75

cadr . 75

call debugging, function . 198

call evaluation, macro . 114

call stack . 203

call, debug-on-next- . 204

call, function . 114

call, interactive . 260

call, macro . 161

call-interactively . 260

call-process . 608

call-process-region . 609

calling a function . 153

cancel-debug-on-entry . 199

canonicalize-inst-list . 547

canonicalize-inst-pair . 547

canonicalize-lax-plist . 90

canonicalize-plist . 89

canonicalize-spec . 547

canonicalize-spec-list . 547

canonicalize-tag-set. 549

capitalization . 66

capitalize . 66

capitalize-region . 487

capitalize-word . 487

caps, abbrev-all- . 526

captioned-p, toolbar-buttons- 321

car . 73

car-safe . 73

case changes . 486

case in replacements . 508

case key sequence, upper . 274

case of letters, CL note— . 19

case, character . 65

case, completion-ignore- . 243

case, condition- . 126

case, lower . 65

case, searching and . 509

case, upper . 65

case-fold-search . 510

case-fold-search, default- . 510

case-replace . 510

case-syntax, set- . 68

case-syntax-delims, set- . 68

case-syntax-pair, set- . 67

case-table, current- . 67

case-table, describe-buffer- . 68

case-table, set- . 67

case-table, set-standard- . 67

case-table, standard- . 67

case-table-p . 67

catch . 122

catch, no- . 122

category-designator-p . 683

category-list, coding- . 676

category-system, coding- . 677

category-system, set-coding- 676

category-table . 682

category-table, copy- . 683

category-table, set- . 683

category-table, standard- . 683

category-table-p. 682

category-table-value-p . 683

cbreak . 641

ccl-elapsed-time . 682

ccl-execute . 681

ccl-execute-on-string. 681

ccl-program, charset- . 667

ccl-program, register- . 682

ccl-program, set-charset- . 668

ccl-reset-elapsed-time . 682

cdaaar . 75

cdaadr . 75

cdaar . 75

cdadar . 75

cdaddr . 75

cdadr . 75

Index 727

cdar . 75

cddaar . 75

cddadr . 75

cddar . 75

cdddar . 75

cddddr . 75

cdddr . 75

cddr . 75

CDE dt . 325

cdr . 73

cdr-safe . 74

ceiling . 45

cell (symbol), property list . 101

cell as box, cons . 71

cell in autoload, function . 180

cell, function . 101

cell, print name . 101

cell, value . 101

cell, void function . 156

cells, cons . 76

cells, lists and cons . 71

centering point . 418

change hooks . 494

change, next-property-. 490

change, next-single-property- 490

change, previous-property- . 490

change, previous-single-property- 491

change-function, after- . 494

change-function, before- . 494

change-functions, after- . 494

change-functions, before- . 494

change-functions, window-size- 423

change-hook, first- . 494

change-major-mode-hook . 329

changed, abbrevs- . 525

changes, case . 486

changes, hooks for text . 494

changing key bindings . 296

changing to another buffer . 391

changing window size . 422

changing, window size, . 422

char quitting, read-quoted-. 278

char table type . 25

char, backward- . 442

char, decode-big5- . 677

char, decode-shift-jis- . 677

char, delete previous . 468

char, delete- . 468

char, delete-backward- . 468

char, encode-big5- . 677

char, encode-shift-jis- . 677

char, following- . 463

char, forward- . 442

char, goto- . 442

char, help- . 351

char, insert- . 466

char, int- . 58

char, last-command- . 263

char, last-input- . 277

char, make- . 669

char, make-composite- . 669

char, meta-prefix- . 295

char, preceding- . 464

char, read- . 275

char, read-quoted- . 275

char, string-to- . 61

char, write- . 233

char-after . 463

char-charset . 669

char-description, text- . 350

char-equal . 59

char-in-region, subst- . 492

char-int . 58

char-int confoundance disease 16

char-int-p . 58

char-int-p, char-or- . 58

char-octet . 669

char-or-char-int-p . 58

char-or-marker-p, integer- . 454

char-or-marker-p, number- . 455

char-or-string-p . 56

char-p, integer-or- . 58

char-property, get- . 488

char-string, composite- . 669

char-syntax . 518

char-table, get-. 69

char-table, get-range- . 69

char-table, make-. 69

char-table, map- . 69

char-table, put- . 69

char-table, reset- . 69

char-table-p . 68

char-table-type . 69

char-table-type-list . 69

char-table-type-p, valid- . 69

char-table-value, check-valid- . 70

char-table-value-p, valid- . 70

char-to-string . 60

char-untabify, backward-delete- 468

char=. 59

character arrays . 55

character case . 65

character code, octal . 18

character codes, ASCII . 16

character constant, ? in. 18

character constant, \ in . 18

character constant, backslash in 18

character constant, question mark in 18

728 XEmacs Lisp Reference Manual

character descriptor . 597

character input, octal. 275

character input, quoted . 275

character insertion . 467

character printing . 349

character printing, control . 349

character printing, meta . 349

character quote . 515

character set (in regexp) . 498

character set (input), Latin-1 638

character to string . 60

character, bell . 17

character, close parenthesis . 515

character, event-to-. 273

character, open parenthesis . 514

character, punctuation. 514

character, quote . 519

character, string to . 61

character, whitespace . 514

character-to-event . 272

characteristics of font instances 562

characteristics, font instance 562

characterp . 58

characters . 55

characters (input), ISO Latin-1 638

characters for interactive codes 257

characters in display, control 595

characters in printing, escape 232

characters in printing, quoting 232

characters, control . 18

characters, escape . 234

characters, flow control . 640

characters, printed representation for 17

characters, read syntax for . 17

characters, reading, control . 275

characters, reading, nonprinting 275

characters, replace . 492

characters, skipping . 447

characters, syntax for . 17

chars, backward-prefix- . 519

chars, charset- . 667

chars-backward, skip- . 448

chars-forward, skip- . 447

charset type . 30

charset, char- . 669

charset, charset-reverse-direction-. 667

charset, find- . 666

charset, get- . 666

charset, make- . 666

charset, make-reverse-direction- 666

charset-ccl-program . 667

charset-ccl-program, set- . 668

charset-chars . 667

charset-columns . 667

charset-dimension . 667

charset-direction . 667

charset-doc-string . 667

charset-final . 667

charset-from-attributes . 667

charset-graphic . 667

charset-list . 666

charset-name . 667

charset-property . 667

charset-region, find- . 669

charset-registry . 667

charset-reverse-direction-charset 667

charset-string, find- . 669

charsetp . 665

check-toolbar-button-syntax 318

check-valid-char-table-value . 70

check-valid-inst-list . 553

check-valid-instantiator . 553

check-valid-plist . 89

check-valid-spec-list . 553

checking, type . 32

child process . 607

children, extent . 538

children, extent- . 539

children, map-extent- . 534

children, of extent . 538

circle, edebug-print-. 215, 225

circular structures, printing . 214

CL note—allocate more storage 696

CL note—case of letters . 19

CL note—default optional arg 150

CL note—integers vrs eq. 43

CL note—lack union, set . 83

CL note—no continuable errors 125

CL note—only throw in Emacs 122

CL note—rplaca vrs setcar . 78

CL note—set local . 138

CL note—special forms compared 115

CL note—special variables . 139

CL note—symbol in obarrays 103

cl-read . 214

cl-specs.el . 208

cl.el (Edebug) . 208

class property, mode- . 328

class, device- . 438

class, x-display-visual- . 646

class, x-emacs-application- . 645

class-p, valid-device- . 439

classes, display-warning-suppressed- 590

classes, log-warning-suppressed- 590

classes, syntax . 513

cleanup forms . 129

cleanup, error . 129

clear-abbrev-table . 523

Index 729

clear-hashing, locate-file-. 179

clear-message . 587

clear-range-table . 603

clear-visited-file-modtime . 396

close parenthesis . 594

close parenthesis character . 515

close, ldap- . 657

close, tq- . 621

close-database . 605

closest-point, event- . 268

closures not available . 140

clrhash . 602

code description, interactive. 257

code function, byte- . 191

code interpreter, byte- . 189

code, byte- . 187, 189

code, disassembled byte- . 193

code, make-byte- . 192

code, octal character . 18

code-rigidly, indent- . 485

codes, ASCII character . 16

codes, characters for interactive 257

codes, description for interactive 257

codes, interactive, description of 257

coding standards . 685

coding style, standards of . 685

coding system type . 30

coding-category-list . 676

coding-category-system . 677

coding-category-system, set- 676

coding-priority-list . 676

coding-priority-list, set- . 676

coding-region, decode- . 676

coding-region, detect- . 677

coding-region, encode- . 676

coding-system, copy- . 675

coding-system, find- . 675

coding-system, get- . 675

coding-system, make- . 675

coding-system, subsidiary- . 676

coding-system-doc-string . 676

coding-system-list . 675

coding-system-name . 675

coding-system-p . 672

coding-system-property . 676

coding-system-type . 676

collect, garbage- . 696

collection, marker garbage . 453

collector, garbage . 695

color instance type . 31

color instances . 563

color-instance-name . 563

color-instance-p . 563

color-instance-rgb-components 563

color-name . 563

color-pixmap-image-instance-p 574

color-rgb-components . 563

color-specifier-p . 545, 563

color-symbols, xpm- . 573

colorize-image-instance . 575

colors . 563

column, current- . 482

column, current-fill- . 478

column, default-fill- . 478

column, fill- . 478

column, move-to- . 482

columns . 482

columns, charset- . 667

columns, counting . 482

columns, display . 428

columns, sort- . 482

command . 147

command descriptions . 10

command history . 283

command history, record . 260

command in keymap . 293

command key input, waiting for 276

command line arguments . 626

command line options . 626

command line, options on . 626

command line, switches on . 626

command list, debugger . 200

command loop . 255

command loop, editor . 255

command loop, recursive. 281

command name, read . 260

command override, self-insert- 299

command repetition, kill . 262

command, complex . 283

command, current . 262

command, define-prefix- . 289

command, disable- . 283

command, disabled . 282

command, edit-and-eval- . 240

command, enable- . 282

command, execute-extended- 260

command, help- . 351

command, indent-for-tab- . 484

command, keystroke . 148

command, last- . 262

command, minor modes, self-insert- 337

command, prefix . 289

command, prefix-help- . 351

command, process- . 613

command, read- . 246

command, self-insert- . 467

command, start-process-shell- 611

command, this- . 262

730 XEmacs Lisp Reference Manual

command-char, last- . 263

command-debug-status . 204

command-event, last- . 262

command-event, next- . 274

command-event, unread- . 276

command-events, unread- . 276

command-execute . 260

command-history . 283

command-history, extended- 241

command-history, shell- . 241

command-history-map . 709

command-hook, disabled- . 283

command-hook, post- . 255

command-hook, pre- . 255

command-keys, substitute- . 348

command-keys, this- . 262

command-line . 626

command-line-args . 626

command-line-functions . 626

command-line-processed . 626

command-map, read-shell- . 710

command-switch-alist . 626

commandp . 260

commandp example . 247

commands (Edebug), interactive 208

commands, defining . 256

commands, history of . 283

comment ender . 516

comment starter . 516

comment syntax . 516

comment, ; in . 14

comment, forward- . 520

comment, inside. 519

comments . 14

comments, header . 690

comments, library header . 690

comments, parse-sexp-ignore- 520

comments, skipping . 520

Common Lisp . 8

Common Lisp (Edebug) . 208

compare-buffer-substrings . 465

compared, CL note—special forms 115

comparing buffer text . 465

comparison of modification time 396

comparison of, modification time, 396

comparison, lexical . 59

compilation . 187

compilation functions . 188

compilation, library . 189

compilation, macro . 188

compile, batch-byte- . 189

compile, byte- . 188

compile, eval-and- . 191

compile, eval-when- . 191

compile-defun . 188

compile-dynamic, byte- . 191

compile-dynamic-docstrings, byte- 190

compile-file, byte- . 189

compiled function . 191

compiled-function-arglist. 192

compiled-function-constants . 193

compiled-function-doc-string 193

compiled-function-domain . 193

compiled-function-instructions 193

compiled-function-interactive 193

compiled-function-p . 148

compiled-function-stack-size . 193

compiling macros, byte- . 162

compiling require, byte- . 183

complement, two’s . 41

complete key . 285

complete subexpression, previous 519

complete, minibuffer- . 245

complete-and-exit, minibuffer-. 245

complete-word, minibuffer- . 245

completing-read . 243

completion . 241

completion subroutines, file name 373

completion, file name . 373

completion, file-name- . 374

completion, interactive . 257

completion, obarray in . 242

completion, programmed . 248

completion, try- . 242

completion-auto-help . 246

completion-confirm, minibuffer- 245

completion-help, minibuffer- 245

completion-ignore-case . 243

completion-ignored-extensions 374

completion-list, display- . 245

completion-map, minibuffer-local- 244, 710

completion-predicate, minibuffer- 245

completion-table, minibuffer- 245

completions, all- . 243

completions, file-name-all- . 373

complex arguments . 237

complex command . 283

complex-buffers-menu-p . 314

components, color-instance-rgb- 563

components, color-rgb- . 563

components, symbol . 101

compose-region . 669

composite-char, make- . 669

composite-char-string . 669

concat . 57

concatenating lists . 81

concatenating strings . 57

cond . 118

Index 731

condition name . 127

condition, edebug-global-break- 211, 225

condition, edebug-set-global-break- 211

condition, global break . 211

condition-case . 126

conditional evaluation . 118

conditions, error- . 127

configuration (Edebug), window 217

configuration, current-frame- 434

configuration, current-window- 423

configuration, frame . 434

configuration, menubar- . 307

configuration, set-frame- . 435

configuration, set-window- . 424

configuration, system- . 629

configuration-p, window-. 424

configurations, window . 423

confirm, minibuffer-completion- 245

confoundance disease, char-int. 16

connection, network . 621

connection-type, process- . 611

cons . 76

cons cell as box . 71

cons cells . 76

cons cells, lists and . 71

cons-threshold, gc- . 698

conservatively, scroll- . 417

consing . 76

console, select- . 440

console, selected- . 440

console-device-list . 437

console-disable-input . 440

console-enable-input . 440

console-list . 437

console-live-p . 439

console-type-image-conversion-list 573

console-type-image-conversion-list, set- 573

consolep . 437

consoles . 437

consp . 72

constant, ? in character. 18

constant, \ in character . 18

constant, backslash in character 18

constant, question mark in character 18

constant, setting- . 131

constants, compiled-function- 193

constituent, symbol . 514

constituent, word . 514

construct, modeline . 337

containing parentheses, innermost 519

contents, buffer . 463

contents, evaluation of buffer 110

contents, insert-file- . 359

contents-function, revert-buffer-insert-file- 390

contents-hooks, write- . 359

context-lines, next-screen- . 418

continuable errors, CL note—no 125

continuation lines . 586

continuation-glyph . 578

continue-kbd-macro, edebug- 225

continue-process . 616

contrib-p, glyph- . 568

contrib-p, set-glyph- . 568

contrib-p-instance, glyph- . 568

control character printing . 349

control characters . 18

control characters in display 595

control characters, flow . 640

control characters, reading . 275

control structures . 117

control structures, special forms for 117

control, enable-flow- . 640

control, version- . 385

control-arrow-glyph . 578

control-on, enable-flow- . 640

Control-X-prefix . 289

controlled in windows, buffers, 410

controlling precisely, windows,. 410

conventions for writing minor modes 336

conventions, documentation . 345

conventions, minor mode . 336

conversion of image instantiators 573

conversion of strings . 60

conversion, file format . 378

conversion, image instantiator 573

conversion, rounding without . 48

conversion-list, console-type-image- 573

conversion-list, set-console-type-image- 573

conversions, rounding in . 45

copy, file-local- . 377

copy-alist . 88

copy-category-table . 683

copy-coding-system . 675

copy-event . 272

copy-extent . 538

copy-face . 556

copy-file . 367

copy-hashtable . 601

copy-keymap . 286

copy-marker . 456

copy-range-table . 603

copy-region-as-kill . 471

copy-sequence . 93

copy-specifier . 553

copy-syntax-table . 517

copying alists . 88

copying bit vectors . 100

copying files . 366

732 XEmacs Lisp Reference Manual

copying lists . 77

copying sequences . 93

copying strings . 57

copying vectors . 98

copying, backup-by- . 384

copying-when-linked, backup-by- 384

copying-when-mismatch, backup-by- 385

cos . 52

cosh . 52

count, edebug-display-freq-. 215

count-lines . 445

count-loop . 11

counting columns . 482

counts, frequency . 215

coverage testing . 215

coverage, edebug-test- . 224

create, get-buffer- . 399

create, tq- . 620

create-device-hook . 439

create-file-buffer. 357

create-frame-hook . 435

create-tooltalk-message . 651

create-tooltalk-pattern . 653

creating buffers . 399

creating keymaps . 286

creating, buffers, . 399

ctl-arrow . 595

ctl-arrow, default- . 596

ctl-x-4-map . 289, 709

ctl-x-5-map . 289, 709

ctl-x-map . 289, 709

cube-root . 52

current binding . 132

current buffer . 391

current buffer excursion . 448

current buffer mark . 458

current buffer point and mark (Edebug) 217

current buffer position . 441

current command . 262

current stack frame . 200

current-buffer . 392

current-buffer (Edebug), eval- 207

current-buffer, save- . 449

current-buffer, with- . 449

current-case-table . 67

current-column . 482

current-fill-column . 478

current-frame-configuration . 434

current-global-map . 291

current-indentation . 483

current-input-mode. 636

current-justification . 477

current-keymaps . 291

current-kill . 472

current-left-margin . 478

current-line, justify- . 477

current-local-map . 291

current-menubar . 308

current-message . 588

current-minor-mode-maps. 292

current-mouse-event . 263

current-prefix-arg . 280

current-time . 633

current-time-string . 633

current-time-zone . 633

current-window-configuration 423

cursor (mouse) . 577

cursor, mouse . 577

cursor-in-echo-area . 588

cursor-redisplay, force- . 585

cust-print . 214

customization, .emacs . 329

cut buffer . 643

cut-function, interprogram- . 473

cutbuffer, x-get- . 643

cutbuffer, x-store- . 643

cyclic ordering of windows . 408

cyclic, ordering of windows, . 408

cyclic, window ordering, . 408

D
data type . 13

data, annotation- . 581

data, match . 506

data, match- . 508

data, save-match- . 509

data, set-annotation- . 581

data, set-match- . 509

data, store-match-. 509

data-directory . 348

database . 605

database type . 30

database, close- . 605

database, get- . 605

database, map- . 605

database, open- . 605

database, put- . 605

database, remove- . 605

database-file-name . 606

database-last-error . 606

database-live-p . 605

database-subtype . 606

database-type . 606

databasep . 605

deactivate-region, zmacs- . 461

deactivate-region-hook, zmacs- 461

deallocate-event . 272

Index 733

debug . 201

debug, backtrace- . 204

debug, error in . 202

debug, lambda in . 202

debug-allocation . 699

debug-allocation-backtrace . 699

debug-events, x- . 647

debug-ignored-errors . 198

debug-mode, x- . 647

debug-on-entry. 199

debug-on-entry, cancel- . 199

debug-on-error . 197

debug-on-error use . 125

debug-on-next-call . 204

debug-on-quit . 198

debug-on-signal . 198

debug-status, command- . 204

debugger . 197, 203

debugger command list . 200

debugger, Lisp . 197

debugger-mode-map . 709

debugging errors . 197

debugging specific functions . 198

debugging, apply, and . 204

debugging, error . 197

debugging, eval, and. 204

debugging, funcall, and . 204

debugging, function call . 198

decimal, integer to . 61

decode-big5-char . 677

decode-coding-region . 676

decode-shift-jis-char . 677

decode-time . 635

decoding file formats . 378

decompose-region . 669

decrement field of register . 20

dedicated window. 412, 414

dedicated, set-window-buffer- 412

dedicated-p, set-window-. 414

dedicated-p, window- . 412, 414

deep binding . 140

def-edebug-spec . 218

defalias . 152

default argument string . 257

default init file . 624

default optional arg, CL note— 150

default value . 144

default, auto-save- . 389

default, set- . 145

default, setq- . 144

default-abbrev-mode . 523

default-base, ldap- . 655

default-binding, keymap- . 287

default-binding, set-keymap- 287

default-boundp . 144

default-buffer-file-type . 381

default-case-fold-search . 510

default-ctl-arrow . 596

default-deselect-frame-hook . 434

default-directory . 372

default-directory, insert- . 248

default-file-modes . 368

default-file-modes, set- . 368

default-fill-column . 478

default-frame-name. 429

default-frame-plist . 426

default-host, ldap-. 655

default-init, inhibit- . 624

default-justification. 477

default-major-mode . 333

default-menubar . 308

default-minibuffer-frame . 432

default-modeline-format . 340

default-p, face-differs-from- . 560

default-popup-menu . 312

default-port, ldap- . 655

default-select-frame-hook . 434

default-sounds, load- . 599

default-text-properties . 488

default-toolbar . 319

default-toolbar-height . 320

default-toolbar-position . 319

default-toolbar-position, set- 319

default-toolbar-visible-p . 320

default-toolbar-width . 320

default-truncate-lines . 586

default-value . 144

default-x-device . 644

default.el . 623

defconst . 136, 661

defcustom . 170

defgroup . 170

define-abbrev . 524

define-abbrev-table . 524

define-derived-mode . 335

define-function . 152

define-key . 296

define-logical-name . 368

define-obsolete-function-alias 352

define-obsolete-variable-alias 352

define-prefix-command. 289

define-specifier-tag . 549

defined error, user- . 127

defining a function . 151

defining commands . 256

defining, commands, . 256

defining-kbd-macro . 284

definition of a symbol . 102

734 XEmacs Lisp Reference Manual

definition, format . 378

definition, function . 151

definition, substitute-key- . 298

definition, variable . 134

defmacro . 163

defs, edebug-all- . 207, 223

defsubst . 158

defun . 151

defun (Edebug), eval- . 207

defun, beginning-of- . 447

defun, compile- . 188

defun, end-of- . 447

defun-prompt-regexp . 447

defvar . 135, 661

defvaralias . 145

deiconify-frame . 433

delay, blink-matching-paren- 595

delete . 85

delete previous char . 468

delete-annotation . 580

delete-auto-save-file-if-necessary 389

delete-auto-save-files . 389

delete-backward-char . 468

delete-blank-lines . 470

delete-char . 468

delete-char-untabify, backward- 468

delete-device . 439

delete-device-hook. 439

delete-directory . 375

delete-exited-processes . 612

delete-extent . 530

delete-file . 367

delete-frame . 430

delete-frame-hook . 435

delete-horizontal-space. 468

delete-indentation . 469

delete-menu-item . 310

delete-other-windows . 407

delete-process . 612

delete-region . 468

delete-to-left-margin . 479

delete-window . 407

delete-windows-on . 407

deleting files . 366

deleting processes . 612

deleting whitespace. 468

deleting windows . 406

deletion of elements . 84

deletion of frames . 430

deletion vs killing . 467

deletion, tab . 468

delimiter, page- . 510

delimiter, paired . 515

delims, set-case-syntax- . 68

delq . 84

demibold . 562

depth, image-instance- . 575

depth, max-lisp-eval- . 110

depth, minibuffer- . 254

depth, parenthesis . 519

depth, recursion- . 282

derived-mode, define- . 335

descendants, extent- . 539

descent, glyph- . 569

describe-bindings . 302

describe-bindings, Helper- . 352

describe-bindings-internal . 302

describe-buffer-case-table . 68

describe-mode . 334

describe-prefix-bindings . 352

describe-tooltalk-message . 653

description for interactive codes 257

description format . 10

description of, codes, interactive, 257

description, insert-abbrev-table- 524

description, interactive code. 257

description, key- . 349

description, single-key- . 349

description, text-char- . 350

descriptions, command . 10

descriptions, function . 10

descriptions, macro . 10

descriptions, option . 11

descriptions, special form . 10

descriptions, variable . 11

descriptor, character . 597

descriptor, syntax . 514

descriptors, argument . 256

deselect-frame-hook . 435

deselect-frame-hook, default- 434

designator-p, category- . 683

destroy-tooltalk-message . 651

destroy-tooltalk-pattern . 653

destructive-alist-to-plist. 91

destructive-plist-to-alist. 91

detach-extent . 538

detached extent . 538

detached-p, extent- . 538

detect-coding-region . 677

device, default-x- . 644

device, delete- . 439

device, event- . 270

device, frame- . 438

device, make- . 439

device, make-tty- . 439

device, make-x- . 439

device, select- . 440

device, selected- . 440

Index 735

device, terminal- . 439

device-baud-rate . 440, 639

device-baud-rate, set- . 440, 639

device-class . 438

device-class-p, valid- . 439

device-frame-list . 430, 438

device-hook, create- . 439

device-hook, delete- . 439

device-list . 438

device-list, console- . 437

device-live-p . 439

device-matches-specifier-tag-set-p 549

device-matching-specifier-tag-list 549

device-or-frame-p . 438

device-or-frame-type. 438

device-type . 438

device-type-p, valid- . 439

device-x-display . 439

devicep . 437

devices . 437

dgettext . 659

diagrams, boxed, for lists . 20

diagrams, for lists, box . 20

dialog box . 315

dialog-box, popup- . 315

dialog-box, y-or-n-p-maybe- . 251

dialog-box, yes-or-no-p- . 251

dialog-box, yes-or-no-p-maybe- 251

differs-from-default-p, face- . 560

digit-argument . 280

dimension, charset- . 667

ding . 597

direction, charset- . 667

direction-charset, charset-reverse- 667

direction-charset, make-reverse- 666

directories, program . 608

directory name . 370

directory name abbreviation 370

directory part (of file name). 368

directory, batch-byte-recompile- 189

directory, byte-recompile- . 189

directory, data- . 348

directory, default- . 372

directory, delete- . 375

directory, doc- . 348

directory, exec- . 608

directory, file name of . 370

directory, file names in . 374

directory, file-name- . 369

directory, file-name-as- . 370

directory, insert- . 375

directory, insert-default- . 248

directory, installation- . 631

directory, invocation- . 630

directory, list-buffers- . 395

directory, make- . 375

directory, temp- . 373

directory, unhandled-file-name- 377

directory, user-home- . 632

directory-abbrev-alist . 370

directory-autoloads, update- 181

directory-file-name . 370

directory-files . 374

directory-ignore-errors-p, byte-recompile- 189

directory-oriented functions . 374

directory-p, file- . 364

directory-p, file-accessible- . 363

directory-program, insert- . 375

dired-kept-versions . 385

dired-mode-map . 709

dirty-flag, set-menubar- . 308

disable undo . 475

disable-command. 283

disable-input, console- . 440

disable-menu-item . 310

disable-timeout . 636

disable-undo, buffer-. 475

disabled . 282

disabled command . 282

disabled-command-hook . 283

disassemble . 193

disassembled byte-code . 193

discard input . 277

discard-input . 277

disease, char-int confoundance. 16

disown-selection, x- . 643

dispatch-event . 275

dispatching an event . 275

display columns . 428

display lines . 428

display order . 530

display table . 596

display table, active . 597

display update . 585

display, $ in . 586

display, \ in . 586

display, control characters in 595

display, device-x- . 439

display, error . 586

display, momentary-string- . 593

display, redraw- . 585

display, refresh . 585

display, selective . 591

display, selective- . 591

display, update. 585

display-buffer . 412

display-buffer-function . 414

display-buffer-names, special- 413

736 XEmacs Lisp Reference Manual

display-completion-list . 245

display-ellipses, selective- . 592

display-frame-plist, special- . 414

display-freq-count, edebug-. 215

display-function, special- . 413

display-message . 587

display-popup-frame, special- 413

display-regexps, special- . 413

display-table, make- . 596

display-visual-class, x- . 646

display-warning . 589

display-warning-minimum-level 590

display-warning-suppressed-classes 590

displayed-buffer-points, edebug-save- 217, 224

displayed-text-pixel-height, window- 421

displaying a buffer . 410

distance, blink-matching-paren- 594

division, arith-error in . 47

DND, OffiX . 325

do-auto-save . 389

DOC (documentation) file . 345

doc string, string, writing a . 345

doc, function-obsoleteness- . 353

doc, variable-obsoleteness- . 353

doc-directory . 348

doc-file-name, internal- . 347

doc-string, charset- . 667

doc-string, coding-system- . 676

doc-string, compiled-function- 193

docstrings, byte-compile-dynamic- 190

documentation . 346

documentation conventions . 345

documentation for major mode 334

documentation notation . 9

documentation of function . 150

documentation string, writing a 345

documentation strings . 345

documentation strings, keys in 348

documentation, dynamic loading of 190

documentation, keys in . 348

documentation, Snarf- . 347

documentation, substituting keys in 348

documentation, variable-. 345

documentation-property . 346

domain . 660

domain (in a specifier) . 541

domain, bind-text- . 659

domain, compiled-function- . 193

domain, specifier, . 541

domain-of . 660

domain-p, valid-specifier- . 552

DOS and file modes, MS- . 368

DOS file types, MS- . 380

DOS, file modes and MS- . 368

DOS, file types on MS- . 380

dotted lists (Edebug) . 221

dotted pair notation . 21

double-quote in strings . 22

down, scroll- . 417

down-glyph, annotation- . 581

down-glyph, set-annotation-. 581

down-list . 446

downcase . 65

downcase-region . 487

downcase-word . 487

downcasing in lookup-key . 274

drag . 326

drag and drop . 325

Drag API . 326

dribble file . 639

dribble-file, open- . 639

drop . 326

Drop API . 326

drop, drag and . 325

dt, CDE . 325

dump-emacs . 694

duplicable extent . 539

duplicable, extent, . 539

dynamic loading of documentation 190

dynamic loading of functions 190

dynamic scoping . 139

dynamic, byte-compile- . 191

dynamic-docstrings, byte-compile- 190

E
echo area . 586

echo-area, cursor-in- . 588

echo-area-message, inhibit-startup- 624

echo-keystrokes . 263, 588

edebug . 211

Edebug. 206

Edebug execution modes . 208

Edebug mode . 206

Edebug specification list . 218

edebug-‘ . 221

edebug-all-defs . 207, 223

edebug-all-forms . 207, 224

edebug-continue-kbd-macro . 225

edebug-display-freq-count . 215

edebug-eval-top-level-form . 207

edebug-global-break-condition 211, 225

edebug-initial-mode . 224

edebug-on-error . 211, 225

edebug-on-quit . 211, 225

edebug-print-circle . 215, 225

edebug-print-length . 215, 225

edebug-print-level. 215, 225

Index 737

edebug-print-trace-after 215, 224

edebug-print-trace-before 215, 224

edebug-save-displayed-buffer-points 217, 224

edebug-save-windows. 217, 224

edebug-set-global-break-condition 211

edebug-setup-hook . 223

edebug-spec, def- . 218

edebug-test-coverage . 224

edebug-trace . 215, 224

edebug-tracing . 215

edebug-unwrap . 219

edebug-unwrap-results . 222, 225

edges, window-pixel- . 421

edges, window-text-area-pixel- 422

edit, abort-recursive- . 282

edit, exit-recursive- . 282

edit, recursive- . 281

edit-abbrevs-map . 709

edit-and-eval-command . 240

edit-map, Info- . 709

edit-map, itimer- . 710

edit-menu-filter . 311

edit-tab-stops-map . 709

editing level, recursive . 281

editing types . 26

editing, exit recursive . 281

editing, regexps used standardly in 510

editing, standard regexps used in 510

editor command loop . 255

effect, side . 109

eighth . 76

elapsed-time, ccl-. 682

elapsed-time, ccl-reset- . 682

elc-files, load-ignore- . 179

electric-buffer-menu-mode-map 709

electric-future-map . 11

electric-history-map . 709

element (of list) . 71

element, next-history- . 252

element, next-matching-history- 253

element, previous-history- . 252

element, previous-matching-history- 252

elements of sequences . 95

elements, array . 96

elements, deletion of . 84

elements, list . 73

ellipses, selective-display- . 592

elt . 94

Emacs, CL note—only throw in 122

emacs, dump- . 694

emacs, kill- . 627

emacs, suspend- . 628

emacs-application-class, x- . 645

emacs-build-time . 694

emacs-from-temacs, run- . 694

emacs-hook, kill- . 627

emacs-lisp-mode-map . 709

emacs-lisp-mode-syntax-table 521

emacs-major-version . 694

emacs-minor-version . 695

emacs-pid . 631

emacs-query-functions, kill- . 627

emacs-version . 694

EMACSLOADPATH environment variable 178

embedded breakpoints . 211

empty list . 20

enable-command . 282

enable-flow-control . 640

enable-flow-control-on . 640

enable-input, console- . 440

enable-local-eval . 333

enable-local-variables . 332

enable-menu-item . 310

enable-predicate, backup- . 384

enable-recursive-minibuffers . 254

enable-undo, buffer- . 475

enabled, menu-accelerator- . 313

encode-big5-char . 677

encode-coding-region . 676

encode-shift-jis-char . 677

encode-time . 635

encoding file formats . 378

end of buffer marker . 455

end position, extent . 530

end, buffer- . 441

end, match-. 507

end, region- . 460

end, sentence- . 511

end, window- . 415

end-glyph, extent- . 537

end-glyph, set-extent- . 538

end-glyph-layout, extent- . 537

end-glyph-layout, set-extent- 537

end-of-buffer . 443

end-of-defun . 447

end-of-file . 229

end-of-line . 444

end-position, extent- . 531

ender, comment . 516

endpoint, extent . 530

endpoints, set-extent- . 531

enlarge-window . 422

enlarge-window-horizontally . 422

enlarge-window-pixels . 422

enqueue, tq- . 620

enqueue-eval-event . 275

entry, cancel-debug-on- . 199

entry, debug-on- . 199

738 XEmacs Lisp Reference Manual

entry, keymap . 293

entry, modify-syntax- . 517

environment . 109

environment variable access . 630

environment variable, EMACSLOADPATH 178

environment variable, HOME 607

environment variable, PATH 607

environment variable, TERM 625

environment variables, subprocesses 607

environment, operating system 629

environment, process- . 630

eobp . 464

eof, process-send- . 614

eolp . 464

eq . 37

eq, CL note—integers vrs . 43

eq, lax-plists- . 90

eq, old- . 38

eq, plists- . 89, 107

equal . 38

equal, char- . 59

equal, face- . 560

equal, lax-plists- . 90

equal, plists- . 89, 107

equal, string- . 59

equality . 37

equality, number . 43

equality, string . 59

equality, symbol. 103

erase-buffer . 467

error . 124

error (Edebug), syntax . 221

error cleanup . 129

error debugging . 197

error display . 586

error example, arith- . 127

error handler . 125

error in debug . 202

error in division, arith- . 47

error message notation. 9

error name . 127

error symbol . 127

error use, debug-on- . 125

error with require, load . 182

error, database-last- . 606

error, debug-on- . 197

error, edebug-on- . 211, 225

error, evaluation . 133

error, file mode specification 332

error, file open . 357

error, file- . 177

error, invalid prefix key . 296

error, key sequence . 296

error, Lisp nesting. 110

error, peculiar . 128

error, user-defined . 127

error, variable limit . 133

error-conditions . 127

errors . 124

errors, autoload . 180

errors, CL note—no continuable 125

errors, debug-ignored- . 198

errors, debugging . 197

errors, handling . 125

errors, load . 177

errors, signaling . 124

errors-p, byte-recompile-directory-ignore- 189

ESC . 295

esc-map . 289

ESC-prefix . 289

escape . 17, 515

escape characters . 234

escape characters in printing 232

escape sequence . 18

escape-glyph, octal- . 578

escape-newlines, print- . 234

escapes, words-include- . 443

eval . 110

eval, and debugging . 204

eval, enable-local- . 333

eval-and-compile . 191

eval-buffer . 110

eval-command, edit-and- . 240

eval-current-buffer (Edebug) 207

eval-defun (Edebug) . 207

eval-depth, max-lisp- . 110

eval-event, enqueue- . 275

eval-event-p . 267

eval-expression (Edebug) . 208

eval-minibuffer . 239

eval-region . 110

eval-region (Edebug) . 207

eval-top-level-form, edebug- . 207

eval-when-compile . 191

evaluated expression argument 259

evaluating form, self- . 111

evaluation . 109

evaluation error . 133

evaluation form, argument . 256

evaluation list (Edebug) . 213

evaluation notation . 9

evaluation of buffer contents 110

evaluation, conditional. 118

evaluation, function form . 114

evaluation, list form . 112

evaluation, literal . 111

evaluation, macro argument . 165

evaluation, macro call . 114

Index 739

evaluation, recursive . 109

evaluation, special form . 114

evaluation, suspend . 281

evaluation, symbol . 112

evaluation, vector . 111

event printing . 349

event standard notation, XEmacs 349

event, character-to-. 272

event, copy- . 272

event, current-mouse- . 263

event, deallocate- . 272

event, dispatch- . 275

event, dispatching an . 275

event, enqueue-eval- . 275

event, last-command- . 262

event, last-input- . 276

event, make- . 270

event, next- . 274

event, next-command- . 274

event, unread-command- . 276

event-buffer . 268

event-button . 270

event-closest-point . 268

event-device . 270

event-frame . 267

event-function . 270

event-glyph-extent . 269

event-glyph-x-pixel . 269

event-glyph-y-pixel . 269

event-key . 270

event-live-p . 267

event-matches-key-specifier-p 288

event-modifier-bits . 270

event-modifiers . 270

event-object . 270

event-over-border-p . 269

event-over-glyph-p . 269

event-over-modeline-p . 268

event-over-text-area-p . 268

event-over-toolbar-p . 269

event-p, button-. 266

event-p, button-press- . 266

event-p, button-release- . 266

event-p, eval- . 267

event-p, key-press- . 266

event-p, misc-user- . 267

event-p, motion- . 266

event-p, mouse- . 266

event-p, process- . 267

event-p, timeout- . 267

event-point . 268

event-process . 270

event-timestamp . 270

event-to-character . 273

event-toolbar-button . 269

event-type . 266

event-window . 267

event-window-x-pixel . 268

event-window-y-pixel . 268

event-x . 268

event-x-pixel . 267

event-y . 268

event-y-pixel . 267

eventp . 263

events . 263

events, input . 263

events, stopping on . 211

events, translating input . 637

events, unread-command- . 276

events, x-debug- . 647

events-to-keys . 273

examining windows. 410

example, arith-error . 127

example, commandp. 247

example, print . 230

example, syntax table . 330

example, throw . 281

example, user-variable-p . 247

examples of using interactive 259

examples of using, interactive, 259

exchange-point-and-mark . 459

exclusive or, bitwise . 51

exclusive or, logical . 51

excursion . 448

excursion (Edebug), save- . 217

excursion, current buffer . 448

excursion, mark . 448

excursion, point . 448

excursion, save- . 448

excursion, save-window- . 424

excursions, window . 448

exec-directory . 608

exec-path . 608

executable-p, file- . 362

execute program . 607

execute with prefix argument 261

execute, ccl- . 681

execute, command- . 260

execute-extended-command . 260

execute-kbd-macro . 283

execute-on-string, ccl- . 681

executing-macro . 284

execution modes, Edebug . 208

execution speed . 687

execution, keyboard macro . 260

exists, file-already- . 368

exists-p, file- . 362

exists-p, region- . 461

740 XEmacs Lisp Reference Manual

exit . 281

exit recursive editing . 281

exit, minibuffer-complete-and-. 245

exit, self-insert-and- . 252

exit-hook, minibuffer- . 253

exit-minibuffer . 252

exit-recursive-edit . 282

exit-status, process- . 614

exited-processes, delete- . 612

exiting XEmacs . 627

exits, nonlocal . 121

exp . 52

expand-abbrev . 525

expand-file-name . 371

expand-hook, pre-abbrev- . 526

expansion of file names . 371

expansion of macros . 161

expansion, abbrev- . 525

expansion, macro . 161

explicit, filling, . 476

expression . 109

expression (Edebug), eval- . 208

expression argument, evaluated 259

expression in hook, lambda . 342

expression motion, Lisp . 446

expression prefix . 516

expression searching, regular 502

expression, lambda . 148

expression, regular . 496

expression, value of . 109

expression-history, read- . 241

expression-map, read- . 710

expressions (Edebug), anonymous lambda 208

expt . 52

extended-command, execute- 260

extended-command-history . 241

extension, file-name-sans- . 369

extensions, completion-ignored- 374

extent . 139, 529

extent children . 538

extent end position . 530

extent endpoint . 530

extent order . 530

extent parent . 538

extent priority . 529

extent property . 534

extent replica . 539

extent start position . 530

extent, atomic . 540

extent, children, of . 538

extent, copy-. 538

extent, delete- . 530

extent, detach- . 538

extent, detached . 538

extent, duplicable . 539

extent, event-glyph- . 269

extent, force-highlight- . 540

extent, highlight- . 540

extent, insert- . 538

extent, make- . 530

extent, next- . 532

extent, parent, of. 538

extent, previous- . 532

extent, priority of an . 529

extent, property of an . 534

extent, unique . 539

extent, zero-length . 530

extent-at . 532

extent-begin-glyph . 537

extent-begin-glyph, set- . 538

extent-begin-glyph-layout . 537

extent-begin-glyph-layout, set- 537

extent-children . 539

extent-children, map- . 534

extent-descendants . 539

extent-detached-p . 538

extent-end-glyph . 537

extent-end-glyph, set- . 538

extent-end-glyph-layout. 537

extent-end-glyph-layout, set- 537

extent-end-position . 531

extent-endpoints, set- . 531

extent-face . 536

extent-face, set- . 537

extent-in-region-p . 534

extent-initial-redisplay-function, set- 538

extent-keymap . 537

extent-keymap, set- . 537

extent-length . 531

extent-list . 531

extent-live-p . 530

extent-mouse-face . 537

extent-mouse-face, set- . 537

extent-object . 530

extent-parent . 539

extent-parent, set- . 539

extent-priority . 537

extent-priority, set- . 537

extent-properties . 535

extent-properties, set- . 535

extent-property . 534

extent-property, set- . 535

extent-start-position . 531

extentp . 529

extents, locating . 531

extents, map- . 532

extents, mapcar- . 534

extents, mapping . 532

Index 741

extents, markers vs. 453

extents, order of . 530

extents, unique . 539

F
face type . 31

face, annotation- . 581

face, copy- . 556

face, extent- . 536

face, extent-mouse- . 537

face, glyph- . 569

face, invert- . 560

face, make- . 556

face, set-annotation- . 581

face, set-extent- . 537

face, set-extent-mouse- . 537

face, set-glyph- . 569

face-background. 559

face-background, set- . 559

face-background-instance . 560

face-background-pixmap . 559

face-background-pixmap, set- 559

face-background-pixmap-instance 560

face-boolean-specifier-p . 545

face-differs-from-default-p . 560

face-equal . 560

face-font . 559

face-font, set- . 559

face-font-instance . 560

face-font-name . 559

face-foreground . 559

face-foreground, set- . 559

face-foreground-instance . 560

face-list . 556

face-property . 557

face-property, set- . 557

face-property-instance . 558

face-underline-p . 559

face-underline-p, set- . 559

facep . 556

faces . 555

failed, search- . 495

fallback (in a specifier) . 543

fallback, specifier, . 543

fallback, specifier- . 548

false . 8

fboundp . 157

fceiling . 48

feature, unload- . 184

featurep . 183

features . 182, 184

features, providing . 182

features, requiring . 182

fetch-bytecode . 191

ffloor . 48

field of register, address . 20

field of register, decrement . 20

field width . 64

fields, sort- . 482

fields, sort-numeric- . 482

fields, sort-regexp- . 480

fifth . 76

file accessibility . 362

file age . 363

file attributes . 364

file format conversion . 378

file formats, decoding . 378

file formats, encoding . 378

file hard link . 366

file locks . 361

file message, new . 357

file mode specification error . 332

file mode, visited . 333

file modes and MS-DOS . 368

file modes, MS-DOS and . 368

file modification time . 363

file name completion subroutines 373

file name of buffer . 394

file name of directory . 370

file name), directory part (of 368

file name), nondirectory part (of. 368

file name), version number (in 368

file name, absolute . 371

file name, buffer. 394

file name, completion, . 373

file name, relative . 371

file names . 368

file names in directory . 374

file names, expansion of . 371

file names, magic . 375

file open error . 357

file symbolic links . 363

file types on MS-DOS . 380

file types, MS-DOS . 380

file with multiple names . 366

file), truename (of . 364

file, accessibility of a . 362

file, add-name-to- . 366

file, after-find- . 357

file, append-to- . 360

file, backup . 383

file, byte-compile- . 189

file, copy- . 367

file, default init . 624

file, delete- . 367

file, DOC (documentation) . 345

file, dribble . 639

742 XEmacs Lisp Reference Manual

file, end-of- . 229

file, find- . 355

file, format-find- . 379, 380

file, format-insert- . 379, 380

file, format-write- . 379

file, init . 624

file, load-sound- . 599

file, locate- . 178

file, open-dribble- . 639

file, play-sound- . 599

file, quietly-read-abbrev- . 525

file, rename- . 367

file, rename-auto-save- . 389

file, site-run- . 624

file, termscript . 640

file, view- . 356

file, visited . 394

file, with-temp- . 449

file, write- . 358

file, write-abbrev- . 525

file-accessible-directory-p . 363

file-already-exists . 368

file-attributes . 365

file-autoloads, update- . 181

file-binary, find- . 381

file-buffer, create- . 357

file-buffer, get- . 395

file-clear-hashing, locate-. 179

file-contents, insert- . 359

file-contents-function, revert-buffer-insert- 390

file-directory-p . 364

file-error . 177

file-executable-p. 362

file-exists-p . 362

file-format, auto-save- . 380

file-format, buffer- . 379

file-functions, after-insert- . 492

file-hooks, find- . 356

file-hooks, local-write- . 358

file-hooks, write- . 358

file-if-necessary, delete-auto-save- 389

file-local-copy . 377

file-locked . 361

file-locked-p . 361

file-menu-filter . 311

file-modes . 364

file-modes, default- . 368

file-modes, set- . 368

file-modes, set-default- . 368

file-modtime, clear-visited- . 396

file-modtime, set-visited- . 396

file-modtime, verify-visited- . 396

file-modtime, visited- . 396

file-name, abbrev- . 525

file-name, abbreviate- . 370

file-name, auto-save-list- . 389

file-name, auto-save-visited- . 388

file-name, buffer- . 394

file-name, buffer-auto-save- . 387

file-name, database- . 606

file-name, directory- . 370

file-name, expand-. 371

file-name, find-backup- . 386

file-name, image-instance-. 575

file-name, image-instance-mask- 575

file-name, internal-doc- . 347

file-name, make-auto-save- . 388

file-name, make-backup- . 386

file-name, read- . 247

file-name, set-visited- . 395

file-name, substitute-in- . 372

file-name-absolute-p . 371

file-name-all-completions . 373

file-name-as-directory . 370

file-name-buffer-file-type-alist 380

file-name-completion . 374

file-name-directory . 369

file-name-directory, unhandled- 377

file-name-handler, find- . 377

file-name-handlers, inhibit- . 377

file-name-history . 241

file-name-nondirectory . 369

file-name-operation, inhibit- . 377

file-name-p, auto-save- . 387

file-name-p, backup- . 386

file-name-sans-extension . 369

file-name-sans-versions. 369

file-newer-than-file-p. 363

file-newest-backup . 387

file-nlinks . 365

file-noselect, find- . 356

file-not-found-hooks, find- . 357

file-number, buffer- . 394

file-other-window, find- . 356

file-ownership-preserved-p . 363

file-p, file-newer-than- . 363

file-part, make- . 378

file-path, x-bitmap- . 573, 646

file-precious-flag . 359

file-prefix, term-. 625

file-read-only, find- . 356

file-readable-p . 362

file-regular-p . 364

file-relative-name . 372

file-supersession . 397

file-symlink-p . 363

file-text, find- . 381

file-truename . 364

Index 743

file-truename, buffer- . 394

file-type, buffer- . 380

file-type, default-buffer- . 381

file-type, find-buffer- . 380

file-type-alist, file-name-buffer- 380

file-writable-p . 362

files and binary files, text . 380

files and text files, binary . 380

files, binary files and text . 380

files, copying . 366

files, delete-auto-save- . 389

files, deleting . 366

files, directory- . 374

files, finding . 355

files, how to make them, backup 384

files, linking . 366

files, load-ignore-elc- . 179

files, make-backup- . 383

files, partial . 377

files, renaming . 366

files, setting modes of . 366

files, text files and binary . 380

files, text properties in . 491

files, visiting . 355

Fill mode, Auto . 479

Fill mode, newline and Auto 467

fill-column . 478

fill-column, current- . 478

fill-column, default- . 478

fill-function, auto- . 479

fill-individual-paragraphs . 476

fill-individual-varying-indent 477

fill-paragraph . 476

fill-paragraph-function . 477

fill-prefix . 478

fill-region . 476

fill-region-as-paragraph . 477

fillarray . 97

filling a paragraph . 476

filling, automatic . 479

filling, explicit . 476

filter function . 617

filter, buffers-menu- . 311

filter, edit-menu- . 311

filter, file-menu- . 311

filter, process . 617

filter, process- . 618

filter, set-process- . 618

filters, menu . 311

final, charset- . 667

final-newline, require- . 359

find-backup-file-name . 386

find-buffer-file-type . 380

find-charset . 666

find-charset-region . 669

find-charset-string . 669

find-coding-system . 675

find-file . 355

find-file, after- . 357

find-file, format- . 379, 380

find-file-binary . 381

find-file-hooks . 356

find-file-name-handler . 377

find-file-noselect . 356

find-file-not-found-hooks . 357

find-file-other-window . 356

find-file-read-only . 356

find-file-text . 381

find-larger-font, x-. 561

find-menu-item . 310

find-smaller-font, x- . 561

finding files . 355

finding windows . 408

first . 75

first-change-hook . 494

fixup-whitespace . 469

flag (of buffer), modification 395

flag, file-precious- . 359

flag, purify- . 695

flag, quit-. 279

flag, set-menubar-dirty- . 308

flags, syntax . 516

float . 45

float-output-format . 235

floating point, IEEE . 42

floating-point numbers, printing 235

floatp . 42

floor . 45

flow control characters . 640

flow-control, enable- . 640

flow-control-on, enable- . 640

flush input . 277

flush-undo, buffer-. 475

fmakunbound . 157

focus, input . 432

focus-frame . 432

fold-search, case- . 510

fold-search, default-case- . 510

following-char . 463

font instance characteristics . 562

font instance name . 561

font instance size . 561

font instance type . 31

font instances, characteristics of 562

font, face- . 559

font, set-face- . 559

font, x-find-larger-. 561

font, x-find-smaller- . 561

744 XEmacs Lisp Reference Manual

font-bold, x-make- . 562

font-bold-italic, x-make- . 562

font-instance, face- . 560

font-instance, make- . 561

font-instance-name . 561

font-instance-p . 560

font-instance-properties . 562

font-instance-truename . 561

font-italic, x-make- . 562

font-name . 562

font-name, face- . 559

font-properties . 562

font-size, x- . 561

font-specifier-p . 545, 560

font-truename . 562

font-unbold, x-make- . 562

font-unitalic, x-make- . 562

fonts . 8, 560

fonts available . 561

fonts, available . 561

fonts, list- . 561

foo . 10

for . 164

for, sit- . 277

for, sleep- . 277

for-tab-command, indent- . 484

for-user-input-p, waiting- . 620

force-cursor-redisplay . 585

force-highlight-extent . 540

forcing redisplay . 277

foreground, face- . 559

foreground, image-instance- . 576

foreground, set-face- . 559

foreground-instance, face- . 560

form descriptions, special . 10

form evaluation, function . 114

form evaluation, list . 112

form evaluation, special . 114

form, argument evaluation . 256

form, edebug-eval-top-level- . 207

form, help- . 351

form, minibuffer-help- . 253

form, self-evaluating . 111

form, top-level . 177

format . 62

format arguments, repositioning 64

format conversion, file . 378

format definition . 378

format of keymaps . 285

format of menus . 305

format of the menubar. 308

format precision . 65

format specification . 62

format, % in . 62

format, auto-save-file- . 380

format, buffer-file- . 379

format, default-modeline- . 340

format, description . 10

format, float-output- . 235

format, frame-icon-title- . 429

format, frame-title- . 429

format, keymap . 285

format, menu . 305

format, menubar . 308

format, modeline- . 337

format, Shell mode modeline- 338

format-alist . 378

format-buffers-menu-line . 314

format-find-file . 379, 380

format-insert-file . 379, 380

format-list, image-instantiator- 572

format-p, valid-image-instantiator- 572

format-time-string . 634

format-write-file. 379

formats, decoding file . 378

formats, encoding file . 378

formatted numbers, precision of 65

formatting strings . 62

formatting them, strings, . 62

formatting, multilingual string 64

formfeed . 17

forms . 109

forms (Edebug), special . 208

forms compared, CL note—special 115

forms for control structures, special 117

forms, cleanup . 129

forms, edebug-all-. 207, 224

forms, protected . 129

forms, special . 24

forward, posix-search- . 504

forward, re-search- . 502

forward, search- . 495

forward, skip-chars- . 447

forward, skip-syntax- . 518

forward, word-search- . 496

forward-char . 442

forward-comment . 520

forward-line . 444

forward-list . 446

forward-sexp . 446

forward-to-indentation . 486

forward-word . 443

found-hooks, find-file-not- . 357

fourth . 76

frame . 425

frame configuration . 434

frame hooks . 435

frame name . 429

Index 745

frame of terminal . 403

frame position . 428

frame size . 428

frame visibility . 433

frame, auto-lower- . 434

frame, auto-raise- . 434

frame, backtrace- . 204

frame, current stack . 200

frame, default-minibuffer- . 432

frame, deiconify- . 433

frame, delete- . 430

frame, event- . 267

frame, focus- . 432

frame, iconified . 433

frame, iconify- . 433

frame, invisible . 433

frame, lower- . 434

frame, lowering a . 434

frame, make- . 425

frame, next- . 430

frame, position of . 428

frame, previous- . 431

frame, raise- . 434

frame, raising a . 434

frame, redraw- . 585

frame, save-selected- . 433

frame, select- . 432

frame, selected . 432

frame, selected- . 432

frame, size of . 428

frame, special-display-popup- 413

frame, terminal . 403, 425

frame, visible . 433

frame, window- . 431

frame, with-selected- . 433

frame, X window . 425

frame-configuration, current- 434

frame-configuration, set- . 435

frame-device . 438

frame-function, pop-up- . 413

frame-height . 428

frame-hook, create- . 435

frame-hook, default-deselect- 434

frame-hook, default-select- . 434

frame-hook, delete- . 435

frame-hook, deselect- . 435

frame-hook, map- . 435

frame-hook, select- . 435

frame-hook, unmap- . 435

frame-icon-pixmap, x-set- . 429

frame-icon-title-format . 429

frame-iconified-p . 433

frame-invisible, make- . 433

frame-list . 430

frame-list, device- . 430, 438

frame-list, visible- . 430

frame-live-p. 430

frame-name . 429

frame-name, default- . 429

frame-p, device-or- . 438

frame-pixel-height . 428

frame-pixel-width . 428

frame-plist, default- . 426

frame-plist, initial- . 426

frame-plist, minibuffer- . 426

frame-plist, pop-up- . 413

frame-plist, special-display- . 414

frame-pointer, set- . 578

frame-position, set- . 428

frame-properties . 426

frame-properties, set- . 426

frame-property . 426

frame-property, set- . 426

frame-root-window . 431

frame-selected-window . 431

frame-size, set- . 429

frame-title-format . 429

frame-top-window . 431

frame-totally-visible-p . 433

frame-type, device-or- . 438

frame-visible, make- . 433

frame-visible-p . 433

frame-width . 428

framep . 425

frames, deletion of . 430

frames, pop-up- . 412

free list . 696

freq-count, edebug-display-. 215

frequency counts . 215

fround . 48

fset . 157

ftp-login . 129

ftruncate . 48

full-name, user- . 632

fullness, hashtable- . 601

fullness, keymap- . 302

funcall . 153

funcall, and debugging. 204

function . 147, 155

function call . 114

function call debugging . 198

function cell . 101

function cell in autoload . 180

function cell, void . 156

function definition. 151

function descriptions . 10

function form evaluation . 114

function indirection, symbol. 112

746 XEmacs Lisp Reference Manual

function input stream . 228

function invocation . 153

function name . 151

function output stream . 230

function quoting . 155

function, after-change- . 494

function, anonymous . 155

function, auto-fill- . 479

function, before-change- . 494

function, blink-paren- . 594

function, body of . 149

function, buffers-menu-switch-to-buffer- 314

function, built-in . 147

function, byte-code . 191

function, calling a . 153

function, compiled . 191

function, define-. 152

function, defining a . 151

function, display-buffer- . 414

function, documentation of . 150

function, event- . 270

function, fill-paragraph- . 477

function, filter . 617

function, indent-line- . 483

function, indent-region- . 484

function, indirect- . 113

function, interactive . 256

function, interprogram-cut- . 473

function, interprogram-paste- 472

function, invalid. 113

function, invalid- . 113

function, key translation . 637

function, load-read- . 179

function, named. 151

function, pop-up-frame- . 413

function, revert-buffer- . 390

function, revert-buffer-insert-file-contents- 390

function, set-extent-initial-redisplay- 538

function, special-display- . 413

function, symbol- . 156

function, temp-buffer-show- . 593

function, void . 112

function, void- . 156

function-alias, define-obsolete- 352

function-arglist, compiled- . 192

function-constants, compiled- 193

function-doc-string, compiled- 193

function-domain, compiled- . 193

function-instructions, compiled- 193

function-interactive. 257

function-interactive, compiled- 193

function-key-map . 637

function-obsoleteness-doc . 353

function-p, compiled- . 148

function-stack-size, compiled- 193

functionals . 154

functions in modes . 328

functions, after-change- . 494

functions, after-insert-file- . 492

functions, before-change- . 494

functions, command-line- . 626

functions, compilation . 188

functions, debugging specific 198

functions, directory-oriented 374

functions, dynamic loading of 190

functions, inline . 158

functions, kill-buffer-query- . 401

functions, kill-emacs-query- . 627

functions, making them interactive 256

functions, mapping . 154

functions, mathematical . 52

functions, transcendental . 52

functions, window-size-change- 423

functions, write-region-annotate- 491

Fundamental mode . 327

fundamental-mode . 332

fundamental-mode-abbrev-table 527

future-map, electric- . 11

G
g, C- . 278

garbage collection, marker . 453

garbage collector . 695

garbage-collect . 696

gc-cons-threshold . 698

gc-hook, post- . 698

gc-hook, pre- . 698

gc-message . 699

gc-pointer-glyph . 577, 699

generate-new-buffer . 399

generate-new-buffer-name . 394

generic-specifier-p . 544

gensym, print- . 234

get . 106

get, lax-plist- . 90

get, plist- . 89

get-buffer . 393

get-buffer-create . 399

get-buffer-process . 617

get-buffer-window . 410

get-char-property . 488

get-char-table . 69

get-charset . 666

get-coding-system . 675

get-cutbuffer, x- . 643

get-database . 605

get-file-buffer . 395

Index 747

get-largest-window . 408

get-lru-window . 408

get-process . 612

get-range-char-table . 69

get-range-table . 603

get-register . 493

get-resource, x- . 644

get-selection, x- . 643

get-text-property . 488

get-tooltalk-message-attribute 650

getenv . 630

getf . 107

gethash . 602

gettext . 659

global binding . 132

global break condition . 211

global keymap . 290

global mark ring . 457

global variable . 131

global-abbrev-table . 527

global-abbrevs, only- . 524

global-break-condition, edebug- 211, 225

global-break-condition, edebug-set- 211

global-key-binding. 295

global-map . 291

global-map, current- . 291

global-map, use- . 292

global-mark, pop- . 460

global-mark-ring . 460

global-mode-string . 339

global-popup-menu . 312

global-set-key . 300

global-unset-key. 300

glyph type . 31

glyph, annotation- . 580

glyph, annotation-down- . 581

glyph, busy-pointer- . 577

glyph, continuation- . 578

glyph, control-arrow- . 578

glyph, extent-begin- . 537

glyph, extent-end- . 537

glyph, gc-pointer- . 577, 699

glyph, hscroll- . 578

glyph, invisible-text- . 578

glyph, make- . 565

glyph, make-icon- . 565

glyph, make-pointer- . 565

glyph, menubar-pointer- . 577

glyph, modeline-pointer- . 577

glyph, nontext-pointer- . 577

glyph, octal-escape- . 578

glyph, scrollbar-pointer- . 577

glyph, selection-pointer- . 577

glyph, set-annotation- . 580

glyph, set-annotation-down-. 581

glyph, set-extent-begin- . 538

glyph, set-extent-end- . 538

glyph, text-pointer- . 577

glyph, toolbar-pointer- . 577

glyph, truncation- . 578

glyph-ascent . 569

glyph-baseline . 569

glyph-baseline, set- . 569

glyph-baseline-instance . 569

glyph-contrib-p . 568

glyph-contrib-p, set- . 568

glyph-contrib-p-instance . 568

glyph-descent . 569

glyph-extent, event- . 269

glyph-face . 569

glyph-face, set- . 569

glyph-height . 569

glyph-image . 568

glyph-image, set- . 568

glyph-image-instance . 568

glyph-internal, make- . 565

glyph-layout, extent-begin-. 537

glyph-layout, extent-end- . 537

glyph-layout, set-extent-begin- 537

glyph-layout, set-extent-end- 537

glyph-p, buffer- . 576

glyph-p, event-over- . 269

glyph-p, icon- . 577

glyph-p, pointer- . 577

glyph-property . 567

glyph-property, remove- . 568

glyph-property, set- . 566

glyph-property-instance. 567

glyph-type . 576

glyph-type-list . 576

glyph-type-p, valid- . 576

glyph-width . 569

glyph-x-pixel, event- . 269

glyph-y-pixel, event- . 269

glyphp . 565

glyphs . 565

goto-char . 442

goto-line. 444

grab-keyboard, x- . 646

grab-pointer, x- . 646

grabbed-buffer, mouse- . 292

graphic, charset- . 667

grouping, regexp . 499

748 XEmacs Lisp Reference Manual

H
h, C- . 289

hack-local-variables. 334

handler, error . 125

handler, find-file-name- . 377

handlers, inhibit-file-name- . 377

handling errors . 125

hard link, file . 366

hard-newlines, use- . 477

hash notation . 13

hash table . 601

hash table type . 25

hash table, weak . 602

hashing . 103

hashing, locate-file-clear-. 179

hashing, symbol name . 103

hashtable, copy-. 601

hashtable, make- . 601

hashtable, make-key-weak- . 602

hashtable, make-value-weak- 602

hashtable, make-weak- . 602

hashtable-fullness . 601

hashtablep . 601

header comments . 690

header comments, library . 690

height, bottom-toolbar- . 320

height, default-toolbar- . 320

height, frame- . 428

height, frame-pixel- . 428

height, glyph- . 569

height, image-instance- . 575

height, top-toolbar- . 320

height, window- . 420

height, window-displayed-text-pixel- 421

height, window-min- . 423

height, window-pixel- . 420

height, window-text-area-pixel- 421

height-threshold, split- . 412

help for major mode. 334

help, completion-auto- . 246

help, Helper-. 352

help, minibuffer-completion- 245

help, mode . 334

help-char . 351

help-command . 351

help-command, prefix- . 351

help-form . 351

help-form, minibuffer- . 253

help-map . 351, 709

help-map, Helper- . 709

help-return-message, print- . 351

Helper-describe-bindings . 352

Helper-help . 352

Helper-help-map . 709

hexadecimal, integer to . 63

hide-annotation . 581

highest-p, window- . 421

highlight-extent . 540

highlight-extent, force- . 540

highlight-priority, mouse- . 540

history list. 240

history of commands . 283

history, command . 283

history, command- . 283

history, extended-command- 241

history, file-name- . 241

history, Info-minibuffer- . 241

history, Lisp . 8

history, load- . 185

history, Manual-page-minibuffer- 241

history, minibuffer . 240

history, minibuffer- . 241

history, query-replace- . 241

history, read-expression- . 241

history, record command . 260

history, regexp- . 241

history, shell-command- . 241

history-element, next- . 252

history-element, next-matching- 253

history-element, previous- . 252

history-element, previous-matching- 252

history-map, command- . 709

history-map, electric- . 709

HOME environment variable 607

home-directory, user- . 632

hook, activate-menubar- . 309

hook, activate-popup-menu- . 312

hook, add- . 343

hook, after-init- . 625

hook, after-revert- . 390

hook, after-save- . 359

hook, auto-save- . 389

hook, before-init-. 625

hook, before-revert- . 390

hook, blink-paren-. 594

hook, change-major-mode- . 329

hook, create-device- . 439

hook, create-frame- . 435

hook, default-deselect-frame- 434

hook, default-select-frame- . 434

hook, delete-device- . 439

hook, delete-frame- . 435

hook, deselect-frame- . 435

hook, disabled-command- . 283

hook, edebug-setup- . 223

hook, first-change- . 494

hook, kill-buffer- . 401

Index 749

hook, kill-emacs- . 627

hook, lambda expression in . 342

hook, major mode . 328

hook, make-local- . 344

hook, map-frame- . 435

hook, menu-no-selection-. 309

hook, minibuffer-exit- . 253

hook, minibuffer-setup- . 253

hook, mode . 328

hook, post-command- . 255

hook, post-gc- . 698

hook, pre-abbrev-expand- . 526

hook, pre-command- . 255

hook, pre-gc- . 698

hook, remove-. 343

hook, select-frame- . 435

hook, suspend- . 628

hook, suspend-resume- . 628

hook, term-setup- . 625

hook, unmap-frame- . 435

hook, window-setup- . 625

hook, zmacs-activate-region- 461

hook, zmacs-deactivate-region- 461

hook, zmacs-update-region- . 462

hooks . 342

hooks for loading . 185

hooks for text changes . 494

hooks, annotation . 583

hooks, change . 494

hooks, find-file- . 356

hooks, find-file-not-found- . 357

hooks, frame . 435

hooks, loading . 185

hooks, local-write-file- . 358

hooks, run- . 343

hooks, write-contents- . 359

hooks, write-file- . 358

horizontal position . 482

horizontal scrolling . 418

horizontal-space, delete- . 468

horizontally, enlarge-window- 422

horizontally, shrink-window- 422

horizontally, split-window- . 406

host, ldap- . 657

host, ldap-default-. 655

host-address, mail- . 630

host-parameters-alist, ldap- . 655

hotspot-x, image-instance- . 576

hotspot-y, image-instance- . 576

hscroll, set-window- . 419

hscroll, window- . 419

hscroll-glyph . 578

I
icon-glyph, make- . 565

icon-glyph-p . 577

icon-pixmap, x-set-frame- . 429

icon-title-format, frame- . 429

iconified frame . 433

iconified-p, frame- . 433

iconify-frame . 433

id, process- . 613

id, x-window- . 647

identification, modeline-buffer- 339

identity . 154

IEEE floating point . 42

if . 118

if-buffer-read-only, barf- . 397

if-necessary, delete-auto-save-file- 389

ignore . 154

ignore-case, completion- . 243

ignore-comments, parse-sexp- 520

ignore-elc-files, load- . 179

ignore-errors-p, byte-recompile-directory- 189

ignore-labels, log-message- . 588

ignore-regexps, log-message- 588

ignored-errors, debug- . 198

ignored-extensions, completion- 374

ignored-local-variables . 333

image instance type . 31

image instance types . 574

image instances . 573

image instantiator conversion 573

image instantiators, conversion of 573

image specifiers . 570

image, glyph- . 568

image, set-glyph- . 568

image-conversion-list, console-type- 573

image-conversion-list, set-console-type- 573

image-instance, colorize- . 575

image-instance, glyph- . 568

image-instance, make- . 575

image-instance-background . 576

image-instance-depth . 575

image-instance-file-name . 575

image-instance-foreground . 576

image-instance-height . 575

image-instance-hotspot-x . 576

image-instance-hotspot-y . 576

image-instance-mask-file-name 575

image-instance-name . 575

image-instance-p . 573

image-instance-p, color-pixmap- 574

image-instance-p, mono-pixmap- 574

image-instance-p, nothing- . 574

image-instance-p, pointer- . 574

750 XEmacs Lisp Reference Manual

image-instance-p, subwindow- 574

image-instance-p, text- . 574

image-instance-string . 575

image-instance-type . 574

image-instance-type-list . 574

image-instance-type-p, valid- 574

image-instance-width . 576

image-instantiator-format-list 572

image-instantiator-format-p, valid- 572

image-specifier, make- . 570

image-specifier-p . 545, 570

implicit progn . 117

inc . 161

include-escapes, words- . 443

inclusive or, logical . 51

indent, fill-individual-varying- 477

indent, newline-and- . 484

indent, reindent-then-newline-and-. 484

indent-according-to-mode . 484

indent-code-rigidly . 485

indent-for-tab-command . 484

indent-line-function . 483

indent-region . 484

indent-region-function . 484

indent-relative . 485

indent-relative-maybe . 485

indent-rigidly . 485

indent-tabs-mode . 483

indent-to . 483

indent-to-left-margin . 479

indentation . 483

indentation, back-to- . 486

indentation, backward-to- . 486

indentation, current- . 483

indentation, delete- . 469

indentation, forward-to- . 486

indentation, tabs stops for . 486

indenting with parentheses . 520

indirect buffers . 401

indirect specifications . 220

indirect variables . 145

indirect, variables, . 145

indirect-buffer, make- . 401

indirect-function . 113

indirect-variable. 146

indirection . 112

indirection, symbol function. 112

individual-paragraphs, fill- . 476

individual-varying-indent, fill- 477

infinite loop, quitting from . 198

infinite loop, stopping an . 198

infinite loops . 198

infinite recursion . 133

infinite, loops, . 198

infinity . 42

infinity, negative . 42

infinity, positive . 42

Info-edit-map . 709

Info-minibuffer-history . 241

Info-mode-map . 710

information, saving window . 423

inherit . 516

inheritance, keymap . 286

inheriting a keymap’s bindings 286

inhibit-default-init . 624

inhibit-file-name-handlers . 377

inhibit-file-name-operation . 377

inhibit-quit . 279

inhibit-read-only . 397

inhibit-startup-echo-area-message 624

inhibit-startup-message . 624

inhibited, backup- . 384

init file . 624

init file, default . 624

init, inhibit-default- . 624

init, make-specifier-and- . 552

init-hook, after- . 625

init-hook, before-. 625

init.el, site- . 694

initial-frame-plist . 426

initial-major-mode . 333

initial-mode, edebug- . 224

initial-redisplay-function, set-extent- 538

initial-toolbar-spec . 321

initialization . 623

initialization, terminal-specific 625

inline functions . 158

innermost containing parentheses 519

input events . 263

input events, translating . 637

input focus . 432

input modes . 636

input modes, terminal . 636

input stream . 227

input stream, buffer . 227

input stream, function . 228

input stream, marker . 227

input stream, nil . 228

input stream, string . 227

input stream, t . 228

input, binary-process- . 610

input, console-disable- . 440

input, console-enable- . 440

input, discard . 277

input, discard- . 277

input, flush . 277

input, key sequence . 273

input, minibuffer . 281

Index 751

input, next . 276

input, octal character. 275

input, peeking at . 276

input, process . 614

input, quoted character . 275

input, read-no-blanks- . 239

input, standard- . 230

input, terminal. 636

input, waiting for command key 276

input-char, last- . 277

input-event, last- . 276

input-mode, current- . 636

input-mode, set- . 636

input-p, waiting-for-user- . 620

input-pending-p . 276

insert . 466

insert suppression, quoted- . 299

insert-abbrev-table-description 524

insert-and-exit, self- . 252

insert-before-markers . 466

insert-buffer . 466

insert-buffer-substring . 466

insert-char . 466

insert-command override, self- 299

insert-command, minor modes, self- 337

insert-command, self- . 467

insert-default-directory . 248

insert-directory . 375

insert-directory-program . 375

insert-extent . 538

insert-file, format- . 379, 380

insert-file-contents . 359

insert-file-contents-function, revert-buffer- 390

insert-file-functions, after- . 492

insert-register . 493

insert-string . 466

inserting killed text . 471

insertion before point . 465

insertion of text . 465

insertion, before point, . 465

insertion, character . 467

insertion, self- . 467

insertion, text . 465

inside comment . 519

inside margin . 579

inside string . 519

inst-list (in a specifier) . 541

inst-list, canonicalize- . 547

inst-list, check-valid- . 553

inst-list, specifier, . 541

inst-list, specifier-instance-from- 550

inst-list-p, valid- . 552

inst-pair (in a specifier) . 541

inst-pair, canonicalize- . 547

inst-pair, specifier, . 541

installation-directory . 631

instance (in a specifier) . 541

instance characteristics, font 562

instance name, font . 561

instance size, font . 561

instance type, color . 31

instance type, font . 31

instance type, image . 31

instance types, image . 574

instance, colorize-image- . 575

instance, face-background- . 560

instance, face-background-pixmap- 560

instance, face-font- . 560

instance, face-foreground- . 560

instance, face-property- . 558

instance, glyph-baseline- . 569

instance, glyph-contrib-p- . 568

instance, glyph-image- . 568

instance, glyph-property- . 567

instance, make-font- . 561

instance, make-image- . 575

instance, specifier, . 541

instance, specifier- . 550

instance-background, image- 576

instance-depth, image- . 575

instance-file-name, image-. 575

instance-foreground, image- . 576

instance-from-inst-list, specifier- 550

instance-height, image- . 575

instance-hotspot-x, image- . 576

instance-hotspot-y, image- . 576

instance-mask-file-name, image- 575

instance-name, color- . 563

instance-name, font- . 561

instance-name, image- . 575

instance-p, color- . 563

instance-p, color-pixmap-image- 574

instance-p, font- . 560

instance-p, image- . 573

instance-p, mono-pixmap-image- 574

instance-p, nothing-image- . 574

instance-p, pointer-image- . 574

instance-p, subwindow-image- 574

instance-p, text-image- . 574

instance-properties, font- . 562

instance-rgb-components, color- 563

instance-string, image- . 575

instance-truename, font- . 561

instance-type, image- . 574

instance-type-list, image- . 574

instance-type-p, valid-image- 574

instance-width, image- . 576

instances, characteristics of font 562

752 XEmacs Lisp Reference Manual

instances, color . 563

instances, image . 573

instancing (in a specifier) . 541

instancing, specifier, . 541

instantiator (in a specifier) . 541

instantiator conversion, image 573

instantiator, check-valid- . 553

instantiator, specifier, . 541

instantiator-format-list, image- 572

instantiator-format-p, valid-image- 572

instantiator-p, valid- . 552

instantiators, conversion of image 573

instructions, compiled-function- 193

int confoundance disease, char- 16

int, char- . 58

int, string-to- . 62

int-char . 58

int-p, char- . 58

int-p, char-or-char- . 58

int-to-string . 61

integer to decimal . 61

integer to hexadecimal . 63

integer to octal . 63

integer to string . 61

integer-char-or-marker-p . 454

integer-or-char-p . 58

integer-or-marker-p . 454

integer-specifier-p . 544

integerp . 42

integers . 41

integers vrs eq, CL note— . 43

interaction-mode-map, lisp- . 710

interactive . 256

interactive arguments, reading 258

interactive call . 260

interactive code description . 257

interactive codes, characters for 257

interactive codes, description for 257

interactive commands (Edebug) 208

interactive completion . 257

interactive function. 256

interactive, * in . 257

interactive, @ in . 257

interactive, in . 257

interactive, compiled-function- 193

interactive, description of, codes, 257

interactive, examples of using 259

interactive, function- . 257

interactive, functions, making them 256

interactive, read-only buffers in. 257

interactive-p . 261

interactively, call- . 260

intern . 104

intern-soft . 104

internal, describe-bindings- . 302

internal, ldap-search- . 658

internal, make-glyph- . 565

internal, where-is- . 302

internal-doc-file-name . 347

internals, syntax table . 521

interning . 103

interpreter . 109

interpreter, byte-code. 189

interpreter-mode-alist . 334

interprogram-cut-function. 473

interprogram-paste-function . 472

interrupt-process . 615

interval, auto-save- . 388

invalid function . 113

invalid prefix key error . 296

invalid-function . 113

invalid-read-syntax . 13

invalid-regexp . 501

invert-face . 560

invisibility-spec, buffer- . 590

invisible frame . 433

invisible text . 590

invisible, make-frame- . 433

invisible-text-glyph . 578

invocation, function . 153

invocation-directory . 630

invocation-name . 630

is-internal, where- . 302

isearch-map, minibuffer-local- 710

isearch-mode-map . 710

ISO Latin 1. 68

ISO Latin-1 characters (input) 638

iso-syntax . 68

iso-transl . 638

italic . 562

italic, x-make-font- . 562

italic, x-make-font-bold- . 562

item, add-menu- . 310

item, delete-menu- . 310

item, disable-menu- . 310

item, enable-menu- . 310

item, find-menu- . 310

item, relabel-menu-. 310

iteration . 121

itimer-edit-map . 710

J
jis-char, decode-shift- . 677

jis-char, encode-shift- . 677

joining lists . 81

just-one-space . 470

justification, current- . 477

Index 753

justification, default- . 477

justify-current-line . 477

K
kbd-macro, defining- . 284

kbd-macro, edebug-continue- 225

kbd-macro, execute- . 283

kbd-macro, last- . 284

kept-new-versions . 385

kept-old-versions . 385

kept-versions, dired- . 385

key . 285

key binding . 285

key bindings, changing . 296

key error, invalid prefix . 296

key input, waiting for command 276

key lookup . 293

key sequence . 273

key sequence error . 296

key sequence input . 273

key sequence, upper case . 274

key sequences . 287

key translation function . 637

key, binding of a . 285

key, complete . 285

key, define- . 296

key, downcasing in lookup- . 274

key, event- . 270

key, global-set- . 300

key, global-unset- . 300

key, local-set- . 300

key, local-unset- . 300

key, lookup- . 294

key, prefix . 289

key, preventing prefix . 294

key, undefined . 285

key-binding . 295

key-binding, global- . 295

key-binding, local- . 295

key-binding, minor-mode- . 295

key-definition, substitute- . 298

key-description . 349

key-description, single- . 349

key-map, function- . 637

key-press-event-p . 266

key-sequence, read- . 273

key-specifier-p, event-matches- 288

key-translation-map . 637

key-weak-hashtable, make- . 602

keybindings, menubar-show- 309

keyboard macro execution . 260

keyboard macro termination 597

keyboard macro, terminate . 277

keyboard macros . 283

keyboard macros (Edebug). 209

keyboard menu accelerators . 312

keyboard, x-grab- . 646

keyboard, x-ungrab- . 646

keyboard-quit . 279

keymap . 285

keymap entry . 293

keymap format. 285

keymap in keymap . 293

keymap inheritance . 286

keymap parent . 286

keymap’s bindings, inheriting a. 286

keymap, active . 290

keymap, command in . 293

keymap, copy- . 286

keymap, extent- . 537

keymap, global . 290

keymap, keymap in. 293

keymap, lambda in . 293

keymap, list in . 293

keymap, local . 290

keymap, major mode . 290

keymap, make- . 286

keymap, make-sparse- . 286

keymap, map- . 301

keymap, nil in . 293

keymap, parent of a . 286

keymap, set-extent- . 537

keymap, string in . 293

keymap, suppress- . 299

keymap, symbol in . 294

keymap, undefined in . 294

keymap-default-binding . 287

keymap-default-binding, set- 287

keymap-fullness . 302

keymap-name . 286

keymap-name, set- . 286

keymap-parents . 287

keymap-parents, set- . 287

keymap-prompt . 303

keymap-prompt, set- . 303

keymapp . 286

keymaps in modes . 328

keymaps, accessible- . 300

keymaps, creating . 286

keymaps, current- . 291

keymaps, format of . 285

keys in documentation strings 348

keys in documentation, substituting 348

keys in, documentation, . 348

keys, events-to- . 273

keys, recent- . 638

keys, substitute-command- . 348

754 XEmacs Lisp Reference Manual

keys, this-command- . 262

keys, unbinding . 300

keys-ring-size, recent- . 638

keys-ring-size, set-recent- . 638

keystroke . 285

keystroke command . 148

keystrokes, echo- . 263, 588

keysym-name-p, x-valid- . 646

keywordp . 220

keywordp, lambda-list- . 220

kill command repetition . 262

kill ring . 470

kill, copy-region-as- . 471

kill, current- . 472

kill-all-local-variables . 144

kill-append . 472

kill-buffer . 400

kill-buffer-hook . 401

kill-buffer-query-functions . 401

kill-emacs . 627

kill-emacs-hook . 627

kill-emacs-query-functions . 627

kill-local-variable . 143

kill-new . 472

kill-process . 615

kill-region . 471

kill-ring . 473

kill-ring-max . 473

kill-ring-yank-pointer . 473

kill-without-query, process- . 612

kill-without-query-p, process- 613

killed text, inserting . 471

killing buffers . 400

killing XEmacs . 627

killing, buffers, . 400

killing, deletion vs . 467

L
labels, log-message-ignore- . 588

lack union, set, CL note— . 83

lambda expression . 148

lambda expression in hook . 342

lambda expressions (Edebug), anonymous 208

lambda in debug . 202

lambda in keymap . 293

lambda list . 148

lambda-list (Edebug) . 220

lambda-list-keywordp . 220

larger-font, x-find-. 561

largest-window, get- . 408

last-abbrev . 526

last-abbrev-location . 526

last-abbrev-text . 526

last-command . 262

last-command-char . 263

last-command-event . 262

last-error, database- . 606

last-input-char . 277

last-input-event . 276

last-kbd-macro . 284

Latin 1, ISO . 68

Latin-1 character set (input) 638

Latin-1 characters (input), ISO 638

lax-plist, canonicalize- . 90

lax-plist-get . 90

lax-plist-member . 90

lax-plist-put . 90

lax-plist-remprop . 90

lax-plists-eq . 90

lax-plists-equal . 90

layout policy . 580

layout types . 579

layout, annotation- . 581

layout, extent-begin-glyph-. 537

layout, extent-end-glyph- . 537

layout, screen . 29

layout, set-annotation-. 581

layout, set-extent-begin-glyph- 537

layout, set-extent-end-glyph- 537

lazy loading . 190

LDAP . 655

ldap-close . 657

ldap-default-base . 655

ldap-default-host . 655

ldap-default-port . 655

ldap-host . 657

ldap-host-parameters-alist . 655

ldap-live-p . 657

ldap-open . 657

ldap-search . 656

ldap-search-internal . 658

ldapp . 656

left, scroll- . 418

left-margin . 479

left-margin, current- . 478

left-margin, delete-to- . 479

left-margin, indent-to- . 479

left-margin, move-to- . 478

left-margin, set- . 478

left-margin-pixel-width, window- 582

left-margin-width . 582

left-overflow, use- . 582

left-toolbar . 319

left-toolbar-visible-p . 321

left-toolbar-width . 320

length . 94

length extent, zero-. 530

Index 755

length, bit vector . 94

length, edebug-print- . 215, 225

length, extent- . 531

length, list . 94

length, maximum when printing, string 234

length, print- . 234

length, print-string- . 234

length, sequence . 94

length, string . 94

length, vector . 94

lessp, string- . 60

let . 132

let* . 132

let-specifier . 546

letters, CL note—case of . 19

level form, top- . 177

level, display-warning-minimum- 590

level, edebug-print- . 215, 225

level, log-warning-minimum- 590

level, print- . 234

level, recursive editing . 281

level, top- . 282

level-form, edebug-eval-top- . 207

lexical binding (Edebug) . 213

lexical comparison . 59

library . 177

library compilation . 189

library header comments . 690

library, Lisp . 177

library-search-path, x- . 646

limit error, variable . 133

limit, memory- . 698

limit, undo- . 476

limit, undo-strong- . 476

limits, printing . 234

line arguments, command . 626

line in regexp, beginning of . 498

line options, command . 626

line wrapping . 586

line, beginning of. 444

line, beginning-of- . 444

line, command- . 626

line, end-of-. 444

line, format-buffers-menu- . 314

line, forward- . 444

line, goto- . 444

line, justify-current- . 477

line, move-to-window- . 446

line, options on command . 626

line, split- . 467

line, switches on command . 626

line, window top . 415

line-args, command- . 626

line-function, indent- . 483

line-functions, command- . 626

line-processed, command- . 626

lines . 444

lines in region . 445

lines, continuation . 586

lines, count- . 445

lines, default-truncate-. 586

lines, delete-blank- . 470

lines, display . 428

lines, next-screen-context- . 418

lines, sort- . 481

lines, truncate- . 586

link, file hard . 366

link, make-symbolic- . 368

linked, backup-by-copying-when- 384

linking files . 366

links, file symbolic . 363

Lisp (Edebug), Common . 208

Lisp debugger. 197

Lisp expression motion . 446

Lisp history . 8

Lisp library . 177

Lisp nesting error . 110

Lisp object . 13

Lisp printer . 232

Lisp reader . 227

Lisp, Common . 8

lisp-eval-depth, max- . 110

lisp-interaction-mode-map . 710

lisp-mode-abbrev-table . 527

lisp-mode-map . 710

lisp-mode-map, emacs- . 709

lisp-mode-map, shared- . 710

lisp-mode-syntax-table, emacs- 521

lisp-mode.el . 330

list . 71, 76

list (Edebug), evaluation . 213

list (Edebug), lambda- . 220

list (in a specifier), inst- . 541

list cell (symbol), property . 101

list elements . 73

list form evaluation. 112

list in keymap . 293

list length . 94

list motion . 446

list structure . 71

list type, weak . 26

list), element (of . 71

list, abbrev-table-name- . 524

list, add-to- . 138

list, annotation- . 582

list, association . 85

list, backward- . 446

list, buffer . 398

756 XEmacs Lisp Reference Manual

list, buffer- . 398

list, buffer-undo- . 474

list, canonicalize-inst- . 547

list, canonicalize-spec- . 547

list, char-table-type- . 69

list, charset- . 666

list, check-valid-inst- . 553

list, check-valid-spec- . 553

list, coding-category- . 676

list, coding-priority- . 676

list, coding-system- . 675

list, console- . 437

list, console-device- . 437

list, console-type-image-conversion- 573

list, debugger command . 200

list, device- . 438

list, device-frame- . 430, 438

list, device-matching-specifier-tag- 549

list, display-completion- . 245

list, down- . 446

list, Edebug specification . 218

list, empty . 20

list, extent- . 531

list, face- . 556

list, forward- . 446

list, frame- . 430

list, free . 696

list, glyph-type- . 576

list, history . 240

list, image-instance-type- . 574

list, image-instantiator-format- 572

list, lambda . 148

list, make- . 76

list, make-weak- . 91

list, membership in a . 84

list, process- . 612

list, property . 88

list, reversing a . 82

list, set-coding-priority- . 676

list, set-console-type-image-conversion- 573

list, set-weak-list- . 92

list, specifier, inst- . 541

list, specifier-instance-from-inst- 550

list, specifier-spec-. 548

list, specifier-tag- . 549

list, symbol, property . 105

list, tab-stop- . 486

list, toolbar-make-button- . 318

list, up- . 446

list, visible-frame- . 430

list, weak . 91

list, weak-list- . 92

list-buffers . 399

list-buffers-directory . 395

list-file-name, auto-save- . 389

list-fonts . 561

list-keywordp, lambda- . 220

list-list, set-weak- . 92

list-list, weak- . 92

list-p, valid-inst- . 552

list-p, valid-spec- . 553

list-p, weak- . 91

list-processes. 612

list-to-specifier, add-spec- . 546

list-type, weak- . 92

listp . 72

lists (Edebug), dotted . 221

lists and cons cells . 71

lists as sets . 83

lists represented as boxes . 71

lists vs association lists, property 105

lists, . in . 21

lists, box diagrams, for . 20

lists, box representation for . 71

lists, building . 76

lists, concatenating . 81

lists, copying . 77

lists, diagrams, boxed, for . 20

lists, joining . 81

lists, modification of . 81

lists, nil and . 71

lists, nil in . 20

lists, property lists vs association 105

lists, rearrangement of . 81

lists, scan- . 520

lists, sorting . 83

literal evaluation . 111

live-p, buffer- . 400

live-p, console- . 439

live-p, database- . 605

live-p, device- . 439

live-p, event- . 267

live-p, extent- . 530

live-p, frame- . 430

live-p, ldap- . 657

live-p, window- . 406

lmessage . 587

ln . 368

load . 177

load error with require . 182

load errors . 177

load-alist, after- . 185

load-average . 631

load-default-sounds . 599

load-history . 185

load-ignore-elc-files . 179

load-in-progress . 179

load-path . 178

Index 757

load-read-function . 179

load-sound-file . 599

load-warn-when-source-newer 179

load-warn-when-source-only . 179

load.el, site- . 693

loading . 177

loading hooks . 185

loading of documentation, dynamic 190

loading of functions, dynamic 190

loading, hooks for . 185

loading, lazy . 190

loading, mode. 329

loading, repeated . 181

loadup.el . 693

local binding . 132

local keymap . 290

local variable, permanent . 144

local variables . 132

local variables in modes, buffer- 328

local variables, binding . 132

local variables, buffer- . 141

local, automatically buffer-. 142

local, CL note—set . 138

local, make-variable-buffer- . 143

local, variables, buffer-. 141

local-abbrev-table . 527

local-completion-map, minibuffer- 244, 710

local-copy, file- . 377

local-eval, enable- . 333

local-hook, make- . 344

local-isearch-map, minibuffer- 710

local-key-binding . 295

local-map, current- . 291

local-map, minibuffer- . 238, 710

local-map, overriding- . 292, 710

local-map, overriding-terminal- 293

local-map, use- . 292

local-must-match-map, minibuffer- 244, 710

local-ns-map, minibuffer- . 239

local-set-key . 300

local-unset-key . 300

local-variable, kill- . 143

local-variable, make- . 142

local-variable-p . 143

local-variables, buffer- . 143

local-variables, enable- . 332

local-variables, hack- . 334

local-variables, ignored- . 333

local-variables, kill-all- . 144

local-write-file-hooks . 358

locale (in a specifier) . 541

locale, specifier, . 541

locale, specifier-locale-type-from- 554

locale-p, valid-specifier- . 552

locale-type-from-locale, specifier- 554

locale-type-p, valid-specifier- 552

locate-file . 178

locate-file-clear-hashing . 179

locating, extents, . 531

location, abbrev-start- . 526

location, last-abbrev- . 526

location-buffer, abbrev-start- 526

lock, ask-user-about- . 361

lock-buffer . 361

locked, file- . 361

locked-p, file- . 361

locks, file . 361

log . 52

log-message-ignore-labels . 588

log-message-ignore-regexps . 588

log-message-max-size . 588

log-warning-minimum-level . 590

log-warning-suppressed-classes 590

log10 . 52

logand . 50

logb . 42

logical and . 50

logical exclusive or . 51

logical inclusive or . 51

logical not . 51

logical shift . 48

logical-name, define- . 368

login, ftp- . 129

login-name, user- . 631, 632

login-name, user-real- . 632

logior . 51

lognot . 51

logxor . 51

looking-at . 504

looking-at, posix- . 505

lookup, key . 293

lookup-key . 294

lookup-key, downcasing in . 274

loop, command . 255

loop, count-. 11

loop, editor command . 255

loop, quitting from infinite . 198

loop, recursive command. 281

loop, recursive, command . 281

loop, stopping an infinite . 198

loops, infinite . 198

lower case . 65

lower-frame . 434

lower-frame, auto- . 434

lowering a frame . 434

lowest-p, window- . 421

lru-window, get- . 408

lsh . 48

758 XEmacs Lisp Reference Manual

lwarn . 589

M
M-x . 261

M-x, C- . 207

Maclisp . 8

macro . 147

macro argument evaluation . 165

macro call . 161

macro call evaluation . 114

macro compilation . 188

macro descriptions . 10

macro execution, keyboard . 260

macro expansion . 161

macro termination, keyboard 597

macro, defining-kbd- . 284

macro, edebug-continue-kbd- 225

macro, execute-kbd- . 283

macro, executing- . 284

macro, last-kbd- . 284

macro, terminate keyboard . 277

macroexpand . 161

macros . 161

macros (Edebug), keyboard . 209

macros, byte-compiling . 162

macros, expansion of . 161

macros, keyboard . 283

magic file names . 375

mail-address, user- . 631

mail-host-address . 630

major mode . 327

major mode hook . 328

major mode keymap. 290

major mode, documentation for 334

major mode, help for . 334

major-mode . 335

major-mode, default- . 333

major-mode, initial- . 333

major-mode, set-buffer- . 333

major-mode-hook, change- . 329

major-version, emacs- . 694

make them, backup files, how to 384

make-abbrev-table . 523

make-annotation . 580

make-auto-save-file-name . 388

make-backup-file-name . 386

make-backup-files . 383

make-bit-vector . 100

make-button-list, toolbar- . 318

make-byte-code . 192

make-char . 669

make-char-table . 69

make-charset . 666

make-coding-system . 675

make-composite-char . 669

make-device . 439

make-directory . 375

make-display-table . 596

make-event . 270

make-extent . 530

make-face . 556

make-file-part . 378

make-font-bold, x- . 562

make-font-bold-italic, x- . 562

make-font-instance . 561

make-font-italic, x- . 562

make-font-unbold, x- . 562

make-font-unitalic, x- . 562

make-frame . 425

make-frame-invisible. 433

make-frame-visible . 433

make-glyph . 565

make-glyph-internal . 565

make-hashtable . 601

make-icon-glyph . 565

make-image-instance . 575

make-image-specifier . 570

make-indirect-buffer . 401

make-key-weak-hashtable . 602

make-keymap . 286

make-list . 76

make-local-hook. 344

make-local-variable . 142

make-marker . 455

make-obsolete . 352

make-obsolete-variable . 352

make-pointer-glyph . 565

make-range-table . 603

make-reverse-direction-charset 666

make-sparse-keymap . 286

make-specifier . 551

make-specifier-and-init. 552

make-string . 56

make-symbol . 104

make-symbolic-link . 368

make-syntax-table . 517

make-temp-name . 373

make-tooltalk-message . 650

make-tooltalk-pattern . 652

make-tty-device . 439

make-value-weak-hashtable . 602

make-variable-buffer-local . 143

make-vector . 98

make-weak-hashtable . 602

make-weak-list . 91

make-x-device . 439

making them interactive, functions, 256

Index 759

makunbound . 133

Manual-page-minibuffer-history 241

map, bookmark- . 709

map, Buffer-menu-mode- . 709

map, c-mode- . 709

map, c++-mode- . 709

map, command-history- . 709

map, ctl-x- . 289, 709

map, ctl-x-4- . 289, 709

map, ctl-x-5- . 289, 709

map, current-global- . 291

map, current-local- . 291

map, debugger-mode- . 709

map, dired-mode- . 709

map, edit-abbrevs- . 709

map, edit-tab-stops- . 709

map, electric-buffer-menu-mode- 709

map, electric-future- . 11

map, electric-history- . 709

map, emacs-lisp-mode- . 709

map, esc- . 289

map, function-key- . 637

map, global- . 291

map, help- . 351, 709

map, Helper-help- . 709

map, Info-edit- . 709

map, Info-mode- . 710

map, isearch-mode-. 710

map, itimer-edit- . 710

map, key-translation- . 637

map, lisp-interaction-mode- . 710

map, lisp-mode- . 710

map, menu-accelerator- . 313

map, minibuffer-local- . 238, 710

map, minibuffer-local-completion- 244, 710

map, minibuffer-local-isearch- 710

map, minibuffer-local-must-match- 244, 710

map, minibuffer-local-ns- . 239

map, mode-specific- . 289, 710

map, modeline- . 292, 710

map, objc-mode- . 710

map, occur-mode- . 710

map, overriding-local- . 292, 710

map, overriding-terminal-local- 293

map, query-replace- . 505, 710

map, read-expression- . 710

map, read-shell-command- . 710

map, shared-lisp-mode- . 710

map, text-mode- . 710

map, toolbar- . 292, 710

map, use-global- . 292

map, use-local- . 292

map, view-mode- . 710

map-alist, minor-mode- . 292

map-char-table . 69

map-database . 605

map-extent-children . 534

map-extents . 532

map-frame-hook . 435

map-keymap . 301

map-range-table . 603

map-specifier . 554

map-y-or-n-p . 251

mapatoms . 105

mapcar . 154

mapcar-extents . 534

mapconcat . 155

maphash . 602

mapping functions . 154

mapping, extents, . 532

maps, current-minor-mode- . 292

margin . 579

margin width . 582

margin, current-left- . 478

margin, delete-to-left- . 479

margin, indent-to-left- . 479

margin, inside . 579

margin, left- . 479

margin, move-to-left- . 478

margin, outside . 579

margin, set-left- . 478

margin, set-right- . 478

margin-pixel-width, window-left- 582

margin-pixel-width, window-right- 582

margin-width, left- . 582

margin-width, right- . 582

mark . 458

mark (Edebug), current buffer point and 217

mark excursion . 448

mark in character constant, question 18

mark ring . 457

mark ring, global . 457

mark, abbrev-prefix-. 526

mark, current buffer . 458

mark, exchange-point-and- . 459

mark, pop- . 459

mark, pop-global- . 460

mark, process- . 616

mark, push- . 459

mark, set- . 459

mark, the . 457

mark-marker . 458

mark-ring . 459

mark-ring, global- . 460

mark-ring-max . 460

marker argument . 258

marker garbage collection . 453

marker input stream . 227

760 XEmacs Lisp Reference Manual

marker output stream . 230

marker relocation . 453

marker, copy- . 456

marker, end of buffer . 455

marker, make- . 455

marker, mark- . 458

marker, move- . 457

marker, point- . 455

marker, point-max- . 455

marker, point-min- . 455

marker, set- . 457

marker-buffer . 456

marker-p, integer-char-or- . 454

marker-p, integer-or- . 454

marker-p, number-char-or- . 455

marker-p, number-or- . 455

marker-position . 456

markerp . 454

markers . 453

markers as numbers . 453

markers vs. extents . 453

markers, insert-before- . 466

mask-file-name, image-instance- 575

match data . 506

match, posix-string- . 505

match, replace- . 508

match, string- . 503

match-beginning . 507

match-data . 508

match-data, save- . 509

match-data, set- . 509

match-data, store-. 509

match-end . 507

match-map, minibuffer-local-must- 244, 710

match-string . 506

matches-key-specifier-p, event- 288

matches-specifier-tag-set-p, device- 549

matching, parenthesis . 594

matching-history-element, next- 253

matching-history-element, previous- 252

matching-open, blink- . 595

matching-paren, blink- . 594

matching-paren-delay, blink- 595

matching-paren-distance, blink- 594

matching-specifier-tag-list, device- 549

mathematical functions . 52

max . 44

max, kill-ring- . 473

max, mark-ring- . 460

max, point- . 441

max-lisp-eval-depth . 110

max-marker, point- . 455

max-size, buffers-menu- . 314

max-size, log-message- . 588

max-specpdl-size . 133

maximum when printing, string length, 234

maybe, indent-relative- . 485

maybe-dialog-box, y-or-n-p- . 251

maybe-dialog-box, yes-or-no-p- 251

member . 84

member, lax-plist- . 90

member, plist- . 89

membership in a list . 84

memory allocation . 695

memory-limit . 698

memq . 84

menu . 305

menu accelerators . 312

menu accelerators, keyboard 312

menu filters . 311

menu format . 305

menu, accelerate- . 313

menu, add- . 310

menu, annotation-. 581

menu, buffers . 314

menu, default-popup- . 312

menu, global-popup- . 312

menu, mode-popup- . 312

menu, pop-up . 311

menu, popup- . 311

menu, popup-buffer- . 312

menu, popup-menubar- . 312

menu, popup-mode- . 312

menu, set-annotation- . 581

menu-accelerator-enabled . 313

menu-accelerator-map . 313

menu-accelerator-modifiers . 314

menu-accelerator-prefix . 314

menu-button, add- . 309

menu-filter, buffers- . 311

menu-filter, edit- . 311

menu-filter, file- . 311

menu-hook, activate-popup- . 312

menu-item, add- . 310

menu-item, delete- . 310

menu-item, disable- . 310

menu-item, enable- . 310

menu-item, find- . 310

menu-item, relabel-. 310

menu-line, format-buffers- . 314

menu-max-size, buffers- . 314

menu-mode-map, Buffer- . 709

menu-mode-map, electric-buffer- 709

menu-no-selection-hook . 309

menu-p, complex-buffers- . 314

menu-switch-to-buffer-function, buffers- 314

menu-titles, popup- . 312

menu-up-p, popup- . 311

Index 761

menubar . 308

menubar format . 308

menubar, current- . 308

menubar, default- . 308

menubar, format of the . 308

menubar, set- . 308

menubar, set-buffer- . 308

menubar-configuration . 307

menubar-dirty-flag, set- . 308

menubar-hook, activate- . 309

menubar-menu, popup- . 312

menubar-pointer-glyph . 577

menubar-show-keybindings . 309

menus, format of . 305

message . 587

message notation, error . 9

message, clear- . 587

message, create-tooltalk- . 651

message, current- . 588

message, describe-tooltalk- . 653

message, destroy-tooltalk- . 651

message, display- . 587

message, gc- . 699

message, inhibit-startup-. 624

message, inhibit-startup-echo-area- 624

message, make-tooltalk- . 650

message, new file . 357

message, print-help-return- . 351

message, return-tooltalk- . 650

message, send-tooltalk- . 650

message, ToolTalk . 649

message-arg, add-tooltalk- . 651

message-attribute, get-tooltalk- 650

message-attribute, set-tooltalk- 651

message-ignore-labels, log- . 588

message-ignore-regexps, log- 588

message-max-size, log- . 588

messages, receiving ToolTalk 651

messages, sending ToolTalk . 649

meta character printing . 349

meta-prefix-char . 295

min . 44

min, point- . 441

min-height, window- . 423

min-marker, point- . 455

min-width, window- . 423

minibuffer . 237

minibuffer history . 240

minibuffer input . 281

minibuffer window . 408

minibuffer, ? in . 239

minibuffer, eval- . 239

minibuffer, exit- . 252

minibuffer, read- . 239

minibuffer, read-from- . 237

minibuffer, SPC in . 239

minibuffer, TAB in . 239

minibuffer-complete . 245

minibuffer-complete-and-exit 245

minibuffer-complete-word . 245

minibuffer-completion-confirm 245

minibuffer-completion-help . 245

minibuffer-completion-predicate 245

minibuffer-completion-table . 245

minibuffer-depth . 254

minibuffer-exit-hook . 253

minibuffer-frame, default- . 432

minibuffer-frame-plist . 426

minibuffer-help-form . 253

minibuffer-history . 241

minibuffer-history, Info- . 241

minibuffer-history, Manual-page- 241

minibuffer-local-completion-map 244, 710

minibuffer-local-isearch-map 710

minibuffer-local-map . 238, 710

minibuffer-local-must-match-map 244, 710

minibuffer-local-ns-map . 239

minibuffer-p, window- . 253

minibuffer-prompt. 253

minibuffer-prompt-width. 253

minibuffer-scroll-window . 253

minibuffer-setup-hook . 253

minibuffer-window . 253

minibuffer-window, active- . 253

minibuffer-window-active-p . 253

minibuffers, enable-recursive- 254

minimum window size . 423

minimum-level, display-warning- 590

minimum-level, log-warning- 590

minor mode . 335

minor mode conventions . 336

minor modes, conventions for writing 336

minor modes, self-insert-command, 337

minor-mode-alist . 339

minor-mode-key-binding . 295

minor-mode-map-alist . 292

minor-mode-maps, current- . 292

minor-version, emacs- . 695

misc-user-event-p . 267

mismatch, backup-by-copying-when- 385

mod . 47

mode . 327

mode conventions, minor . 336

mode help . 334

mode hook . 328

mode hook, major . 328

mode keymap, major . 290

mode loading . 329

762 XEmacs Lisp Reference Manual

mode modeline-format, Shell 338

mode specification error, file 332

mode variable . 336

mode, abbrev- . 523

mode, Auto Fill . 479

mode, auto-save- . 387

mode, batch . 641

mode, current-input- . 636

mode, default-abbrev- . 523

mode, default-major- . 333

mode, define-derived- . 335

mode, describe- . 334

mode, documentation for major 334

mode, Edebug . 206

mode, edebug-initial- . 224

mode, Fundamental . 327

mode, fundamental- . 332

mode, help for major . 334

mode, indent-according-to- . 484

mode, indent-tabs- . 483

mode, initial-major- . 333

mode, major . 327

mode, major- . 335

mode, minor . 335

mode, newline and Auto Fill 467

mode, normal- . 332

mode, Outline . 492

mode, overwrite- . 467

mode, set-auto- . 333

mode, set-buffer-major- . 333

mode, set-input- . 636

mode, vc-. 340

mode, visited file . 333

mode, x-debug- . 647

mode-abbrev-table, c- . 527

mode-abbrev-table, fundamental- 527

mode-abbrev-table, lisp- . 527

mode-abbrev-table, text-. 527

mode-alist, auto- . 333

mode-alist, interpreter- . 334

mode-alist, minor-. 339

mode-class property . 328

mode-hook, change-major- . 329

mode-key-binding, minor- . 295

mode-map, Buffer-menu- . 709

mode-map, c- . 709

mode-map, c++- . 709

mode-map, debugger- . 709

mode-map, dired- . 709

mode-map, electric-buffer-menu- 709

mode-map, emacs-lisp- . 709

mode-map, Info- . 710

mode-map, isearch-. 710

mode-map, lisp- . 710

mode-map, lisp-interaction- . 710

mode-map, objc- . 710

mode-map, occur- . 710

mode-map, shared-lisp- . 710

mode-map, text- . 710

mode-map, view- . 710

mode-map-alist, minor- . 292

mode-maps, current-minor- . 292

mode-menu, popup- . 312

mode-name . 339

mode-popup-menu . 312

mode-specific-map . 289, 710

mode-string, global- . 339

mode-syntax-table, c-. 521

mode-syntax-table, emacs-lisp- 521

mode-syntax-table, text- . 521

mode.el, lisp- . 330

modeline . 337

modeline construct . 337

modeline, percent symbol in 338

modeline, redraw- . 337

modeline-buffer-identification 339

modeline-format . 337

modeline-format, default- . 340

modeline-format, Shell mode 338

modeline-map . 292, 710

modeline-modified . 339

modeline-p, event-over- . 268

modeline-pointer-glyph . 577

modeline-process . 340

modes and MS-DOS, file . 368

modes of files, setting . 366

modes, abbrev tables in . 328

modes, buffer-local variables in 328

modes, conventions for writing minor 336

modes, default-file- . 368

modes, Edebug execution . 208

modes, file- . 364

modes, functions in . 328

modes, input . 636

modes, keymaps in . 328

modes, MS-DOS and file . 368

modes, self-insert-command, minor 337

modes, set-default-file- . 368

modes, set-file- . 368

modes, syntax tables in . 328

modes, terminal input . 636

modification flag (of buffer) . 395

modification of lists . 81

modification time, comparison of 396

modification time, file . 363

modification, buffer . 395

modified, modeline- . 339

modified, not-. 396

Index 763

modified-p, buffer- . 395

modified-p, set-buffer- . 395

modified-tick, buffer- . 396

modified-tick, string- . 62

modifier-bits, event- . 270

modifiers, event- . 270

modifiers, menu-accelerator- 314

modify-syntax-entry . 517

modifying, strings, . 62

modtime, clear-visited-file- . 396

modtime, set-visited-file- . 396

modtime, verify-visited-file- . 396

modtime, visited-file- . 396

modulus . 47

momentary-string-display . 593

mono-pixmap-image-instance-p 574

more storage, CL note—allocate 696

motion, Lisp expression . 446

motion, list . 446

motion, sexp . 446

motion, vertical- . 445

motion-event-p . 266

motion-pixels, vertical- . 445

mouse cursor . 577

mouse pointer . 577

mouse-event, current- . 263

mouse-event-p . 266

mouse-face, extent- . 537

mouse-face, set-extent- . 537

mouse-grabbed-buffer . 292

mouse-highlight-priority . 540

move-marker . 457

move-to-column . 482

move-to-left-margin . 478

move-to-window-line . 446

MS-DOS and file modes . 368

MS-DOS file types . 380

MS-DOS, file modes and . 368

MS-DOS, file types on . 380

MSWindows OLE . 325

multilingual string formatting 64

multiple names, file with . 366

multiple windows . 403

must-match-map, minibuffer-local- 244, 710

N
n, C-x . 289

n-p, map-y-or- . 251

n-p, y-or- . 249

n-p-maybe-dialog-box, y-or- . 251

name abbreviation, directory 370

name cell, print . 101

name completion subroutines, file 373

name hashing, symbol . 103

name of buffer, file . 394

name of directory, file . 370

name), directory part (of file 368

name), nondirectory part (of file. 368

name), version number (in file 368

name, abbrev-file- . 525

name, abbreviate-file- . 370

name, absolute file . 371

name, auto-save-list-file- . 389

name, auto-save-visited-file- . 388

name, buffer file. 394

name, buffer- . 393

name, buffer-auto-save-file- . 387

name, buffer-file- . 394

name, charset- . 667

name, coding-system- . 675

name, color- . 563

name, color-instance- . 563

name, completion, file . 373

name, condition . 127

name, database-file- . 606

name, default-frame- . 429

name, define-logical- . 368

name, directory . 370

name, directory-file- . 370

name, error . 127

name, expand-file-. 371

name, face-font- . 559

name, file-relative- . 372

name, find-backup-file- . 386

name, font instance . 561

name, font- . 562

name, font-instance- . 561

name, frame . 429

name, frame- . 429

name, function . 151

name, generate-new-buffer- . 394

name, image-instance- . 575

name, image-instance-file-. 575

name, image-instance-mask-file- 575

name, internal-doc-file- . 347

name, invocation- . 630

name, keymap- . 286

name, make-auto-save-file- . 388

name, make-backup-file- . 386

name, make-temp- . 373

name, mode- . 339

name, process- . 613

name, process-tty- . 614

name, read command . 260

name, read-file- . 247

name, relative file . 371

name, set-keymap- . 286

764 XEmacs Lisp Reference Manual

name, set-visited-file- . 395

name, substitute-in-file- . 372

name, symbol- . 103

name, system- . 629

name, user-full- . 632

name, user-login- . 631, 632

name, user-real-login- . 632

name-absolute-p, file- . 371

name-all-completions, file- . 373

name-as-directory, file- . 370

name-buffer-file-type-alist, file- 380

name-completion, file- . 374

name-directory, file- . 369

name-directory, unhandled-file- 377

name-handler, find-file- . 377

name-handlers, inhibit-file- . 377

name-history, file- . 241

name-list, abbrev-table- . 524

name-nondirectory, file- . 369

name-operation, inhibit-file- . 377

name-p, auto-save-file- . 387

name-p, backup-file- . 386

name-p, x-valid-keysym- . 646

name-sans-extension, file- . 369

name-sans-versions, file- . 369

name-to-file, add- . 366

named function . 151

names in directory, file . 374

names, buffer . 393

names, expansion of file . 371

names, file . 368

names, file with multiple . 366

names, magic file . 375

names, same-window-buffer- 414

names, special-display-buffer- 413

NaN . 42

narrow-to-page . 450

narrow-to-region . 449

narrowing . 449

narrowing, point with . 441

natnum-specifier-p . 544

natnump . 43

natural numbers . 43

nconc . 81

necessary, delete-auto-save-file-if- 389

negative infinity . 42

negative-argument . 281

nesting error, Lisp. 110

network connection . 621

network-stream, open- . 621

new file message . 357

new, kill- . 472

new-buffer, generate- . 399

new-buffer-name, generate- . 394

new-versions, kept- . 385

newer, load-warn-when-source- 179

newer-than-file-p, file- . 363

newest-backup, file- . 387

newline . 17, 467

newline and Auto Fill mode . 467

newline in print . 233

newline in strings . 23

newline, require-final- . 359

newline-and-indent . 484

newline-and-indent, reindent-then-. 484

newlines, print-escape- . 234

newlines, use-hard- . 477

next input . 276

next-call, debug-on- . 204

next-command-event . 274

next-event . 274

next-extent . 532

next-frame. 430

next-history-element. 252

next-matching-history-element 253

next-property-change . 490

next-screen-context-lines . 418

next-single-property-change . 490

next-window . 408

nil . 131

nil and lists . 71

nil in keymap . 293

nil in lists . 20

nil input stream . 228

nil output stream . 230

nil, uses of . 8

ninth . 76

nlinks, file- . 365

nlistp . 73

no continuable errors, CL note— 125

no questions, yes-or- . 249

no-blanks-input, read- . 239

no-catch . 122

no-p, yes-or- . 250

no-p-dialog-box, yes-or- . 251

no-p-maybe-dialog-box, yes-or- 251

no-redraw-on-reenter . 585

no-redraw-on-reenter), resume (cf. 585

no-redraw-on-reenter), suspend (cf. 585

no-selection-hook, menu-. 309

nondirectory part (of file name) 368

nondirectory, file-name- . 369

noninteractive . 641

noninteractive use . 641

nonlocal exits . 121

nonprinting characters, reading 275

nontext-pointer-glyph . 577

normal-mode . 332

Index 765

noselect, find-file- . 356

not . 119

not available, closures . 140

not, bitwise . 51

not, logical . 51

not-all, text-property- . 491

not-found-hooks, find-file- . 357

not-modified . 396

notation, buffer text . 10

notation, documentation . 9

notation, dotted pair . 21

notation, error message . 9

notation, evaluation . 9

notation, hash . 13

notation, printing . 9

notation, XEmacs event standard 349

note—allocate more storage, CL 696

note—case of letters, CL . 19

note—default optional arg, CL 150

note—integers vrs eq, CL . 43

note—lack union, set, CL . 83

note—no continuable errors, CL 125

note—only throw in Emacs, CL 122

note—rplaca vrs setcar, CL . 78

note—set local, CL . 138

note—special forms compared, CL 115

note—special variables, CL . 139

note—symbol in obarrays, CL 103

nothing-image-instance-p . 574

nreverse . 82

ns-map, minibuffer-local- . 239

nth . 74

nthcdr . 74

null . 73

number (in file name), version 368

number equality. 43

number, buffer-file- . 394

number, string to . 61

number, string-to- . 61

number-char-or-marker-p . 455

number-of-arguments, wrong- 149

number-or-marker-p . 455

number-to-string . 61

numberp . 42

numbers . 41

numbers, markers as . 453

numbers, natural . 43

numbers, precision of formatted 65

numbers, printing floating-point 235

numbers, printing, floating-point 235

numbers, random . 53

numeric prefix . 64

numeric prefix argument . 279

numeric prefix argument usage 258

numeric-fields, sort- . 482

numeric-value, prefix- . 280

O
obarray . 103, 104

obarray in completion . 242

obarray), bucket (in . 103

obarrays, CL note—symbol in 103

objc-mode-map . 710

object . 13

object to string . 233

object, event- . 270

object, extent- . 530

object, Lisp . 13

object, string to . 229

objects, window-system . 555

oblique . 562

obsolete buffer . 396

obsolete, make- . 352

obsolete-function-alias, define- 352

obsolete-variable, make- . 352

obsolete-variable-alias, define- 352

obsoleteness-doc, function- . 353

obsoleteness-doc, variable- . 353

occur-mode-map . 710

octal character code . 18

octal character input . 275

octal, integer to . 63

octal-escape-glyph. 578

octet, char- . 669

offer-save, buffer- . 358, 401

OffiX DND . 325

old-eq . 38

old-versions, kept- . 385

OLE, MSWindows . 325

one-space, just- . 470

one-window-p . 404, 406

only buffer, read-. 397

only buffers in interactive, read- 257

only throw in Emacs, CL note— 122

only, barf-if-buffer-read- . 397

only, buffer, read- . 397

only, buffer-read- . 397

only, find-file-read- . 356

only, inhibit-read- . 397

only, load-warn-when-source- 179

only, toggle-read-. 397

only-global-abbrevs. 524

open error, file . 357

open parenthesis character . 514

open, blink-matching- . 595

open, ldap- . 657

open-database . 605

766 XEmacs Lisp Reference Manual

open-dribble-file. 639

open-network-stream . 621

open-termscript . 640

operating system environment 629

operation, inhibit-file-name- . 377

option descriptions . 11

option, user . 136

optional arg, CL note—default 150

optional arguments . 149

options on command line . 626

options, command line . 626

or . 120

or, bitwise . 51

or, bitwise exclusive . 51

or, logical exclusive . 51

or, logical inclusive . 51

or-char-int-p, char- . 58

or-char-p, integer- . 58

or-frame-p, device- . 438

or-frame-type, device- . 438

or-marker-p, integer- . 454

or-marker-p, integer-char- . 454

or-marker-p, number- . 455

or-marker-p, number-char- . 455

or-n-p, map-y- . 251

or-n-p, y- . 249

or-n-p-maybe-dialog-box, y- . 251

or-no questions, yes- . 249

or-no-p, yes- . 250

or-no-p-dialog-box, yes- . 251

or-no-p-maybe-dialog-box, yes- 251

or-string-p, char- . 56

order of extents . 530

order, display . 530

order, extent . 530

ordering of windows, cyclic. 408

ordering, cyclic, window . 408

oriented functions, directory- 374

other-buffer . 398

other-window . 409

other-window, find-file- . 356

other-window, scroll- . 417

other-window, switch-to-buffer-. 411

other-window-scroll-buffer . 417

other-windows, delete- . 407

Outline mode . 492

output from processes . 616

output stream . 230

output stream, buffer . 230

output stream, function . 230

output stream, marker . 230

output stream, nil . 230

output stream, t . 230

output, accept-process- . 619

output, binary-process- . 610

output, process . 616

output, standard- . 233

output, terminal . 639

output-format, float- . 235

output-to-temp-buffer, with- 593

outside margin . 579

over-border-p, event- . 269

over-glyph-p, event- . 269

over-modeline-p, event- . 268

over-text-area-p, event- . 268

over-toolbar-p, event- . 269

overflow . 41

overflow, use-left- . 582

overflow, use-right- . 582

overlay arrow . 592

overlay-arrow-position . 592

overlay-arrow-string . 592

override, self-insert-command 299

overriding-local-map . 292, 710

overriding-terminal-local-map 293

overwrite-mode . 467

own-selection, x- . 643

ownership-preserved-p, file- . 363

P
p example, user-variable- . 247

p, auto-save-file-name- . 387

p, backup-file-name- . 386

p, bit-vector- . 99

p, boolean-specifier- . 544

p, bottom-toolbar-visible- . 321

p, buffer-glyph- . 576

p, buffer-live- . 400

p, buffer-modified- . 395

p, button-event-. 266

p, button-press-event- . 266

p, button-release-event- . 266

p, byte-recompile-directory-ignore-errors- 189

p, case-table- . 67

p, category-designator- . 683

p, category-table- . 682

p, category-table-value- . 683

p, char-int- . 58

p, char-or-char-int- . 58

p, char-or-string- . 56

p, char-table- . 68

p, coding-system- . 672

p, color-instance- . 563

p, color-pixmap-image-instance- 574

p, color-specifier- . 545, 563

p, compiled-function- . 148

p, complex-buffers-menu- . 314

Index 767

p, console-live- . 439

p, database-live- . 605

p, default-toolbar-visible- . 320

p, device-live- . 439

p, device-matches-specifier-tag-set- 549

p, device-or-frame- . 438

p, eval-event- . 267

p, event-live- . 267

p, event-matches-key-specifier- 288

p, event-over-border- . 269

p, event-over-glyph- . 269

p, event-over-modeline- . 268

p, event-over-text-area- . 268

p, event-over-toolbar- . 269

p, extent-detached- . 538

p, extent-in-region- . 534

p, extent-live- . 530

p, face-boolean-specifier- . 545

p, face-differs-from-default- . 560

p, face-underline- . 559

p, file-accessible-directory- . 363

p, file-directory- . 364

p, file-executable- . 362

p, file-exists- . 362

p, file-locked- . 361

p, file-name-absolute- . 371

p, file-newer-than-file- . 363

p, file-ownership-preserved- . 363

p, file-readable- . 362

p, file-regular- . 364

p, file-symlink- . 363

p, file-writable- . 362

p, font-instance- . 560

p, font-specifier- . 545, 560

p, frame-iconified- . 433

p, frame-live- . 430

p, frame-totally-visible- . 433

p, frame-visible- . 433

p, generic-specifier- . 544

p, glyph-contrib- . 568

p, icon-glyph- . 577

p, image-instance- . 573

p, image-specifier- . 545, 570

p, input-pending- . 276

p, integer-char-or-marker- . 454

p, integer-or-char- . 58

p, integer-or-marker- . 454

p, integer-specifier- . 544

p, interactive- . 261

p, key-press-event- . 266

p, ldap-live- . 657

p, left-toolbar-visible- . 321

p, local-variable- . 143

p, map-y-or-n- . 251

p, minibuffer-window-active- 253

p, misc-user-event- . 267

p, mono-pixmap-image-instance- 574

p, motion-event- . 266

p, mouse-event- . 266

p, natnum-specifier- . 544

p, nothing-image-instance- . 574

p, number-char-or-marker- . 455

p, number-or-marker- . 455

p, one-window- . 404, 406

p, pointer-glyph- . 577

p, pointer-image-instance- . 574

p, popup-menu-up- . 311

p, pos-visible-in-window-. 416

p, process-event- . 267

p, process-kill-without-query- 613

p, range-table- . 603

p, recent-auto-save- . 388

p, region-active- . 461

p, region-exists- . 461

p, right-toolbar-visible- . 321

p, set-buffer-modified- . 395

p, set-face-underline- . 559

p, set-glyph-contrib- . 568

p, set-window-dedicated-. 414

p, subwindow-image-instance- 574

p, syntax-table- . 513

p, text-image-instance- . 574

p, timeout-event- . 267

p, toolbar-buttons-captioned- 321

p, toolbar-specifier- . 320, 545

p, top-toolbar-visible- . 320

p, user-variable- . 136

p, valid-char-table-type- . 69

p, valid-char-table-value- . 70

p, valid-device-class- . 439

p, valid-device-type- . 439

p, valid-glyph-type- . 576

p, valid-image-instance-type- 574

p, valid-image-instantiator-format- 572

p, valid-inst-list- . 552

p, valid-instantiator- . 552

p, valid-plist- . 89

p, valid-spec-list- . 553

p, valid-specifier-domain- . 552

p, valid-specifier-locale- . 552

p, valid-specifier-locale-type- 552

p, valid-specifier-tag- . 549, 552

p, valid-specifier-tag-set- . 549

p, valid-specifier-type- . 552

p, waiting-for-user-input- . 620

p, weak-list- . 91

p, window-configuration-. 424

p, window-dedicated- . 412, 414

768 XEmacs Lisp Reference Manual

p, window-highest- . 421

p, window-live- . 406

p, window-lowest- . 421

p, window-minibuffer- . 253

p, x-valid-keysym-name- . 646

p, y-or-n- . 249

p, yes-or-no- . 250

p-dialog-box, yes-or-no- . 251

p-instance, glyph-contrib- . 568

p-maybe-dialog-box, y-or-n- . 251

p-maybe-dialog-box, yes-or-no- 251

padding . 64

page, narrow-to- . 450

page-delimiter . 510

page-minibuffer-history, Manual- 241

pages, sort- . 481

pair (in a specifier), inst- . 541

pair notation, dotted . 21

pair, canonicalize-inst- . 547

pair, set-case-syntax- . 67

pair, specifier, inst- . 541

paired delimiter . 515

paragraph, fill- . 476

paragraph, fill-region-as- . 477

paragraph, filling a . 476

paragraph-function, fill- . 477

paragraph-separate . 510

paragraph-start . 510

paragraphs, fill-individual- . 476

paragraphs, sort- . 481

parameters-alist, ldap-host- . 655

paren, blink-matching- . 594

paren-delay, blink-matching- 595

paren-distance, blink-matching- 594

paren-function, blink- . 594

paren-hook, blink-. 594

parent of a keymap . 286

parent process . 607

parent, extent. 538

parent, extent- . 539

parent, keymap . 286

parent, of extent . 538

parent, set-extent- . 539

parentheses, balancing . 594

parentheses, indenting with . 520

parentheses, innermost containing 519

parenthesis . 20

parenthesis character, close . 515

parenthesis character, open . 514

parenthesis depth . 519

parenthesis matching . 594

parenthesis syntax . 515

parenthesis, close. 594

parents, keymap- . 287

parents, set-keymap- . 287

parse state . 519

parse-partial-sexp . 519

parse-sexp-ignore-comments . 520

parsing . 513

parsing, text . 513

part (of file name), directory 368

part (of file name), nondirectory. 368

part, make-file- . 378

partial files . 377

partial-sexp, parse- . 519

partial-width-windows, truncate- 586

paste-function, interprogram- 472

PATH environment variable . 607

path, exec- . 608

path, load- . 178

path, split- . 504

path, x-bitmap-file- . 573, 646

path, x-library-search- . 646

path-separator . 630

pattern, create-tooltalk- . 653

pattern, destroy-tooltalk- . 653

pattern, make-tooltalk- . 652

pattern, register-tooltalk- . 652

pattern, ToolTalk . 651

pattern, unregister-tooltalk- . 652

pattern-arg, add-tooltalk- . 653

pattern-attribute, add-tooltalk- 652

pausing . 277

peculiar error . 128

peeking at input . 276

pending-p, input- . 276

percent symbol in modeline . 338

perform-replace . 505

performance analysis . 215

permanent local variable . 144

permission . 364

pid, emacs- . 631

pipes . 611

pixel, event-glyph-x- . 269

pixel, event-glyph-y- . 269

pixel, event-window-x- . 268

pixel, event-window-y- . 268

pixel, event-x- . 267

pixel, event-y- . 267

pixel-edges, window- . 421

pixel-edges, window-text-area- 422

pixel-height, frame- . 428

pixel-height, window- . 420

pixel-height, window-displayed-text- 421

pixel-height, window-text-area- 421

pixel-width, frame- . 428

pixel-width, window- . 420

pixel-width, window-left-margin- 582

Index 769

pixel-width, window-right-margin- 582

pixel-width, window-text-area- 421

pixels, enlarge-window- . 422

pixels, shrink-window- . 423

pixels, vertical-motion- . 445

pixmap, background . 555

pixmap, face-background- . 559

pixmap, set-face-background- 559

pixmap, x-set-frame-icon- . 429

pixmap-image-instance-p, color- 574

pixmap-image-instance-p, mono- 574

pixmap-instance, face-background- 560

play-sound . 599

play-sound-file . 599

plist . 88

plist, alist-to- . 90

plist, canonicalize-. 89

plist, canonicalize-lax- . 90

plist, check-valid- . 89

plist, default-frame- . 426

plist, destructive-alist-to- . 91

plist, initial-frame- . 426

plist, minibuffer-frame- . 426

plist, pop-up-frame- . 413

plist, special-display-frame- . 414

plist, symbol . 105

plist, symbol- . 106

plist-get . 89

plist-get, lax- . 90

plist-member . 89

plist-member, lax- . 90

plist-p, valid- . 89

plist-put . 89

plist-put, lax- . 90

plist-remprop . 89

plist-remprop, lax- . 90

plist-to-alist . 91

plist-to-alist, destructive- . 91

plists-eq . 89, 107

plists-eq, lax- . 90

plists-equal . 89, 107

plists-equal, lax- . 90

point . 441

point and mark (Edebug), current buffer 217

point excursion . 448

point in window. 414

point numbers, printing floating- 235

point numbers, printing, floating- 235

point with narrowing . 441

point, centering . 418

point, event- . 268

point, event-closest- . 268

point, IEEE floating . 42

point, insertion before . 465

point, insertion, before . 465

point, set-window- . 415

point, window . 414

point, window- . 415

point-and-mark, exchange- . 459

point-marker . 455

point-max . 441

point-max-marker . 455

point-min . 441

point-min-marker . 455

pointer (mouse) . 577

pointer, kill-ring-yank- . 473

pointer, mouse . 577

pointer, set-frame- . 578

pointer, x-grab- . 646

pointer, x-ungrab- . 646

pointer-glyph, busy- . 577

pointer-glyph, gc- . 577, 699

pointer-glyph, make- . 565

pointer-glyph, menubar- . 577

pointer-glyph, modeline- . 577

pointer-glyph, nontext- . 577

pointer-glyph, scrollbar- . 577

pointer-glyph, selection- . 577

pointer-glyph, text- . 577

pointer-glyph, toolbar- . 577

pointer-glyph-p . 577

pointer-image-instance-p . 574

points, edebug-save-displayed-buffer- 217, 224

points, stop . 207

policy, layout . 580

pop, yank- . 472

pop-global-mark . 460

pop-mark . 459

pop-to-buffer . 411

pop-up menu . 311

pop-up-frame-function . 413

pop-up-frame-plist . 413

pop-up-frames . 412

pop-up-windows . 412

popup-buffer-menu . 312

popup-dialog-box . 315

popup-frame, special-display- 413

popup-menu . 311

popup-menu, default- . 312

popup-menu, global- . 312

popup-menu, mode- . 312

popup-menu-hook, activate- . 312

popup-menu-titles . 312

popup-menu-up-p . 311

popup-menubar-menu . 312

popup-mode-menu . 312

port, ldap-default- . 655

portion (of a buffer), accessible 449

770 XEmacs Lisp Reference Manual

pos-visible-in-window-p . 416

position (in buffer) . 441

position argument . 258

position in window . 414

position of frame . 428

position of window . 421

position, current buffer . 441

position, default-toolbar- . 319

position, extent end . 530

position, extent start . 530

position, extent-end- . 531

position, extent-start- . 531

position, frame . 428

position, horizontal . 482

position, marker- . 456

position, overlay-arrow- . 592

position, set-default-toolbar- 319

position, set-frame- . 428

position, window . 414, 421

positive infinity . 42

posix-looking-at . 505

posix-search-backward . 505

posix-search-forward . 504

posix-string-match . 505

post-command-hook . 255

post-gc-hook . 698

pre-abbrev-expand-hook . 526

pre-command-hook . 255

pre-gc-hook . 698

preceding-char . 464

precious-flag, file- . 359

precisely, windows, controlling. 410

precision of formatted numbers 65

precision, format . 65

predicate, backup-enable- . 384

predicate, minibuffer-completion- 245

predicate, specifier-tag- . 549

predicates . 32

predicates, type . 32

prefix argument . 279

prefix argument unreading . 276

prefix argument usage, numeric 258

prefix argument usage, raw . 258

prefix argument, execute with 261

prefix argument, numeric . 279

prefix argument, raw . 279

prefix command . 289

prefix key . 289

prefix key error, invalid . 296

prefix key, preventing . 294

prefix, Control-X- . 289

prefix, ESC- . 289

prefix, expression . 516

prefix, fill- . 478

prefix, menu-accelerator- . 314

prefix, numeric . 64

prefix, term-file-. 625

prefix-arg . 280

prefix-arg, current- . 280

prefix-bindings, describe- . 352

prefix-char, meta- . 295

prefix-chars, backward- . 519

prefix-command, define- . 289

prefix-help-command . 351

prefix-mark, abbrev-. 526

prefix-numeric-value . 280

preserved-p, file-ownership- . 363

press-event-p, button- . 266

press-event-p, key- . 266

preventing backtracking . 220

preventing prefix key . 294

previous char, delete . 468

previous complete subexpression 519

previous-extent . 532

previous-frame . 431

previous-history-element . 252

previous-matching-history-element 252

previous-property-change . 490

previous-single-property-change 491

previous-window . 409

primitive . 147

primitive type . 13

primitive types . 14

primitive-undo . 475

prin1 . 232

prin1-to-string . 233

princ . 233

print . 232

print example . 230

print name cell . 101

print, \n in . 234

print, cust- . 214

print, newline in . 233

print-circle, edebug-. 215, 225

print-escape-newlines . 234

print-gensym . 234

print-help-return-message . 351

print-length. 234

print-length, edebug- . 215, 225

print-level . 234

print-level, edebug- . 215, 225

print-readably . 215, 234

print-string-length . 234

print-trace-after, edebug- 215, 224

print-trace-before, edebug- 215, 224

printed representation . 13

printed representation for characters 17

printer, Lisp . 232

Index 771

printing . 227

printing (Edebug) . 214

printing circular structures . 214

printing floating-point numbers 235

printing limits . 234

printing notation . 9

printing readably. 234

printing uninterned symbols 234

printing), stream (for . 230

printing, " in . 232

printing, \ in . 232

printing, character . 349

printing, control character . 349

printing, escape characters in 232

printing, event . 349

printing, floating-point numbers, 235

printing, meta character . 349

printing, quoting characters in 232

printing, string length, maximum when 234

printing, uninterned symbols, 234

priority of an extent . 529

priority, extent . 529

priority, extent- . 537

priority, mouse-highlight- . 540

priority, set-extent- . 537

priority-list, coding- . 676

priority-list, set-coding- . 676

process . 607

process filter . 617

process input . 614

process output . 616

process sentinel . 619

process signals . 615

process window size . 620

process, call- . 608

process, child . 607

process, continue- . 616

process, delete- . 612

process, event- . 270

process, get- . 612

process, get-buffer- . 617

process, interrupt-. 615

process, kill- . 615

process, modeline- . 340

process, parent . 607

process, quit- . 615

process, signal-. 616

process, start- . 611

process, stop- . 615

process-buffer . 616

process-buffer, set- . 616

process-command . 613

process-connection-type . 611

process-environment . 630

process-event-p . 267

process-exit-status . 614

process-filter . 618

process-filter, set- . 618

process-id . 613

process-input, binary- . 610

process-kill-without-query . 612

process-kill-without-query-p . 613

process-list . 612

process-mark . 616

process-name . 613

process-output, accept- . 619

process-output, binary- . 610

process-region, call- . 609

process-send-eof . 614

process-send-region . 614

process-send-string . 614

process-sentinel . 620

process-sentinel, set-. 620

process-shell-command, start- 611

process-status . 613

process-tty-name . 614

process-window-size, set-. 620

processed, command-line- . 626

processes, delete-exited- . 612

processes, deleting . 612

processes, list- . 612

processes, output from. 616

processp . 607

profile.el . 687

profiling . 687

prog1 . 118

prog2 . 118

progn . 117

progn, implicit . 117

program arguments . 607

program directories . 608

program, charset-ccl- . 667

program, execute . 607

program, insert-directory- . 375

program, register-ccl- . 682

program, set-charset-ccl- . 668

programmed completion . 248

programming types . 15

programs, timing . 687

progress, load-in- . 179

prompt, argument . 257

prompt, keymap- . 303

prompt, minibuffer- . 253

prompt, set-keymap- . 303

prompt-regexp, defun- . 447

prompt-width, minibuffer- . 253

properties in files, text . 491

properties of strings . 62

772 XEmacs Lisp Reference Manual

properties of text . 488

properties, add-text- . 489

properties, default-text- . 488

properties, extent- . 535

properties, font- . 562

properties, font-instance- . 562

properties, frame- . 426

properties, remove-text- . 489

properties, saving text . 491

properties, set-extent- . 535

properties, set-frame- . 426

properties, set-text- . 489

properties, string . 62

properties, text . 488

properties-at, text- . 488

property list . 88

property list cell (symbol) . 101

property list, symbol . 105

property lists vs association lists 105

property of an extent . 534

property, charset- . 667

property, coding-system- . 676

property, documentation- . 346

property, extent . 534

property, extent- . 534

property, face- . 557

property, frame- . 426

property, get-char- . 488

property, get-text-. 488

property, glyph- . 567

property, mode-class . 328

property, put-text- . 489

property, remove-glyph- . 568

property, set-extent- . 535

property, set-face- . 557

property, set-frame- . 426

property, set-glyph- . 566

property-any, text- . 491

property-change, next-. 490

property-change, next-single- 490

property-change, previous- . 490

property-change, previous-single- 491

property-instance, face- . 558

property-instance, glyph- . 567

property-not-all, text- . 491

protect, unwind- . 129

protected forms . 129

provide . 183

providing features . 182

ptys . 611

punctuation character . 514

pure storage . 695

pure-bytes-used . 695

purecopy . 695

purify-flag . 695

push-mark . 459

put . 106

put, lax-plist- . 90

put, plist- . 89

put-char-table . 69

put-database . 605

put-range-table . 603

put-resource, x- . 645

put-text-property . 489

putf . 107

puthash . 601

Q
q, C- . 640

query, process-kill-without- . 612

query-functions, kill-buffer- . 401

query-functions, kill-emacs- . 627

query-p, process-kill-without- 613

query-replace-history . 241

query-replace-map . 505, 710

querying the user . 249

question mark in character constant 18

questions, asking the user . 249

questions, yes-or-no . 249

queue, transaction . 620

quietly-read-abbrev-file . 525

quit, debug-on- . 198

quit, edebug-on- . 211, 225

quit, inhibit- . 279

quit, keyboard- . 279

quit-flag . 279

quit-process . 615

quitting . 278

quitting from infinite loop . 198

quitting, read-quoted-char . 278

quote . 116

quote character . 519

quote in strings, double- . 22

quote, character . 515

quote, regexp- . 501

quote, string . 515

quoted character input . 275

quoted-char quitting, read-. 278

quoted-char, read- . 275

quoted-insert suppression . 299

quoting. 116

quoting characters in printing 232

quoting using apostrophe . 116

quoting, ’ for . 116

quoting, apostrophe for . 116

quoting, function . 155

Index 773

R
r, C-x . 289

raise-frame . 434

raise-frame, auto- . 434

raising a frame . 434

random . 53

random numbers . 53

range table type . 25

Range Tables . 603

range-char-table, get- . 69

range-table, clear- . 603

range-table, copy- . 603

range-table, get- . 603

range-table, make- . 603

range-table, map- . 603

range-table, put- . 603

range-table, remove- . 603

range-table-p . 603

rassoc . 86

rassq . 87

rate, device-baud- . 440, 639

rate, set-device-baud- . 440, 639

raw prefix argument . 279

raw prefix argument usage . 258

re-search-backward . 503

re-search-forward . 502

read . 229

read command name . 260

read syntax . 13

read syntax for characters . 17

read, cl- . 214

read, completing- . 243

read-abbrev-file, quietly- . 525

read-buffer . 246

read-char . 275

read-command . 246

read-expression-history . 241

read-expression-map . 710

read-file-name . 247

read-from-minibuffer . 237

read-from-string . 229

read-function, load- . 179

read-key-sequence . 273

read-minibuffer . 239

read-no-blanks-input . 239

read-only buffer . 397

read-only buffers in interactive 257

read-only, barf-if-buffer- . 397

read-only, buffer, . 397

read-only, buffer- . 397

read-only, find-file- . 356

read-only, inhibit- . 397

read-only, toggle-. 397

read-quoted-char . 275

read-quoted-char quitting . 278

read-shell-command-map . 710

read-string . 238

read-syntax, invalid- . 13

read-variable . 247

readable-p, file- . 362

readably, print- . 215, 234

readably, printing . 234

reader, Lisp. 227

reading . 227

reading (Edebug) . 214

reading interactive arguments 258

reading symbols . 103

reading), stream (for . 227

reading, arguments, . 237

reading, control characters, . 275

reading, nonprinting characters, 275

real-login-name, user- . 632

real-uid, user- . 632

rearrangement of lists . 81

rebinding . 296

receiving ToolTalk messages 651

recent-auto-save-p . 388

recent-keys . 638

recent-keys-ring-size . 638

recent-keys-ring-size, set- . 638

recenter . 418

recompile-directory, batch-byte- 189

recompile-directory, byte- . 189

recompile-directory-ignore-errors-p, byte- 189

record command history . 260

recursion . 121

recursion, infinite . 133

recursion-depth . 282

recursive command loop . 281

recursive editing level . 281

recursive editing, exit . 281

recursive evaluation . 109

recursive, command loop, . 281

recursive-edit . 281

recursive-edit, abort- . 282

recursive-edit, exit- . 282

recursive-minibuffers, enable- 254

redisplay, force-cursor- . 585

redisplay, forcing . 277

redisplay, resize . 428

redisplay-function, set-extent-initial- 538

redo . 474

redraw-display . 585

redraw-frame . 585

redraw-modeline . 337

redraw-on-reenter), resume (cf. no- 585

redraw-on-reenter), suspend (cf. no- 585

774 XEmacs Lisp Reference Manual

redraw-on-reenter, no- . 585

reenter), resume (cf. no-redraw-on- 585

reenter), suspend (cf. no-redraw-on- 585

reenter, no-redraw-on- . 585

refresh display . 585

regexp . 496

regexp alternative . 499

regexp grouping . 499

regexp searching . 502

regexp), character set (in . 498

regexp, $ in . 498

regexp, (in . 499

regexp, (?: in . 499

regexp,) in . 499

regexp, * in . 497

regexp, *? in . 497

regexp, . in . 497

regexp, ? in . 497

regexp, [in . 498

regexp,] in . 498

regexp, { in . 499

regexp, + in . 497

regexp, +? in . 498

regexp, ^ in . 498

regexp, \ in . 498

regexp, \%%%123n,m\%%%125 in 498

regexp, \’ in . 501

regexp, \‘ in . 501

regexp, \= in. 501

regexp, \> in. 501

regexp, \< in. 501

regexp, \b in . 501

regexp, \B in . 501

regexp, \s in . 500

regexp, \S in . 501

regexp, \w in . 500

regexp, \W in . 500

regexp, beginning of line in . 498

regexp, defun-prompt- . 447

regexp, invalid- . 501

regexp, searching for . 502

regexp-fields, sort- . 480

regexp-history . 241

regexp-quote . 501

regexps used in editing, standard 510

regexps used standardly in editing 510

regexps, log-message-ignore- 588

regexps, same-window- . 414

regexps, special-display- . 413

region (Edebug), eval- . 207

region argument . 259

region, annotations-in- . 582

region, call-process- . 609

region, capitalize- . 487

region, compose- . 669

region, decode-coding- . 676

region, decompose- . 669

region, delete- . 468

region, detect-coding- . 677

region, downcase- . 487

region, encode-coding- . 676

region, eval- . 110

region, fill-. 476

region, find-charset- . 669

region, indent- . 484

region, kill- . 471

region, lines in . 445

region, narrow-to- . 449

region, process-send- . 614

region, subst-char-in- . 492

region, the . 460

region, translate- . 492

region, upcase- . 487

region, write- . 360

region, zmacs-activate- . 461

region, zmacs-deactivate- . 461

region, zmacs-update- . 461

region-active-p . 461

region-annotate-functions, write- 491

region-as-kill, copy- . 471

region-as-paragraph, fill- . 477

region-beginning . 460

region-end . 460

region-exists-p . 461

region-function, indent- . 484

region-hook, zmacs-activate- 461

region-hook, zmacs-deactivate- 461

region-hook, zmacs-update- . 462

region-p, extent-in- . 534

region-stays, zmacs- . 461

regions, transpose- . 494

regions, zmacs- . 460

register, address field of . 20

register, decrement field of . 20

register, get- . 493

register, insert- . 493

register, set- . 493

register, view- . 493

register-alist . 493

register-ccl-program . 682

register-tooltalk-pattern . 652

registers . 493

registry, charset- . 667

regular expression . 496

regular expression searching . 502

regular-p, file- . 364

reindent-then-newline-and-indent 484

relabel-menu-item . 310

Index 775

relative file name . 371

relative, indent- . 485

relative-maybe, indent- . 485

relative-name, file- . 372

release-event-p, button- . 266

relocation, marker . 453

remainder . 47

remassoc . 87

remassq . 87

remhash . 602

remove-database . 605

remove-glyph-property. 568

remove-hook . 343

remove-range-table . 603

remove-specifier . 553

remove-text-properties . 489

remprop, lax-plist- . 90

remprop, plist- . 89

remrassoc . 87

remrassq . 88

rename-auto-save-file . 389

rename-buffer . 393

rename-file . 367

renaming files . 366

repeated loading . 181

repetition, kill command . 262

replace bindings . 298

replace characters . 492

replace, case- . 510

replace, perform- . 505

replace-buffer-in-windows . 411

replace-history, query- . 241

replace-map, query- . 505, 710

replace-match . 508

replacement . 505

replacement, & in . 508

replacement, \ in . 508

replacement, \n in . 508

replacements, case in . 508

replica, extent . 539

repositioning format arguments 64

representation for characters, printed 17

representation for lists, box . 71

representation, printed . 13

represented as boxes, lists . 71

require . 183

require, byte-compiling . 183

require, load error with . 182

require-final-newline . 359

requiring features . 182

reset-char-table . 69

reset-elapsed-time, ccl- . 682

resize redisplay . 428

resizing, window . 422

resource type, X . 32

resource, x-get- . 644

resource, x-put- . 645

rest arguments . 149

restriction (in a buffer) . 449

restriction, save- . 450

results, edebug-unwrap- 222, 225

resume (cf. no-redraw-on-reenter) 585

resume-hook, suspend- . 628

return . 17

return-message, print-help- . 351

return-tooltalk-message . 650

reveal-annotation . 581

reverse . 78

reverse-direction-charset, charset-. 667

reverse-direction-charset, make- 666

reversing a list . 82

revert-buffer . 390

revert-buffer-function . 390

revert-buffer-insert-file-contents-function 390

revert-hook, after- . 390

revert-hook, before- . 390

rgb-components, color- . 563

rgb-components, color-instance- 563

right, scroll- . 419

right-margin, set- . 478

right-margin-pixel-width, window- 582

right-margin-width . 582

right-overflow, use- . 582

right-toolbar . 319

right-toolbar-visible-p . 321

right-toolbar-width . 320

rigidly, indent- . 485

rigidly, indent-code- . 485

ring, global mark . 457

ring, global-mark- . 460

ring, kill . 470

ring, kill- . 473

ring, mark . 457

ring, mark- . 459

ring-max, kill- . 473

ring-max, mark- . 460

ring-size, recent-keys- . 638

ring-size, set-recent-keys- . 638

ring-yank-pointer, kill- . 473

rm . 367

root, cube- . 52

root-window, frame- . 431

round . 45

rounding in conversions . 45

rounding without conversion . 48

rplaca . 78

rplaca vrs setcar, CL note— . 78

rplacd . 78

776 XEmacs Lisp Reference Manual

run time stack . 203

run time stack, tag on . 122

run-emacs-from-temacs . 694

run-file, site- . 624

run-hooks . 343

runnable temacs . 693

S
s, C- . 640

safe, car- . 73

safe, cdr- . 74

same-window-buffer-names . 414

same-window-regexps . 414

sans-extension, file-name- . 369

sans-versions, file-name- . 369

save, buffer-offer- . 358, 401

save, do-auto- . 389

save-abbrevs . 525

save-buffer . 358

save-current-buffer . 449

save-default, auto- . 389

save-displayed-buffer-points, edebug- 217, 224

save-excursion . 448

save-excursion (Edebug) . 217

save-file, rename-auto- . 389

save-file-format, auto- . 380

save-file-if-necessary, delete-auto- 389

save-file-name, buffer-auto- . 387

save-file-name, make-auto- . 388

save-file-name-p, auto- . 387

save-files, delete-auto- . 389

save-hook, after- . 359

save-hook, auto- . 389

save-interval, auto- . 388

save-list-file-name, auto- . 389

save-match-data . 509

save-mode, auto- . 387

save-p, recent-auto- . 388

save-restriction. 450

save-selected-frame . 433

save-selected-window . 408, 449

save-some-buffers . 358

save-timeout, auto- . 388

save-visited-file-name, auto- . 388

save-window-excursion . 424

save-windows, edebug- . 217, 224

saved, set-buffer-auto- . 388

saved-size, buffer- . 389, 442

saving text properties . 491

saving window information . 423

saving, auto- . 387

scan-lists . 520

scan-sexps . 520

scope . 139

scoping, dynamic . 139

screen layout . 29

screen-context-lines, next- . 418

scroll-buffer, other-window- . 417

scroll-conservatively . 417

scroll-down . 417

scroll-left . 418

scroll-other-window . 417

scroll-right . 419

scroll-step . 417

scroll-up . 417

scroll-window, minibuffer-. 253

scrollbar-pointer-glyph . 577

scrollbars . 323

scrolling vertically . 416

scrolling, horizontal . 418

scrolling, vertical . 416

search, case-fold- . 510

search, default-case-fold- . 510

search, ldap- . 656

search, string . 495

search, word . 496

search-backward . 495

search-backward, posix- . 505

search-backward, re- . 503

search-backward, word- . 496

search-failed . 495

search-forward . 495

search-forward, posix- . 504

search-forward, re- . 502

search-forward, word- . 496

search-internal, ldap- . 658

search-path, x-library- . 646

searching . 495

searching and case . 509

searching for regexp . 502

searching, regexp . 502

searching, regular expression 502

second . 75

select-console . 440

select-device . 440

select-frame . 432

select-frame-hook . 435

select-frame-hook, default- . 434

select-window . 407

selected frame . 432

selected window . 403

selected-console . 440

selected-device . 440

selected-frame . 432

selected-frame, save- . 433

selected-frame, with- . 433

selected-window . 407

Index 777

selected-window, frame- . 431

selected-window, save- . 408, 449

selecting a buffer . 391

selecting windows . 407

selection (for X windows) . 643

selection, x-disown- . 643

selection, x-get- . 643

selection, x-own- . 643

selection-hook, menu-no-. 309

selection-pointer-glyph. 577

selective display . 591

selective-display . 591

selective-display-ellipses . 592

self-evaluating form . 111

self-insert-and-exit . 252

self-insert-command . 467

self-insert-command override 299

self-insert-command, minor modes 337

self-insertion . 467

send-eof, process- . 614

send-region, process- . 614

send-string, process- . 614

send-string-to-terminal . 639

send-tooltalk-message . 650

sendevents, x-allow- . 647

sending signals . 615

sending ToolTalk messages . 649

sentence-end . 511

sentinel . 619

sentinel, process. 619

sentinel, process- . 620

sentinel, set-process-. 620

separate, paragraph- . 510

separator, path- . 630

sequence . 93

sequence error, key . 296

sequence input, key . 273

sequence length . 94

sequence, copy- . 93

sequence, escape . 18

sequence, key . 273

sequence, read-key- . 273

sequence, upper case key . 274

sequencep . 93

sequences, copying . 93

sequences, elements of . 95

sequences, key . 287

server-vendor, x- . 645

server-version, x- . 645

set . 138

set (in a specifier), tag . 541

set (in regexp), character . 498

set (input), Latin-1 character 638

set local, CL note— . 138

set, canonicalize-tag- . 549

set, CL note—lack union, . 83

set, specifier, tag . 541

set-annotation-action . 581

set-annotation-data . 581

set-annotation-down-glyph . 581

set-annotation-face . 581

set-annotation-glyph . 580

set-annotation-layout . 581

set-annotation-menu. 581

set-auto-mode . 333

set-buffer . 392

set-buffer-auto-saved . 388

set-buffer-major-mode . 333

set-buffer-menubar . 308

set-buffer-modified-p . 395

set-case-syntax . 68

set-case-syntax-delims . 68

set-case-syntax-pair . 67

set-case-table . 67

set-category-table . 683

set-charset-ccl-program . 668

set-coding-category-system . 676

set-coding-priority-list . 676

set-console-type-image-conversion-list 573

set-default . 145

set-default-file-modes . 368

set-default-toolbar-position . 319

set-device-baud-rate . 440, 639

set-extent-begin-glyph . 538

set-extent-begin-glyph-layout. 537

set-extent-end-glyph . 538

set-extent-end-glyph-layout . 537

set-extent-endpoints . 531

set-extent-face . 537

set-extent-initial-redisplay-function 538

set-extent-keymap . 537

set-extent-mouse-face . 537

set-extent-parent . 539

set-extent-priority . 537

set-extent-properties . 535

set-extent-property . 535

set-face-background . 559

set-face-background-pixmap . 559

set-face-font . 559

set-face-foreground . 559

set-face-property . 557

set-face-underline-p . 559

set-file-modes . 368

set-frame-configuration . 435

set-frame-icon-pixmap, x- . 429

set-frame-pointer . 578

set-frame-position . 428

set-frame-properties . 426

778 XEmacs Lisp Reference Manual

set-frame-property . 426

set-frame-size . 429

set-global-break-condition, edebug- 211

set-glyph-baseline . 569

set-glyph-contrib-p . 568

set-glyph-face . 569

set-glyph-image . 568

set-glyph-property . 566

set-input-mode . 636

set-key, global- . 300

set-key, local- . 300

set-keymap-default-binding . 287

set-keymap-name . 286

set-keymap-parents . 287

set-keymap-prompt . 303

set-left-margin . 478

set-mark . 459

set-marker . 457

set-match-data . 509

set-menubar . 308

set-menubar-dirty-flag . 308

set-p, device-matches-specifier-tag- 549

set-p, valid-specifier-tag- . 549

set-process-buffer . 616

set-process-filter . 618

set-process-sentinel . 620

set-process-window-size . 620

set-recent-keys-ring-size . 638

set-register . 493

set-right-margin . 478

set-specifier . 546

set-standard-case-table . 67

set-syntax-table . 518

set-text-properties . 489

set-tooltalk-message-attribute 651

set-visited-file-modtime . 396

set-visited-file-name . 395

set-weak-list-list . 92

set-window-buffer . 410

set-window-buffer-dedicated . 412

set-window-configuration . 424

set-window-dedicated-p . 414

set-window-hscroll . 419

set-window-point . 415

set-window-start . 415

setcar . 78

setcar, CL note—rplaca vrs . 78

setcdr . 80

setenv . 630

setplist . 106

setprv . 631

setq . 137

setq-default . 144

sets . 83

sets, lists as . 83

setting modes of files . 366

setting-constant . 131

setup-hook, edebug- . 223

setup-hook, minibuffer- . 253

setup-hook, term- . 625

setup-hook, window- . 625

seventh . 76

sexp motion . 446

sexp, backward- . 447

sexp, forward- . 446

sexp, parse-partial- . 519

sexp-ignore-comments, parse- 520

sexps, scan- . 520

shadowing of variables . 132

shallow binding . 141

shared-lisp-mode-map . 710

Shell mode modeline-format 338

shell-command, start-process- 611

shell-command-history . 241

shell-command-map, read- . 710

shift, arithmetic . 49

shift, logical . 48

shift-jis-char, decode- . 677

shift-jis-char, encode- . 677

show-function, temp-buffer- . 593

show-keybindings, menubar- 309

shrink-window . 422

shrink-window-horizontally . 422

shrink-window-pixels . 423

side effect . 109

side, annotation- . 581

signal . 124

signal, debug-on- . 198

signal-process . 616

signaling errors . 124

signals . 615

signals, process . 615

signals, sending . 615

sin . 52

single-key-description . 349

single-property-change, next- 490

single-property-change, previous- 491

sinh . 52

sit-for . 277

site-init.el . 694

site-load.el . 693

site-run-file . 624

site-start.el . 623

sixth . 76

size of frame . 428

size of window . 419

size, buffer- . 442

size, buffer-saved- . 389, 442

Index 779

size, buffers-menu-max- . 314

size, changing window . 422

size, changing, window . 422

size, compiled-function-stack- 193

size, font instance . 561

size, frame . 428

size, log-message-max- . 588

size, max-specpdl- . 133

size, minimum window . 423

size, process window . 620

size, recent-keys-ring- . 638

size, set-frame- . 429

size, set-process-window-. 620

size, set-recent-keys-ring- . 638

size, window . 419

size, x-font- . 561

size-change-functions, window- 423

skip-chars-backward . 448

skip-chars-forward . 447

skip-syntax-backward . 519

skip-syntax-forward . 518

skipping characters . 447

skipping comments . 520

sleep-for . 277

smaller-font, x-find- . 561

Snarf-documentation . 347

soft, intern- . 104

some-buffers, save- . 358

sort . 83

sort, stable . 83

sort-columns . 482

sort-fields. 482

sort-lines . 481

sort-numeric-fields . 482

sort-pages . 481

sort-paragraphs . 481

sort-regexp-fields . 480

sort-subr . 479

sorting lists . 83

sorting text . 479

sound . 597

sound, play- . 599

sound-alist . 598

sound-file, load- . 599

sound-file, play- . 599

sounds, load-default- . 599

source-newer, load-warn-when- 179

source-only, load-warn-when- 179

space, delete-horizontal- . 468

space, just-one- . 470

sparse-keymap, make- . 286

SPC in minibuffer . 239

spec, buffer-invisibility- . 590

spec, canonicalize-. 547

spec, def-edebug- . 218

spec, initial-toolbar- . 321

spec-list, canonicalize- . 547

spec-list, check-valid- . 553

spec-list, specifier-. 548

spec-list-p, valid- . 553

spec-list-to-specifier, add- . 546

spec-to-specifier, add- . 545

special . 328

special form descriptions . 10

special form evaluation . 114

special forms . 24

special forms (Edebug) . 208

special forms compared, CL note— 115

special forms for control structures 117

special variables, CL note— . 139

special-display-buffer-names . 413

special-display-frame-plist . 414

special-display-function . 413

special-display-popup-frame . 413

special-display-regexps . 413

specific functions, debugging 198

specific initialization, terminal- 625

specific-map, mode- . 289, 710

specification (in a specifier) . 541

specification error, file mode 332

specification list, Edebug . 218

specification, format . 62

specification, specifier, . 541

specifications, indirect . 220

specifier . 541

specifier type . 31

specifier), domain (in a . 541

specifier), fallback (in a . 543

specifier), inst-list (in a . 541

specifier), inst-pair (in a . 541

specifier), instance (in a . 541

specifier), instancing (in a . 541

specifier), instantiator (in a . 541

specifier), locale (in a . 541

specifier), specification (in a. 541

specifier), tag (in a . 541

specifier), tag set (in a . 541

specifier, add-spec-list-to- . 546

specifier, add-spec-to- . 545

specifier, copy- . 553

specifier, domain . 541

specifier, fallback . 543

specifier, inst-list . 541

specifier, inst-pair . 541

specifier, instance . 541

specifier, instancing . 541

specifier, instantiator . 541

specifier, let- . 546

780 XEmacs Lisp Reference Manual

specifier, locale . 541

specifier, make- . 551

specifier, make-image- . 570

specifier, map- . 554

specifier, remove- . 553

specifier, set- . 546

specifier, specification . 541

specifier, tag . 541

specifier, tag set . 541

specifier-and-init, make- . 552

specifier-domain-p, valid- . 552

specifier-fallback . 548

specifier-instance . 550

specifier-instance-from-inst-list 550

specifier-locale-p, valid- . 552

specifier-locale-type-from-locale 554

specifier-locale-type-p, valid- 552

specifier-p, boolean- . 544

specifier-p, color- . 545, 563

specifier-p, event-matches-key- 288

specifier-p, face-boolean- . 545

specifier-p, font- . 545, 560

specifier-p, generic- . 544

specifier-p, image- . 545, 570

specifier-p, integer- . 544

specifier-p, natnum- . 544

specifier-p, toolbar- . 320, 545

specifier-spec-list . 548

specifier-specs. 548

specifier-tag, define- . 549

specifier-tag-list . 549

specifier-tag-list, device-matching- 549

specifier-tag-p, valid- . 549, 552

specifier-tag-predicate . 549

specifier-tag-set-p, device-matches- 549

specifier-tag-set-p, valid- . 549

specifier-type . 544

specifier-type-p, valid- . 552

specifierp . 541

specifiers, image . 570

specpdl-size, max- . 133

specs, specifier- . 548

specs.el, cl- . 208

speed, execution . 687

speedups . 687

splicing (with backquote) . 163

split-height-threshold . 412

split-line . 467

split-path . 504

split-string . 503

split-window . 404

split-window-horizontally . 406

split-window-vertically . 405

splitting windows . 404

splitting, window . 404

sqrt . 52

stable sort . 83

stack frame, current . 200

stack, call . 203

stack, run time . 203

stack, tag on run time . 122

stack-size, compiled-function- 193

standard notation, XEmacs event 349

standard regexps used in editing 510

standard-case-table . 67

standard-case-table, set- . 67

standard-category-table . 683

standard-input . 230

standard-output . 233

standard-syntax-table . 521

standardly in editing, regexps used 510

standards of coding style . 685

standards, coding . 685

start position, extent . 530

start up of XEmacs . 623

start, paragraph- . 510

start, set-window- . 415

start, window- . 415

start-location, abbrev- . 526

start-location-buffer, abbrev- 526

start-position, extent- . 531

start-process . 611

start-process-shell-command 611

start.el, site- . 623

starter, comment . 516

startup-echo-area-message, inhibit- 624

startup-message, inhibit-. 624

startup.el . 623

state, parse . 519

status, command-debug- . 204

status, process- . 613

status, process-exit- . 614

stays, zmacs-region- . 461

step, scroll- . 417

stop points . 207

stop, tab-to-tab- . 486

stop-list, tab- . 486

stop-process . 615

stopping an infinite loop . 198

stopping on events . 211

stops for indentation, tabs . 486

stops-map, edit-tab- . 709

storage, CL note—allocate more 696

storage, pure . 695

store-cutbuffer, x- . 643

store-match-data . 509

stream (for printing) . 230

stream (for reading) . 227

Index 781

stream, buffer input . 227

stream, buffer output . 230

stream, function input . 228

stream, function output . 230

stream, input . 227

stream, marker input . 227

stream, marker output . 230

stream, nil input . 228

stream, nil output . 230

stream, open-network- . 621

stream, output . 230

stream, string input . 227

stream, t input . 228

stream, t output . 230

string . 56

string equality . 59

string formatting, multilingual 64

string in keymap . 293

string input stream . 227

string length . 94

string length, maximum when printing 234

string properties . 62

string quote . 515

string search . 495

string to character . 61

string to number . 61

string to object . 229

string, buffer- . 464

string, ccl-execute-on- . 681

string, char-to- . 60

string, character to . 60

string, charset-doc- . 667

string, coding-system-doc- . 676

string, compiled-function-doc- 193

string, composite-char- . 669

string, current-time- . 633

string, default argument . 257

string, find-charset- . 669

string, format-time- . 634

string, global-mode- . 339

string, image-instance- . 575

string, insert- . 466

string, inside . 519

string, int-to- . 61

string, integer to . 61

string, make- . 56

string, match- . 506

string, number-to- . 61

string, object to . 233

string, overlay-arrow- . 592

string, prin1-to- . 233

string, process-send- . 614

string, read- . 238

string, read-from- . 229

string, split- . 503

string, string, writing a doc . 345

string, writing a doc string . 345

string, writing a documentation 345

string-display, momentary- . 593

string-equal . 59

string-length, print- . 234

string-lessp . 60

string-match . 503

string-match, posix- . 505

string-modified-tick. 62

string-p, char-or- . 56

string-to-char . 61

string-to-int . 62

string-to-number . 61

string-to-terminal, send- . 639

string= . 59

string< . 59

stringp . 55

strings . 55

strings, " in . 22

strings, \ in . 22

strings, backslash in . 22

strings, concatenating . 57

strings, conversion of . 60

strings, copying . 57

strings, documentation . 345

strings, double-quote in . 22

strings, formatting . 62

strings, formatting them . 62

strings, keys in documentation 348

strings, modifying . 62

strings, newline in . 23

strings, properties of . 62

strong-limit, undo- . 476

structure, list . 71

structures, control . 117

structures, printing circular . 214

structures, special forms for control 117

style, standards of coding . 685

subexpression, previous complete 519

submenu, add- . 309

subprocess . 607

subprocess, asynchronous . 610

subprocess, synchronous . 608

subprocesses, environment variables, 607

subr . 147

subr, sort- . 479

subroutines, file name completion 373

subrp . 148

subsidiary-coding-system . 676

subst-char-in-region . 492

substitute-command-keys . 348

substitute-in-file-name . 372

782 XEmacs Lisp Reference Manual

substitute-key-definition . 298

substituting keys in documentation 348

substitution), ‘ (list . 163

substitution), backquote (list 163

substring . 56

substring, buffer- . 464

substring, insert-buffer- . 466

substrings, compare-buffer- . 465

subtype, database- . 606

subwindow type . 32

subwindow-image-instance-p 574

subwindowp . 578

supersession, file-. 397

supersession-threat, ask-user-about- 396

suppress-keymap . 299

suppressed-classes, display-warning- 590

suppressed-classes, log-warning- 590

suppression, quoted-insert . 299

suppression, yank . 299

suspend (cf. no-redraw-on-reenter) 585

suspend evaluation . 281

suspend-emacs . 628

suspend-hook . 628

suspend-resume-hook . 628

suspending XEmacs . 627

switch-alist, command- . 626

switch-to-buffer . 410

switch-to-buffer-function, buffers-menu- 314

switch-to-buffer-other-window 411

switches on command line . 626

switching to a buffer . 410

symbol . 101

symbol components . 101

symbol constituent . 514

symbol equality . 103

symbol evaluation . 112

symbol function indirection . 112

symbol in keymap . 294

symbol in modeline, percent 338

symbol in obarrays, CL note— 103

symbol name hashing . 103

symbol, abbrev- . 525

symbol, definition of a . 102

symbol, error . 127

symbol, make- . 104

symbol, plist, . 105

symbol, property list, . 105

symbol, uninterned . 103

symbol-function . 156

symbol-name . 103

symbol-plist . 106

symbol-value . 137

symbolic links, file . 363

symbolic-link, make- . 368

symbolp . 101

symbols, \ in . 19

symbols, backslash in . 19

symbols, printing uninterned 234

symbols, printing, uninterned 234

symbols, reading . 103

symbols, xpm-color- . 573

symlink-p, file- . 363

synchronous subprocess . 608

syntax classes . 513

syntax descriptor . 514

syntax error (Edebug) . 221

syntax flags . 516

syntax for characters . 17

syntax for characters, read . 17

syntax table . 513

syntax table example . 330

syntax table internals . 521

syntax tables in modes . 328

syntax, char- . 518

syntax, check-toolbar-button- 318

syntax, comment . 516

syntax, invalid-read- . 13

syntax, iso- . 68

syntax, parenthesis . 515

syntax, read . 13

syntax, set-case- . 68

syntax-backward, skip- . 519

syntax-delims, set-case- . 68

syntax-entry, modify- . 517

syntax-forward, skip- . 518

syntax-pair, set-case- . 67

syntax-table . 518

syntax-table, c-mode-. 521

syntax-table, copy- . 517

syntax-table, emacs-lisp-mode- 521

syntax-table, make- . 517

syntax-table, set- . 518

syntax-table, standard- . 521

syntax-table, text-mode- . 521

syntax-table-p . 513

system environment, operating 629

system objects, window- . 555

system type, coding . 30

system types, window . 31

system, coding-category- . 677

system, copy-coding- . 675

system, find-coding- . 675

system, get-coding- . 675

system, make-coding- . 675

system, set-coding-category- 676

system, subsidiary-coding- . 676

system-configuration . 629

system-doc-string, coding- . 676

Index 783

system-list, coding- . 675

system-name . 629

system-name, coding- . 675

system-p, coding- . 672

system-property, coding- . 676

system-type . 629

system-type, coding- . 676

T
t . 131

t and truth . 8

t input stream . 228

t output stream . 230

tab . 17

tab deletion . 468

TAB in minibuffer . 239

tab, vertical . 17

tab-command, indent-for- . 484

tab-stop, tab-to- . 486

tab-stop-list . 486

tab-stops-map, edit- . 709

tab-to-tab-stop. 486

tab-width . 596

table example, syntax . 330

table internals, syntax . 521

table type, char . 25

table type, hash . 25

table type, range . 25

table, abbrev . 523

table, active display . 597

table, c-mode-abbrev- . 527

table, c-mode-syntax-. 521

table, category- . 682

table, clear-abbrev- . 523

table, clear-range- . 603

table, copy-category- . 683

table, copy-range- . 603

table, copy-syntax- . 517

table, current-case- . 67

table, define-abbrev-. 524

table, describe-buffer-case- . 68

table, display . 596

table, emacs-lisp-mode-syntax- 521

table, fundamental-mode-abbrev- 527

table, get-char-. 69

table, get-range- . 603

table, get-range-char- . 69

table, global-abbrev- . 527

table, hash . 601

table, lisp-mode-abbrev- . 527

table, local-abbrev- . 527

table, make-abbrev- . 523

table, make-char-. 69

table, make-display- . 596

table, make-range- . 603

table, make-syntax- . 517

table, map-char- . 69

table, map-range- . 603

table, minibuffer-completion- 245

table, put-char- . 69

table, put-range- . 603

table, remove-range- . 603

table, reset-char- . 69

table, set-case- . 67

table, set-category- . 683

table, set-standard-case- . 67

table, set-syntax- . 518

table, standard-case- . 67

table, standard-category- . 683

table, standard-syntax- . 521

table, syntax . 513

table, syntax- . 518

table, text-mode-abbrev-. 527

table, text-mode-syntax- . 521

table, weak hash . 602

table, weak, hash. 602

table-description, insert-abbrev- 524

table-name-list, abbrev- . 524

table-p, case- . 67

table-p, category- . 682

table-p, char- . 68

table-p, range- . 603

table-p, syntax- . 513

table-type, char- . 69

table-type-list, char- . 69

table-type-p, valid-char- . 69

table-value, check-valid-char- . 70

table-value-p, category- . 683

table-value-p, valid-char- . 70

tables in modes, abbrev . 328

tables in modes, syntax . 328

Tables, Range . 603

tabs stops for indentation . 486

tabs-mode, indent- . 483

tag (in a specifier) . 541

tag on run time stack. 122

tag set (in a specifier) . 541

tag set, specifier, . 541

tag, define-specifier- . 549

tag, specifier, . 541

tag-list, device-matching-specifier- 549

tag-list, specifier- . 549

tag-p, valid-specifier- . 549, 552

tag-predicate, specifier- . 549

tag-set, canonicalize- . 549

tag-set-p, device-matches-specifier- 549

tag-set-p, valid-specifier- . 549

784 XEmacs Lisp Reference Manual

tan . 52

tanh . 52

TCP . 621

temacs . 693

temacs, bootstrapping XEmacs from 693

temacs, run-emacs-from- . 694

temacs, runnable . 693

temp-buffer, with-output-to- 593

temp-buffer-show-function . 593

temp-directory . 373

temp-file, with- . 449

temp-name, make- . 373

tenth . 76

TERM environment variable 625

term-file-prefix . 625

term-setup-hook . 625

Termcap . 625

terminal frame . 403, 425

terminal input . 636

terminal input modes . 636

terminal output . 639

terminal, frame of . 403

terminal, send-string-to- . 639

terminal-device . 439

terminal-local-map, overriding- 293

terminal-specific initialization 625

terminate keyboard macro . 277

termination, keyboard macro 597

termscript file . 640

termscript, open- . 640

terpri . 233

test-coverage, edebug- . 224

testing types . 32

testing, coverage . 215

text . 463

text changes, hooks for . 494

text files and binary files . 380

text files, binary files and . 380

text insertion . 465

text notation, buffer . 10

text parsing . 513

text properties . 488

text properties in files . 491

text properties, saving . 491

text, attributes of . 488

text, comparing buffer . 465

text, find-file- . 381

text, inserting killed . 471

text, insertion of . 465

text, invisible . 590

text, last-abbrev- . 526

text, properties of . 488

text, sorting . 479

text-area-p, event-over- . 268

text-area-pixel-edges, window- 422

text-area-pixel-height, window- 421

text-area-pixel-width, window- 421

text-char-description . 350

text-domain, bind- . 659

text-glyph, invisible- . 578

text-image-instance-p . 574

text-mode-abbrev-table . 527

text-mode-map . 710

text-mode-syntax-table . 521

text-pixel-height, window-displayed- 421

text-pointer-glyph . 577

text-properties, add- . 489

text-properties, default- . 488

text-properties, remove- . 489

text-properties, set- . 489

text-properties-at . 488

text-property, get-. 488

text-property, put- . 489

text-property-any . 491

text-property-not-all . 491

than-file-p, file-newer- . 363

then-newline-and-indent, reindent-. 484

third . 75

this-command . 262

this-command-keys . 262

threat, ask-user-about-supersession- 396

threshold, gc-cons- . 698

threshold, split-height- . 412

throw . 122

throw example . 281

throw in Emacs, CL note—only 122

tick, buffer-modified- . 396

tick, string-modified- . 62

tiled windows . 403

time stack, run . 203

time stack, tag on run . 122

time, ccl-elapsed-. 682

time, ccl-reset-elapsed- . 682

time, comparison of modification 396

time, comparison of, modification 396

time, current- . 633

time, decode- . 635

time, emacs-build- . 694

time, encode- . 635

time, file modification . 363

time-string, current- . 633

time-string, format- . 634

time-zone, current- . 633

timeout, add- . 635

timeout, auto-save- . 388

timeout, disable- . 636

timeout-event-p . 267

timestamp, event- . 270

Index 785

timing programs . 687

tips . 685

title-format, frame- . 429

title-format, frame-icon- . 429

titles, popup-menu- . 312

toggle-read-only . 397

toolbar . 317

toolbar button type . 31

toolbar, bottom- . 319

toolbar, default- . 319

toolbar, left- . 319

toolbar, right- . 319

toolbar, top- . 319

toolbar-button, event- . 269

toolbar-button-syntax, check- 318

toolbar-buttons-captioned-p . 321

toolbar-height, bottom- . 320

toolbar-height, default- . 320

toolbar-height, top- . 320

toolbar-make-button-list . 318

toolbar-map . 292, 710

toolbar-p, event-over- . 269

toolbar-pointer-glyph . 577

toolbar-position, default- . 319

toolbar-position, set-default- 319

toolbar-spec, initial- . 321

toolbar-specifier-p . 320, 545

toolbar-visible-p, bottom- . 321

toolbar-visible-p, default- . 320

toolbar-visible-p, left- . 321

toolbar-visible-p, right- . 321

toolbar-visible-p, top- . 320

toolbar-width, default- . 320

toolbar-width, left- . 320

toolbar-width, right- . 320

ToolTalk . 649

ToolTalk message . 649

ToolTalk messages, receiving 651

ToolTalk messages, sending . 649

ToolTalk pattern . 651

tooltalk-message, create- . 651

tooltalk-message, describe- . 653

tooltalk-message, destroy- . 651

tooltalk-message, make- . 650

tooltalk-message, return- . 650

tooltalk-message, send- . 650

tooltalk-message-arg, add- . 651

tooltalk-message-attribute, get- 650

tooltalk-message-attribute, set- 651

tooltalk-pattern, create- . 653

tooltalk-pattern, destroy- . 653

tooltalk-pattern, make- . 652

tooltalk-pattern, register- . 652

tooltalk-pattern, unregister- . 652

tooltalk-pattern-arg, add- . 653

tooltalk-pattern-attribute, add- 652

top line, window . 415

top-level . 282

top-level form . 177

top-level-form, edebug-eval- . 207

top-toolbar . 319

top-toolbar-height . 320

top-toolbar-visible-p . 320

top-window, frame-. 431

totally-visible-p, frame- . 433

tq-close . 621

tq-create . 620

tq-enqueue . 620

trace, edebug- . 215, 224

trace-after, edebug-print- 215, 224

trace-before, edebug-print- 215, 224

tracing . 215

tracing, edebug- . 215

transaction queue . 620

transcendental functions . 52

transl, iso- . 638

translate-region . 492

translating input events . 637

translation function, key . 637

translation-map, key- . 637

transpose-regions. 494

trim-versions-without-asking 385

true . 8

truename (of file) . 364

truename, buffer-file- . 394

truename, file- . 364

truename, font- . 562

truename, font-instance- . 561

truncate . 45

truncate-lines . 586

truncate-lines, default-. 586

truncate-partial-width-windows 586

truncation-glyph . 578

truth value . 8

truth, t and . 8

try-completion . 242

tty-device, make- . 439

tty-name, process- . 614

two’s complement . 41

type . 13

type checking . 32

type predicates . 32

type, buffer-file- . 380

type, char table . 25

type, char-table- . 69

type, charset . 30

type, coding system . 30

type, coding-system- . 676

786 XEmacs Lisp Reference Manual

type, color instance . 31

type, data . 13

type, database . 30

type, database- . 606

type, default-buffer-file- . 381

type, device- . 438

type, device-or-frame- . 438

type, event- . 266

type, face . 31

type, find-buffer-file- . 380

type, font instance . 31

type, glyph . 31

type, glyph- . 576

type, hash table . 25

type, image instance . 31

type, image-instance- . 574

type, primitive . 13

type, process-connection- . 611

type, range table . 25

type, specifier . 31

type, specifier- . 544

type, subwindow . 32

type, system- . 629

type, toolbar button . 31

type, weak list . 26

type, weak-list- . 92

type, X resource . 32

type-alist, file-name-buffer-file- 380

type-argument, wrong- . 32

type-from-locale, specifier-locale- 554

type-image-conversion-list, console- 573

type-image-conversion-list, set-console- 573

type-list, char-table- . 69

type-list, glyph- . 576

type-list, image-instance- . 574

type-of . 37

type-p, valid-char-table- . 69

type-p, valid-device- . 439

type-p, valid-glyph- . 576

type-p, valid-image-instance- 574

type-p, valid-specifier- . 552

type-p, valid-specifier-locale- 552

types on MS-DOS, file . 380

types, editing . 26

types, image instance . 574

types, layout . 579

types, MS-DOS file . 380

types, primitive . 14

types, programming . 15

types, testing . 32

types, window system . 31

U
uid, user- . 632

uid, user-real- . 632

unbinding keys . 300

unbold, x-make-font- . 562

undefined . 295

undefined in keymap . 294

undefined key . 285

underline-p, face- . 559

underline-p, set-face- . 559

undo avoidance . 492

undo, buffer-disable-. 475

undo, buffer-enable- . 475

undo, buffer-flush-. 475

undo, disable . 475

undo, primitive- . 475

undo-boundary . 474

undo-limit . 476

undo-list, buffer- . 474

undo-strong-limit . 476

unexec . 694

ungrab-keyboard, x- . 646

ungrab-pointer, x- . 646

unhandled-file-name-directory 377

unintern . 105

uninterned symbol . 103

uninterned symbols, printing 234

union, set, CL note—lack . 83

unique extents . 539

unique, extent, . 539

unitalic, x-make-font- . 562

universal-argument . 280

unload-feature . 184

unloading . 184

unlock-buffer . 361

unmap-frame-hook . 435

unread-command-event . 276

unread-command-events . 276

unreading . 228

unreading, prefix argument . 276

unregister-tooltalk-pattern . 652

unset-key, global- . 300

unset-key, local- . 300

untabify, backward-delete-char- 468

unwind-protect . 129

unwinding . 129

unwrap, edebug- . 219

unwrap-results, edebug- 222, 225

up menu, pop- . 311

up of XEmacs, start . 623

up, buffer-backed- . 383

up, scroll- . 417

up-frame-function, pop- . 413

Index 787

up-frame-plist, pop- . 413

up-frames, pop- . 412

up-list . 446

up-p, popup-menu- . 311

up-windows, pop- . 412

upcase . 66

upcase-region . 487

upcase-word . 487

update display . 585

update, display . 585

update-directory-autoloads . 181

update-file-autoloads . 181

update-region, zmacs- . 461

update-region-hook, zmacs- . 462

upper case . 65

upper case key sequence . 274

usage, numeric prefix argument 258

usage, raw prefix argument . 258

use, debug-on-error . 125

use, noninteractive . 641

use-global-map . 292

use-hard-newlines . 477

use-left-overflow . 582

use-local-map . 292

use-right-overflow . 582

used in editing, standard regexps 510

used standardly in editing, regexps 510

used, pure-bytes- . 695

user option . 136

user questions, asking the . 249

user, querying the . 249

user-about-lock, ask- . 361

user-about-supersession-threat, ask- 396

user-defined error . 127

user-event-p, misc- . 267

user-full-name . 632

user-home-directory . 632

user-input-p, waiting-for- . 620

user-login-name . 631, 632

user-mail-address . 631

user-real-login-name . 632

user-real-uid . 632

user-uid . 632

user-variable-p . 136

user-variable-p example . 247

uses of, nil, . 8

using apostrophe, quoting . 116

using interactive, examples of 259

using, interactive, examples of 259

V
valid-char-table-type-p . 69

valid-char-table-value, check- . 70

valid-char-table-value-p . 70

valid-device-class-p . 439

valid-device-type-p . 439

valid-glyph-type-p . 576

valid-image-instance-type-p . 574

valid-image-instantiator-format-p 572

valid-inst-list, check- . 553

valid-inst-list-p. 552

valid-instantiator, check- . 553

valid-instantiator-p . 552

valid-keysym-name-p, x- . 646

valid-plist, check- . 89

valid-plist-p . 89

valid-spec-list, check- . 553

valid-spec-list-p . 553

valid-specifier-domain-p. 552

valid-specifier-locale-p . 552

valid-specifier-locale-type-p . 552

valid-specifier-tag-p . 549, 552

valid-specifier-tag-set-p . 549

valid-specifier-type-p . 552

value cell . 101

value of expression . 109

value, check-valid-char-table- . 70

value, default . 144

value, default- . 144

value, prefix-numeric- . 280

value, symbol- . 137

value, truth . 8

value-p, category-table- . 683

value-p, valid-char-table- . 70

value-weak-hashtable, make- 602

values . 111

variable . 131

variable access, environment 630

variable aliases . 145

variable definition . 134

variable descriptions . 11

variable limit error . 133

variable, EMACSLOADPATH environment 178

variable, global . 131

variable, HOME environment 607

variable, indirect- . 146

variable, kill-local- . 143

variable, make-local- . 142

variable, make-obsolete- . 352

variable, mode . 336

variable, PATH environment 607

variable, permanent local . 144

variable, read- . 247

788 XEmacs Lisp Reference Manual

variable, TERM environment 625

variable, void . 133

variable, void- . 133

variable-alias . 145

variable-alias, define-obsolete- 352

variable-buffer-local, make- . 143

variable-documentation . 345

variable-obsoleteness-doc . 353

variable-p example, user- . 247

variable-p, local- . 143

variable-p, user- . 136

variables in modes, buffer-local 328

variables, aliases, for . 145

variables, binding local . 132

variables, buffer-local . 141

variables, buffer-local- . 143

variables, CL note—special . 139

variables, enable-local- . 332

variables, hack-local- . 334

variables, ignored-local- . 333

variables, indirect . 145

variables, kill-all-local- . 144

variables, local . 132

variables, shadowing of . 132

variables, subprocesses, environment 607

varying-indent, fill-individual- 477

vc-mode . 340

vconcat. 98

vector . 97, 98

vector evaluation . 111

vector length . 94

vector length, bit . 94

vector, bit . 99

vector, bit- . 99

vector, make- . 98

vector, make-bit- . 100

vector-p, bit- . 99

vectorp . 98

vectors, copying . 98

vectors, copying bit . 100

vendor, x-server- . 645

verify-visited-file-modtime . 396

version number (in file name) 368

version, emacs- . 694

version, emacs-major- . 694

version, emacs-minor- . 695

version, x-server- . 645

version-control . 385

versions, dired-kept- . 385

versions, file-name-sans- . 369

versions, kept-new- . 385

versions, kept-old- . 385

versions-without-asking, trim- 385

vertical scrolling . 416

vertical tab . 17

vertical-motion. 445

vertical-motion-pixels . 445

vertically, scrolling . 416

vertically, split-window- . 405

view-file . 356

view-mode-map . 710

view-register . 493

visibility, frame . 433

visible frame . 433

visible, annotation- . 581

visible, make-frame- . 433

visible-bell . 598

visible-frame-list . 430

visible-in-window-p, pos-. 416

visible-p, bottom-toolbar- . 321

visible-p, default-toolbar- . 320

visible-p, frame- . 433

visible-p, frame-totally- . 433

visible-p, left-toolbar- . 321

visible-p, right-toolbar- . 321

visible-p, top-toolbar- . 320

visited file . 394

visited file mode . 333

visited-file-modtime . 396

visited-file-modtime, clear- . 396

visited-file-modtime, set- . 396

visited-file-modtime, verify- . 396

visited-file-name, auto-save- . 388

visited-file-name, set- . 395

visiting files . 355

visual-class, x-display- . 646

void function . 112

void function cell . 156

void variable . 133

void-function . 156

void-variable . 133

volume, bell- . 599

vrs eq, CL note—integers . 43

vrs setcar, CL note—rplaca . 78

vs association lists, property lists 105

vs killing, deletion . 467

vs. extents, markers . 453

W
waiting . 277

waiting for command key input 276

waiting-for-user-input-p. 620

wakeup . 608

walk-windows . 409

warn-when-source-newer, load- 179

warn-when-source-only, load- 179

warning, display- . 589

Index 789

warning-minimum-level, display- 590

warning-minimum-level, log- 590

warning-suppressed-classes, display- 590

warning-suppressed-classes, log- 590

weak hash table . 602

weak list . 91

weak list type . 26

weak, hash table,. 602

weak-hashtable, make- . 602

weak-hashtable, make-key- . 602

weak-hashtable, make-value- 602

weak-list, make- . 91

weak-list-list . 92

weak-list-list, set- . 92

weak-list-p . 91

weak-list-type . 92

when printing, string length, maximum 234

when-compile, eval- . 191

when-linked, backup-by-copying- 384

when-mismatch, backup-by-copying- 385

when-source-newer, load-warn- 179

when-source-only, load-warn- 179

where-is-internal . 302

while . 121

whitespace . 17

whitespace character . 514

whitespace, deleting . 468

whitespace, fixup- . 469

widen . 450

widening . 450

width, annotation- . 581

width, default-toolbar- . 320

width, field . 64

width, frame- . 428

width, frame-pixel- . 428

width, glyph- . 569

width, image-instance- . 576

width, left-margin- . 582

width, left-toolbar- . 320

width, margin . 582

width, minibuffer-prompt- . 253

width, right-margin- . 582

width, right-toolbar- . 320

width, tab- . 596

width, window- . 420

width, window-left-margin-pixel- 582

width, window-min- . 423

width, window-pixel- . 420

width, window-right-margin-pixel- 582

width, window-text-area-pixel- 421

width-windows, truncate-partial- 586

window. 403

window configuration (Edebug) 217

window configurations . 423

window excursions . 448

window frame, X . 425

window information, saving . 423

window ordering, cyclic . 408

window point . 414

window position . 414, 421

window resizing . 422

window size . 419

window size, changing . 422

window size, minimum . 423

window size, process . 620

window splitting . 404

window system types . 31

window top line . 415

window, active-minibuffer- . 253

window, dedicated . 412, 414

window, delete- . 407

window, enlarge- . 422

window, event- . 267

window, find-file-other- . 356

window, frame-root- . 431

window, frame-selected- . 431

window, frame-top-. 431

window, get-buffer- . 410

window, get-largest- . 408

window, get-lru- . 408

window, minibuffer . 408

window, minibuffer- . 253

window, minibuffer-scroll-. 253

window, next- . 408

window, other- . 409

window, point in . 414

window, position in . 414

window, position of . 421

window, previous- . 409

window, save-selected- . 408, 449

window, scroll-other- . 417

window, select- . 407

window, selected . 403

window, selected- . 407

window, shrink- . 422

window, size of. 419

window, split- . 404

window, switch-to-buffer-other-. 411

window-active-p, minibuffer- 253

window-buffer . 410

window-buffer, set- . 410

window-buffer-dedicated, set- 412

window-buffer-names, same- 414

window-configuration, current- 423

window-configuration, set- . 424

window-configuration-p . 424

window-dedicated-p . 412, 414

window-dedicated-p, set-. 414

790 XEmacs Lisp Reference Manual

window-displayed-text-pixel-height 421

window-end. 415

window-excursion, save- . 424

window-frame . 431

window-height . 420

window-highest-p . 421

window-horizontally, enlarge- 422

window-horizontally, shrink- 422

window-horizontally, split- . 406

window-hscroll . 419

window-hscroll, set- . 419

window-id, x- . 647

window-left-margin-pixel-width. 582

window-line, move-to- . 446

window-live-p . 406

window-lowest-p . 421

window-min-height . 423

window-min-width . 423

window-minibuffer-p . 253

window-p, one- . 404, 406

window-p, pos-visible-in-. 416

window-pixel-edges . 421

window-pixel-height . 420

window-pixel-width . 420

window-pixels, enlarge- . 422

window-pixels, shrink- . 423

window-point . 415

window-point, set- . 415

window-regexps, same- . 414

window-right-margin-pixel-width 582

window-scroll-buffer, other- . 417

window-setup-hook . 625

window-size, set-process-. 620

window-size-change-functions 423

window-start . 415

window-start, set- . 415

window-system objects . 555

window-text-area-pixel-edges 422

window-text-area-pixel-height 421

window-text-area-pixel-width 421

window-vertically, split- . 405

window-width. 420

window-x-pixel, event- . 268

window-y-pixel, event- . 268

windowp . 404

windows), selection (for X . 643

windows, buffers, controlled in 410

windows, controlling precisely 410

windows, cyclic ordering of. 408

windows, cyclic, ordering of . 408

windows, delete-other- . 407

windows, deleting . 406

windows, edebug-save- . 217, 224

windows, examining . 410

windows, finding . 408

windows, multiple . 403

windows, pop-up- . 412

windows, replace-buffer-in- . 411

windows, selecting . 407

windows, splitting . 404

windows, tiled . 403

windows, truncate-partial-width- 586

windows, walk- . 409

Windows, X- . 643

windows-on, delete- . 407

with multiple names, file . 366

with narrowing, point . 441

with parentheses, indenting . 520

with prefix argument, execute 261

with require, load error . 182

with-current-buffer . 449

with-output-to-temp-buffer . 593

with-selected-frame . 433

with-temp-file . 449

without conversion, rounding . 48

without-asking, trim-versions- 385

without-query, process-kill- . 612

without-query-p, process-kill- 613

word constituent . 514

word search . 496

word, backward- . 443

word, capitalize- . 487

word, downcase- . 487

word, forward- . 443

word, minibuffer-complete- . 245

word, upcase- . 487

word-search-backward . 496

word-search-forward . 496

words-include-escapes . 443

wrapping, line . 586

writable-p, file- . 362

write-abbrev-file . 525

write-char . 233

write-contents-hooks . 359

write-file . 358

write-file, format- . 379

write-file-hooks . 358

write-file-hooks, local- . 358

write-region . 360

write-region-annotate-functions. 491

writing a doc string, string, . 345

writing a documentation string 345

writing minor modes, conventions for 336

wrong-number-of-arguments 149

wrong-type-argument . 32

Index 791

X
X . 643

x 4, C- . 289

x 5, C- . 289

x a, C- . 289

x n, C- . 289

x r, C- . 289

X resource type . 32

X window frame . 425

X windows), selection (for . 643

x, C- . 289

x, C-M- . 207

x, event-. 268

x, image-instance-hotspot- . 576

x, M- . 261

x-4-map, ctl- . 289, 709

x-5-map, ctl- . 289, 709

x-allow-sendevents . 647

x-bitmap-file-path . 573, 646

x-debug-events . 647

x-debug-mode . 647

x-device, default- . 644

x-device, make- . 439

x-disown-selection . 643

x-display, device- . 439

x-display-visual-class . 646

x-emacs-application-class . 645

x-find-larger-font . 561

x-find-smaller-font. 561

x-font-size . 561

x-get-cutbuffer . 643

x-get-resource . 644

x-get-selection . 643

x-grab-keyboard . 646

x-grab-pointer . 646

x-library-search-path . 646

x-make-font-bold . 562

x-make-font-bold-italic . 562

x-make-font-italic . 562

x-make-font-unbold . 562

x-make-font-unitalic . 562

x-map, ctl- . 289, 709

x-own-selection . 643

x-pixel, event- . 267

x-pixel, event-glyph- . 269

x-pixel, event-window- . 268

X-prefix, Control- . 289

x-put-resource . 645

x-server-vendor . 645

x-server-version . 645

x-set-frame-icon-pixmap . 429

x-store-cutbuffer . 643

x-ungrab-keyboard . 646

x-ungrab-pointer . 646

x-valid-keysym-name-p . 646

x-window-id . 647

X-Windows . 643

XEmacs event standard notation 349

XEmacs from temacs, bootstrapping 693

XEmacs, building . 693

XEmacs, exiting . 627

XEmacs, killing . 627

XEmacs, start up of . 623

XEmacs, suspending . 627

xpm-color-symbols . 573

Y
y, event- . 268

y, image-instance-hotspot- . 576

y-or-n-p . 249

y-or-n-p, map- . 251

y-or-n-p-maybe-dialog-box . 251

y-pixel, event- . 267

y-pixel, event-glyph- . 269

y-pixel, event-window- . 268

yank . 471

yank suppression . 299

yank-pointer, kill-ring- . 473

yank-pop . 472

yes-or-no questions . 249

yes-or-no-p . 250

yes-or-no-p-dialog-box . 251

yes-or-no-p-maybe-dialog-box 251

Z
zero-length extent . 530

zerop . 43

zmacs-activate-region . 461

zmacs-activate-region-hook. 461

zmacs-deactivate-region . 461

zmacs-deactivate-region-hook 461

zmacs-region-stays . 461

zmacs-regions . 460

zmacs-update-region. 461

zmacs-update-region-hook . 462

zone, current-time- . 633

792 XEmacs Lisp Reference Manual

	XEmacs Lisp Reference Manual
	Short Contents
	Table of Contents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Introduction
	Caveats
	Lisp History
	Conventions
	Some Terms
	nil and t
	Evaluation Notation
	Printing Notation
	Error Messages
	Buffer Text Notation
	Format of Descriptions
	A Sample Function Description
	A Sample Variable Description

	Acknowledgements

	Lisp Data Types
	Printed Representation and Read Syntax
	Comments
	Primitive Types
	Programming Types
	Integer Type
	Floating Point Type
	Character Type
	Symbol Type
	Sequence Types
	Cons Cell and List Types
	Dotted Pair Notation
	Association List Type

	Array Type
	String Type
	Vector Type
	Bit Vector Type
	Function Type
	Macro Type
	Primitive Function Type
	Compiled-Function Type
	Autoload Type
	Char Table Type
	Hash Table Type
	Range Table Type
	Weak List Type

	Editing Types
	Buffer Type
	Marker Type
	Extent Type
	Window Type
	Frame Type
	Device Type
	Console Type
	Window Configuration Type
	Event Type
	Process Type
	Stream Type
	Keymap Type
	Syntax Table Type
	Display Table Type
	Database Type
	Charset Type
	Coding System Type
	ToolTalk Message Type
	ToolTalk Pattern Type

	Window-System Types
	Face Type
	Glyph Type
	Specifier Type
	Font Instance Type
	Color Instance Type
	Image Instance Type
	Toolbar Button Type
	Subwindow Type
	X Resource Type

	Type Predicates
	Equality Predicates

	Numbers
	Integer Basics
	Floating Point Basics
	Type Predicates for Numbers
	Comparison of Numbers
	Numeric Conversions
	Arithmetic Operations
	Rounding Operations
	Bitwise Operations on Integers
	Standard Mathematical Functions
	Random Numbers

	Strings and Characters
	String and Character Basics
	The Predicates for Strings
	Creating Strings
	The Predicates for Characters
	Character Codes
	Comparison of Characters and Strings
	Conversion of Characters and Strings
	Modifying Strings
	String Properties
	Formatting Strings
	Character Case
	The Case Table
	The Char Table
	Char Table Types
	Working With Char Tables

	Lists
	Lists and Cons Cells
	Lists as Linked Pairs of Boxes
	Predicates on Lists
	Accessing Elements of Lists
	Building Cons Cells and Lists
	Modifying Existing List Structure
	Altering List Elements with setcar
	Altering the CDR of a List
	Functions that Rearrange Lists

	Using Lists as Sets
	Association Lists
	Property Lists
	Working With Normal Plists
	Working With Lax Plists
	Converting Plists To/From Alists

	Weak Lists

	Sequences, Arrays, and Vectors
	Sequences
	Arrays
	Functions that Operate on Arrays
	Vectors
	Functions That Operate on Vectors
	Bit Vectors
	Functions That Operate on Bit Vectors

	Symbols
	Symbol Components
	Defining Symbols
	Creating and Interning Symbols
	Symbol Properties
	Property Lists and Association Lists
	Property List Functions for Symbols
	Property Lists Outside Symbols

	Evaluation
	Eval
	Kinds of Forms
	Self-Evaluating Forms
	Symbol Forms
	Classification of List Forms
	Symbol Function Indirection
	Evaluation of Function Forms
	Lisp Macro Evaluation
	Special Forms
	Autoloading

	Quoting

	Control Structures
	Sequencing
	Conditionals
	Constructs for Combining Conditions
	Iteration
	Nonlocal Exits
	Explicit Nonlocal Exits: catch and throw
	Examples of catch and throw
	Errors
	How to Signal an Error
	How XEmacs Processes Errors
	Writing Code to Handle Errors
	Error Symbols and Condition Names

	Cleaning Up from Nonlocal Exits

	Variables
	Global Variables
	Variables That Never Change
	Local Variables
	When a Variable is ``Void''
	Defining Global Variables
	Accessing Variable Values
	How to Alter a Variable Value
	Scoping Rules for Variable Bindings
	Scope
	Extent
	Implementation of Dynamic Scoping
	Proper Use of Dynamic Scoping

	Buffer-Local Variables
	Introduction to Buffer-Local Variables
	Creating and Deleting Buffer-Local Bindings
	The Default Value of a Buffer-Local Variable

	Variable Aliases

	Functions
	What Is a Function?
	Lambda Expressions
	Components of a Lambda Expression
	A Simple Lambda-Expression Example
	Advanced Features of Argument Lists
	Documentation Strings of Functions

	Naming a Function
	Defining Functions
	Calling Functions
	Mapping Functions
	Anonymous Functions
	Accessing Function Cell Contents
	Inline Functions
	Other Topics Related to Functions

	Macros
	A Simple Example of a Macro
	Expansion of a Macro Call
	Macros and Byte Compilation
	Defining Macros
	Backquote
	Common Problems Using Macros
	Evaluating Macro Arguments Repeatedly
	Local Variables in Macro Expansions
	Evaluating Macro Arguments in Expansion
	How Many Times is the Macro Expanded?

	Writing Customization Definitions
	Common Keywords for All Kinds of Items
	Defining Custom Groups
	Defining Customization Variables
	Customization Types
	Simple Types
	Composite Types
	Splicing into Lists
	Type Keywords

	Loading
	How Programs Do Loading
	Autoload
	Repeated Loading
	Features
	Unloading
	Hooks for Loading

	Byte Compilation
	Performance of Byte-Compiled Code
	The Compilation Functions
	Documentation Strings and Compilation
	Dynamic Loading of Individual Functions
	Evaluation During Compilation
	Compiled-Function Objects
	Disassembled Byte-Code

	Debugging Lisp Programs
	The Lisp Debugger
	Entering the Debugger on an Error
	Debugging Infinite Loops
	Entering the Debugger on a Function Call
	Explicit Entry to the Debugger
	Using the Debugger
	Debugger Commands
	Invoking the Debugger
	Internals of the Debugger

	Debugging Invalid Lisp Syntax
	Excess Open Parentheses
	Excess Close Parentheses

	Debugging Problems in Compilation
	Edebug
	Using Edebug
	Instrumenting for Edebug
	Edebug Execution Modes
	Jumping
	Miscellaneous
	Breakpoints
	Global Break Condition
	Embedded Breakpoints

	Trapping Errors
	Edebug Views
	Evaluation
	Evaluation List Buffer
	Reading in Edebug
	Printing in Edebug
	Tracing
	Coverage Testing
	The Outside Context
	Checking Whether to Stop
	Edebug Display Update
	Edebug Recursive Edit

	Instrumenting Macro Calls
	Specification List
	Backtracking
	Debugging Backquote
	Specification Examples

	Edebug Options

	Reading and Printing Lisp Objects
	Introduction to Reading and Printing
	Input Streams
	Input Functions
	Output Streams
	Output Functions
	Variables Affecting Output

	Minibuffers
	Introduction to Minibuffers
	Reading Text Strings with the Minibuffer
	Reading Lisp Objects with the Minibuffer
	Minibuffer History
	Completion
	Basic Completion Functions
	Completion and the Minibuffer
	Minibuffer Commands That Do Completion
	High-Level Completion Functions
	Reading File Names
	Programmed Completion

	Yes-or-No Queries
	Asking Multiple Y-or-N Questions
	Minibuffer Miscellany

	Command Loop
	Command Loop Overview
	Defining Commands
	Using interactive
	Code Characters for interactive
	Examples of Using interactive

	Interactive Call
	Information from the Command Loop
	Events
	Event Types
	Contents of the Different Types of Events
	Event Predicates
	Accessing the Position of a Mouse Event
	Frame-Level Event Position Info
	Window-Level Event Position Info
	Event Text Position Info
	Event Glyph Position Info
	Event Toolbar Position Info
	Other Event Position Info

	Accessing the Other Contents of Events
	Working With Events
	Converting Events

	Reading Input
	Key Sequence Input
	Reading One Event
	Dispatching an Event
	Quoted Character Input
	Miscellaneous Event Input Features

	Waiting for Elapsed Time or Input
	Quitting
	Prefix Command Arguments
	Recursive Editing
	Disabling Commands
	Command History
	Keyboard Macros

	Keymaps
	Keymap Terminology
	Format of Keymaps
	Creating Keymaps
	Inheritance and Keymaps
	Key Sequences
	Prefix Keys
	Active Keymaps
	Key Lookup
	Functions for Key Lookup
	Changing Key Bindings
	Commands for Binding Keys
	Scanning Keymaps
	Other Keymap Functions

	Menus
	Format of Menus
	Format of the Menubar
	Menubar
	Modifying Menus
	Menu Filters
	Pop-Up Menus
	Menu Accelerators
	Creating Menu Accelerators
	Keyboard Menu Traversal
	Menu Accelerator Functions

	Buffers Menu

	Dialog Boxes
	Dialog Box Format
	Dialog Box Functions

	Toolbar
	Toolbar Intro
	Toolbar Descriptor Format
	Specifying the Toolbar
	Other Toolbar Variables

	scrollbars
	Drag and Drop
	Supported Protocols
	OffiX DND
	CDE dt
	MSWindows OLE
	Loose ends

	Drop Interface
	Drag Interface

	Major and Minor Modes
	Major Modes
	Major Mode Conventions
	Major Mode Examples
	How XEmacs Chooses a Major Mode
	Getting Help about a Major Mode
	Defining Derived Modes

	Minor Modes
	Conventions for Writing Minor Modes
	Keymaps and Minor Modes

	Modeline Format
	The Data Structure of the Modeline
	Variables Used in the Modeline
	%-Constructs in the ModeLine

	Hooks

	Documentation
	Documentation Basics
	Access to Documentation Strings
	Substituting Key Bindings in Documentation
	Describing Characters for Help Messages
	Help Functions
	Obsoleteness

	Files
	Visiting Files
	Functions for Visiting Files
	Subroutines of Visiting

	Saving Buffers
	Reading from Files
	Writing to Files
	File Locks
	Information about Files
	Testing Accessibility
	Distinguishing Kinds of Files
	Truenames
	Other Information about Files

	Changing File Names and Attributes
	File Names
	File Name Components
	Directory Names
	Absolute and Relative File Names
	Functions that Expand Filenames
	Generating Unique File Names
	File Name Completion

	Contents of Directories
	Creating and Deleting Directories
	Making Certain File Names ``Magic''
	Partial Files
	Intro to Partial Files
	Creating a Partial File
	Detached Partial Files

	File Format Conversion
	Files and MS-DOS

	Backups and Auto-Saving
	Backup Files
	Making Backup Files
	Backup by Renaming or by Copying?
	Making and Deleting Numbered Backup Files
	Naming Backup Files

	Auto-Saving
	Reverting

	Buffers
	Buffer Basics
	The Current Buffer
	Buffer Names
	Buffer File Name
	Buffer Modification
	Comparison of Modification Time
	Read-Only Buffers
	The Buffer List
	Creating Buffers
	Killing Buffers
	Indirect Buffers

	Windows
	Basic Concepts of Emacs Windows
	Splitting Windows
	Deleting Windows
	Selecting Windows
	Cyclic Ordering of Windows
	Buffers and Windows
	Displaying Buffers in Windows
	Choosing a Window for Display
	Windows and Point
	The Window Start Position
	Vertical Scrolling
	Horizontal Scrolling
	The Size of a Window
	The Position of a Window
	Changing the Size of a Window
	Window Configurations

	Frames
	Creating Frames
	Frame Properties
	Access to Frame Properties
	Initial Frame Properties
	X Window Frame Properties
	Frame Size And Position
	The Name of a Frame (As Opposed to Its Title)

	Frame Titles
	Deleting Frames
	Finding All Frames
	Frames and Windows
	Minibuffers and Frames
	Input Focus
	Visibility of Frames
	Raising and Lowering Frames
	Frame Configurations
	Hooks for Customizing Frame Behavior

	Consoles and Devices
	Basic Console Functions
	Basic Device Functions
	Console Types and Device Classes
	Connecting to a Console or Device
	The Selected Console and Device
	Console and Device I/O

	Positions
	Point
	Motion
	Motion by Characters
	Motion by Words
	Motion to an End of the Buffer
	Motion by Text Lines
	Motion by Screen Lines
	Moving over Balanced Expressions
	Skipping Characters

	Excursions
	Narrowing

	Markers
	Overview of Markers
	Predicates on Markers
	Functions That Create Markers
	Information from Markers
	Changing Marker Positions
	The Mark
	The Region

	Text
	Examining Text Near Point
	Examining Buffer Contents
	Comparing Text
	Inserting Text
	User-Level Insertion Commands
	Deleting Text
	User-Level Deletion Commands
	The Kill Ring
	Kill Ring Concepts
	Functions for Killing
	Functions for Yanking
	Low-Level Kill Ring
	Internals of the Kill Ring

	Undo
	Maintaining Undo Lists
	Filling
	Margins for Filling
	Auto Filling
	Sorting Text
	Counting Columns
	Indentation
	Indentation Primitives
	Indentation Controlled by Major Mode
	Indenting an Entire Region
	Indentation Relative to Previous Lines
	Adjustable ``Tab Stops''
	Indentation-Based Motion Commands

	Case Changes
	Text Properties
	Examining Text Properties
	Changing Text Properties
	Property Search Functions
	Properties with Special Meanings
	Saving Text Properties in Files

	Substituting for a Character Code
	Registers
	Transposition of Text
	Change Hooks

	Searching and Matching
	Searching for Strings
	Regular Expressions
	Syntax of Regular Expressions
	Complex Regexp Example

	Regular Expression Searching
	POSIX Regular Expression Searching
	Search and Replace
	The Match Data
	Simple Match Data Access
	Replacing the Text That Matched
	Accessing the Entire Match Data
	Saving and Restoring the Match Data

	Searching and Case
	Standard Regular Expressions Used in Editing

	Syntax Tables
	Syntax Table Concepts
	Syntax Descriptors
	Table of Syntax Classes
	Syntax Flags

	Syntax Table Functions
	Motion and Syntax
	Parsing Balanced Expressions
	Some Standard Syntax Tables
	Syntax Table Internals

	Abbrevs And Abbrev Expansion
	Setting Up Abbrev Mode
	Abbrev Tables
	Defining Abbrevs
	Saving Abbrevs in Files
	Looking Up and Expanding Abbreviations
	Standard Abbrev Tables

	Extents
	Introduction to Extents
	Creating and Modifying Extents
	Extent Endpoints
	Finding Extents
	Mapping Over Extents
	Properties of Extents
	Detached Extents
	Extent Parents
	Duplicable Extents
	Interaction of Extents with Keyboard and Mouse Events
	Atomic Extents

	Specifiers
	Introduction to Specifiers
	In-Depth Overview of a Specifier
	How a Specifier Is Instanced
	Specifier Types
	Adding specifications to a Specifier
	Retrieving the Specifications from a Specifier
	Working With Specifier Tags
	Functions for Instancing a Specifier
	Example of Specifier Usage
	Creating New Specifier Objects
	Functions for Checking the Validity of Specifier Components
	Other Functions for Working with Specifications in a Specifier

	Faces and Window-System Objects
	Faces
	Merging Faces for Display
	Basic Functions for Working with Faces
	Face Properties
	Face Convenience Functions
	Other Face Display Functions

	Fonts
	Font Specifiers
	Font Instances
	Font Instance Names
	Font Instance Size
	Font Instance Characteristics
	Font Convenience Functions

	Colors
	Color Specifiers
	Color Instances
	Color Instance Properties
	Color Convenience Functions

	Glyphs
	Glyph Functions
	Creating Glyphs
	Glyph Properties
	Glyph Convenience Functions
	Glyph Dimensions

	Images
	Image Specifiers
	Image Instantiator Conversion
	Image Instances
	Image Instance Types
	Image Instance Functions

	Glyph Types
	Mouse Pointer
	Redisplay Glyphs
	Subwindows

	Annotations
	Annotation Basics
	Annotation Primitives
	Annotation Properties
	Locating Annotations
	Margin Primitives
	Annotation Hooks

	Emacs Display
	Refreshing the Screen
	Truncation
	The Echo Area
	Warnings
	Invisible Text
	Selective Display
	The Overlay Arrow
	Temporary Displays
	Blinking Parentheses
	Usual Display Conventions
	Display Tables
	Display Table Format
	Active Display Table
	Character Descriptors

	Beeping

	Hash Tables
	Introduction to Hash Tables
	Working With Hash Tables
	Weak Hash Tables

	Range Tables
	Introduction to Range Tables
	Working With Range Tables

	Databases
	Connecting to a Database
	Working With a Database
	Other Database Functions

	Processes
	Functions that Create Subprocesses
	Creating a Synchronous Process
	MS-DOS Subprocesses
	Creating an Asynchronous Process
	Deleting Processes
	Process Information
	Sending Input to Processes
	Sending Signals to Processes
	Receiving Output from Processes
	Process Buffers
	Process Filter Functions
	Accepting Output from Processes

	Sentinels: Detecting Process Status Changes
	Process Window Size
	Transaction Queues
	Network Connections

	Operating System Interface
	Starting Up XEmacs
	Summary: Sequence of Actions at Start Up
	The Init File: .emacs
	Terminal-Specific Initialization
	Command Line Arguments

	Getting out of XEmacs
	Killing XEmacs
	Suspending XEmacs

	Operating System Environment
	User Identification
	Time of Day
	Time Conversion
	Timers for Delayed Execution
	Terminal Input
	Input Modes
	Translating Input Events
	Recording Input

	Terminal Output
	Flow Control
	Batch Mode

	Functions Specific to the X Window System
	X Selections
	X Server
	Resources
	Data about the X Server
	Restricting Access to the Server by Other Apps

	Miscellaneous X Functions and Variables

	ToolTalk Support
	XEmacs ToolTalk API Summary
	Sending Messages
	Example of Sending Messages
	Elisp Interface for Sending Messages

	Receiving Messages
	Example of Receiving Messages
	Elisp Interface for Receiving Messages

	LDAP Support
	Building XEmacs with LDAP support
	XEmacs LDAP API
	LDAP Variables
	The High-Level LDAP API
	The Low-Level LDAP API
	The LDAP Lisp Object
	Opening and Closing a LDAP Connection
	Searching on a LDAP Server (Low-level)

	Syntax of Search Filters

	Internationalization
	I18N Levels 1 and 2
	I18N Level 3
	Level 3 Basics
	Level 3 Primitives
	Dynamic Messaging
	Domain Specification
	Documentation String Extraction

	I18N Level 4

	MULE
	Internationalization Terminology
	Charsets
	Charset Properties
	Basic Charset Functions
	Charset Property Functions
	Predefined Charsets

	MULE Characters
	Composite Characters
	ISO 2022
	Coding Systems
	Coding System Types
	EOL Conversion
	Coding System Properties
	Basic Coding System Functions
	Coding System Property Functions
	Encoding and Decoding Text
	Detection of Textual Encoding
	Big5 and Shift-JIS Functions

	CCL
	CCL Syntax
	CCL Statements
	CCL Expressions
	Calling CCL
	CCL Examples

	Category Tables

	Tips and Standards
	Writing Clean Lisp Programs
	Tips for Making Compiled Code Fast
	Tips for Documentation Strings
	Tips on Writing Comments
	Conventional Headers for XEmacs Libraries

	Building XEmacs; Allocation of Objects
	Building XEmacs
	Pure Storage
	Garbage Collection

	Standard Errors
	Buffer-Local Variables
	Standard Keymaps
	Standard Hooks
	Index

